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Abstract: Fungal Oligopeptide Transporters (Fot) Fot1, Fot2 and Fot3 have been found in Saccha-
romyces cerevisiae wine strains, but not in strains from other environments. In the S. cerevisiae wine
strain EC1118, Fot1 and Fot2 are responsible for a broader range of oligopeptide utilization in com-
parison with strains not containing any Fot. This leads to better fermentation efficiency and an
increased production of desirable organoleptic compounds in wine. Despite the benefits associated
with Fot activity in S. cerevisiae within the wine environment, little is known about this family of
transporters in yeast. The presence of Fot1, Fot2 and Fot3 in S. cerevisiae wine strains is due to
horizontal gene transfer from the yeast Torulaspora microellipsoides, which harbors Fot2Tm, FotX and
FotY proteins. Sequence analyses revealed that Fot family members have a high sequence identity
in these yeast species. In this work, we aimed to further characterize the different Fot family mem-
bers in terms of subcellular localization, gene expression in enological fermentation and substrate
specificity. Using CRISPR/Cas9, we constructed S. cerevisiae wine strains containing each different
Fot as the sole oligopeptide transporter to analyze their oligopeptide preferences by phenotype
microarrays. The results of oligopeptide consumption show that Fot counterparts have different di-
/tripeptide specificities, suggesting that punctual sequence divergence between FOT genes can be cru-
cial for substrate recognition, binding and transport activity. FOT gene expression levels in different
S. cerevisiae wine strains during enological fermentation, together with predicted binding motifs for
transcriptional regulators in nitrogen metabolism, indicate that these transporters may be under the
control of the Nitrogen Catabolite Repression (NCR) system. Finally, we demonstrated that Fot1 is
located in the yeast plasma membrane. This work contributes to a better understanding of this family
of oligopeptide transporters, which have demonstrated a key role in the utilization of oligopeptides
by S. cerevisiae in enological fermentation.

Keywords: Fungal Oligopeptide Transporters (Fot); oligopeptide transport; Saccharomyces cerevisiae;
phenotype microarrays; GFP labeling

1. Introduction

Oligopeptides, often simply referred to as peptides, are short chains of two to nine
amino acid residues linked by an amide type bond mainly present in nature as a result of
proteolytic processes. They constitute a highly diverse source of nitrogen and carbon for
microorganisms. As for other nutrient molecules, the ability to consume oligopeptides from
the environment can represent a crucial competitive advantage in a microbial ecosystem.
In the eukaryotic model organism Saccharomyces cerevisiae, three systems for oligopep-
tide transport are well documented: Ptr2, a Proton-dependent Oligopeptide Transporter
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(Pot/Ptr, Transporter Classification (TC) number: 2.A.17) [1] is the best-known di- and
tripeptide transporter in yeast, together with the allantoate and ureidosuccinate permease
Dal5 (TC 2.A.1.14.4), which also displays dipeptide transport activity [2]. Two members
of the Oligopeptide Transport (Opt) family (TC 2.A.67), glutathione transporter Opt1 and
its paralogue Opt2, can transport tetrapeptides and also pentapeptides in the specific case
of Opt1 [3,4]. Finally, new oligopeptide transporters from eukaryotes have been identi-
fied from a soil sample. Phylogenetic analyses indicated that these transporter sequences
only grouped with other fungal species and were not homologous to either Ptr2, Dal5 or
Opt members; as a result, a novel family termed Fungal Oligopeptide Transporters (Fot)
was defined and characterized as proton-driven membrane transporters in fungi able to
import di-and tripeptides [5]. Fot proteins were related to fungal members of the Amino
Acid/Auxin Permease family (TC 2.A.18.4.) [5]. Interestingly, S. cerevisiae FOT genes are
only present in wine strains, and not in strains from other environments. The genes FOT1,
FOT2 and FOT3, found in different S. cerevisiae wine strains, are the result of a horizontal
gene transfer and subsequent gene conversions between FOTX and FOT2Tm from the yeast
Torulaspora microellipsoides, which also contains FOTY [6,7]. Fot family members display
a high sequence identity at both the protein and gene level, from 90% identity between
FOTY and FOT2 genes to 98% between FOTX and FOT3 [7].

The deletion of FOT1 and FOT2 genes in the S. cerevisiae 59A strain, a haploid deriva-
tive of commercial wine strain Lalvin EC1118®, led to a 35% drop in oligopeptide-derived
nitrogen consumption. Compared to the deletion mutant, wild-type strain 59A had higher
biomass accumulation by the end of fermentation, which is consistent with a higher nitro-
gen consumption [7]. Strain 59A also showed two remarkable features as a consequence
of the higher consumption of glutamate/glutamine-rich oligopeptides due to Fot1 and
Fot2 activity: first, a higher cell viability by the end of fermentation in comparison to
fot1fot2∆ [7], and secondly, a more positive wine organoleptic balance due to a lower
production of acetate and higher levels of ester acetates and fusel alcohols [8]. This effect
on the production of fermentative organoleptic compounds was later demonstrated to
be dependent on the source of peptides present in the must [9]. With higher biomass
and viability as evident fitness indicators, these results suggest that Fot acquisition by
S. cerevisiae wine strains confers a competitive advantage in the wine environment [7,8,10].

Despite the important role that Fot family members play in the adaptation of
S. cerevisiae to the wine fermentation environment, little is known still about this fam-
ily of transporters. The most evident question that arises is the biological significance of the
five different Fot members currently known, considering their high sequence identity. To
answer this question, we followed a CRISPR/Cas9 strategy to construct S. cerevisiae wine
strains containing single Fot members as the sole oligopeptide transporter. Analysis of
oligopeptide preferences by these strains revealed that Fot1, Fot2, Fot3, FotX and FotY have
distinct substrate specificities, highlighting the importance of the amino acid nature and
position within the oligopeptide for their consumption as substrates. Moreover, we provide
evidence that FOT expression is dependent on the strain, stage of enological fermenta-
tion and composition of the yeast assimilable nitrogen. Additionally, using fluorescence
microscopy and co-localization studies with GFP labeling, we demonstrated that Fot1
is localized in the yeast plasma membrane. With this work we aimed at advancing the
knowledge regarding the expression and function of Fot family members, which have a
key role in the adaptation of S. cerevisiae to wine environments.

2. Materials and Methods
2.1. Yeast Strains and Fermentation Conditions

In this study, we worked with S. cerevisiae strains 59A and MTF2533, haploid deriva-
tives of the commercial wine strains Lalvin EC1118® and LMD1, respectively [11,12]. We
used a 59A version in which gene AMN1 has been deleted to avoid cell aggregation [7,13,14].
Fermentations were carried out in 1.2 L glass fermenters inoculated with 106 cells/mL. We
used natural Colombard grape must (Caussens, France, 2019) containing 183 g/L of sugars
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and 257 mg/L of yeast assimilable nitrogen (ammonium and amino acids). To mimic
the conditions and composition of the natural must, a synthetic must (SM) was prepared
with 183 g/L glucose/fructose, 257 mg/L yeast assimilable nitrogen (ammonium and free
amino acids), 1.12 mg/L oleic acid and 3.75 mg/L ergosterol, at pH 3.3 [15]. Cells were
grown on double overnight pre-cultures, first on YPD (1% yeast extract, 2% bactopeptone,
2% glucose) at 28 ◦C in 10 mL flasks with shaking (180 rpm) and then on SM in the same
conditions before inoculation of fermenters. Strains with antibiotic resistance were selected
on YPD medium supplemented with 300 µg/mL hygromycin B (Sigma, 31282–04–9, Saint
Louis, MO, USA), 200 µg/mL G418 (Sigma A-1720) and/or 100 µg/mL nourseothricin
(Werner, 96736–11–7, Meisenweg, Germany).

2.2. Strain and Plasmid Construction

Tandem genes FOT1–FOT2 were replaced by a KANMX4 cassette in strain 59A, ob-
taining the strain fot1fot2∆. The genes of the non-Fot oligopeptide transporters in 59A, i.e.,
OPT1, OPT2 and DAL5, were then deleted from 59A and fot1fot2∆ using the CRISPR/Cas9
system with two plasmids and one repair fragment [16]. This system requires first a
transformation with plasmid pCfB2513 for the expression of Cas9; in a second transfor-
mation, a repair fragment and plasmid pMEL15 [17] containing the guide RNA (gRNA)
cassette for the target gene are introduced. Genes DAL5, OPT1 and OPT2 were sequen-
tially deleted, with the consequent pMEL15 loss in between to ensure the correct selection
of transformants. pMEL15 vectors containing the gRNA cassettes were generated by
PCR, whereas the repair fragments consisting of disrupted versions of the target genes
were designed and amplified from a pEX-A128 plasmid (Eurofins Genomics, Ebersberg,
Germany). PTR2, which is the gene coding the best-known dipeptide transporter in
S. cerevisiae, is not functional in 59A, and its deletion was therefore not required [5].
Deletion of non-FOT oligopeptide transporter genes in fot1fot2∆ resulted in the strain
opt1∆ opt2∆ dal5∆ fot1fot2∆::KANMX4, termed PepKO, which was a knockout strain for
oligopeptide transport and constituted a platform strain for the insertion of single FOT
genes. Using CRISPR/Cas9, each FOT gene was inserted in a substitution of the KANMX4
cassette in PepKO. In this way, all FOT genes were individually located in the original
FOT1–FOT2 locus and therefore were under the regulation of the FOT2 promoter and
FOT1 terminator. All these transformations were carried out using the lithium acetate
method for yeast transformation [18]. The different strains containing single FOT genes
were confirmed by sequencing.

Plasmids containing the GFP gene fused to FOT1 at its 5′ or 3′ ends (pGFP–Fot1 and
pFot1–GFP, respectively) were constructed by Gibson assembly (New England Biolabs,
Ipswich, MA, USA) and confirmed by digestion with restriction enzymes. The strains used
and constructed in this study are listed in Table 1; primers and plasmids used in this study
are listed in Tables S1 and S2, respectively.

2.3. Phenotype Microarray Assays for Di- and Tripeptide Consumption

The di/tripeptide utilization profile of the different strains was performed using
the Biolog (Hayward, CA, USA) Phenotype MicroArrays (PM) system combined with
the OmniLog reader (Biolog, Hayward, CA, USA) at the COMIC facility of SFR Quasay
(University of Angers, France). This technique enables the monitoring of the consumption
of a range of substrates over time through a colorimetric method. We used four PM plates
(PM3B for nitrogen sources, PM6, PM7 and PM8 for peptide nitrogen sources) containing a
total range of 270 dipeptides and 14 tripeptides, with a negative control and L-glutamine as
a positive control per plate. Cultures were incubated on yeast nitrogen base plates without
amino acids (YNB, Difco BD 91940, 6.7 g/L; 2% glucose, 2% agar) at 28 ◦C in duplicate
and prepared for incubation on PM plates as in [19]. PM assays were performed at 30 ◦C
over 72 h. After this time, data from the Omnilog system were retrieved using Kinetics
software v1.30. Area under the curve was calculated and assigned as consumption values.
We considered a strain to have utilized a di/tripeptide when the consumption value after
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72 h on this nitrogen source represented more than 20% of L-glutamine consumption;
this threshold was taken as the positive control and therefore the glutamine consumption
value for each strain in each plate represented 100% consumption. Below 20%, the growth
signal would possibly be mistaken with spontaneous reduction of the tetrazolium dye
or reduction by the remaining yeast inoculum [5]. Levels of consumption from 0 to 5
were established based on the consumption value of L-glutamine, the positive control in
each plate. Level 0, 0–20% of consumption on L-Gln; 1, 21–40%; 2, 41–60%; 3, 61–80%;
4, 81–100%; 5, >100%.

Table 1. Strains used in this study.

Strain Genotype Source/Reference

59A MATa ho amn1∆::LOXP [7]
fot1fot2∆ MATa ho amn1∆::LOXP fot1fot2∆::KANMX4 This study
opt1∆opt2∆dal5∆ MATa ho amn1∆::LOXP opt1∆ opt2∆ dal5∆ This study
PepKO MATa ho amn1∆::LOXP fot1fot2∆::KANMX4 opt1∆ opt2∆ dal5∆ This study
PepKO-Fot1 MATa ho amn1∆::LOXP opt1∆ opt2∆ dal5∆ fot1fot2∆::FOT1 This study
PepKO-Fot2 MATa ho amn1∆::LOXP opt1∆ opt2∆ dal5∆ fot1fot2∆::FOT2 This study
PepKO-Fot3 MATa ho amn1∆::LOXP opt1∆ opt2∆ dal5∆ fot1fot2∆::FOT3 This study
PepKO-FotX MATa ho amn1∆::LOXP opt1∆ opt2∆ dal5∆ fot1fot2∆::FOTX This study
PepKO-FotY MATa ho amn1∆::LOXP opt1∆ opt2∆ dal5∆ fot1fot2∆::FOTY This study
PepKO-Fot2Tm MATa ho amn1∆::LOXP opt1∆ opt2∆ dal5∆ fot1fot2∆::FOT2Tm This study
PepKO-Fot1Fot2 MATa ho amn1∆::LOXP opt1∆ opt2∆ dal5∆ fot1fot2∆::FOT1–FOT2 This study
59A-GFP MATa ho amn1∆::TEFp-GFP-ADH1-NATMX4 [7]
MTF2533 MATa ho::LOXP [12]

2.4. Gene Expression Analysis

Gene expression was analyzed in three independent cultures for each medium and
yeast strain. Cells were sampled at 10% (growth phase) and 40% (stationary phase) of the
total CO2 produced from each must during fermentation (see Figure S3). A total of 109 cells
were collected for each strain/must/fermentation stage, washed with diethylpyrocarbon-
ate (DEPC)-treated water, frozen in methanol and stored at −80 ◦C for RNA extraction.
RNA was isolated using Trizol reagent (Gibco BRL, Life Technologies, Waltham, MA, USA)
and purified by isopropanol precipitation using a RNeasy kit (Qiagen, Hilden, Germany).
RNA samples were retro-transcribed into cDNA and used for Quantitative Polymerase
Chain Reaction (qPCR). Following the recommendations of the Real-Time PCR system man-
ufacturer (Applied Biosystems, Waltham, MA, USA), FOT gene expression was quantified
by a relative standard curve method using genomic DNA of the yeast strain. Expression
values were subsequently normalized with those of the house-keeping gene SCR1 (Small
Cytoplasmatic RNA 1), which is commonly used as reference gene in S. cerevisiae due to its
high expression stability. Primers were designed for specific amplification of FOT1, FOT2,
FOT3 and SCR1 (Table S1).

2.5. Epifluorescence and Confocal Microscopy

N-(3-Triethylammoniumpropyl)-4-(6-(4-(Diethylamino) Phenyl) Hexatrienyl) Pyri-
dinium Dibromide or FM4–64 dye (Invitrogen, Waltham, MA, USA) was used as a fluores-
cence differential marker for plasma membrane (excitation 558 nm, emission 734 nm). A
total of 100 µL of cells was collected at the exponential phase and incubated with 80 µM
FM4–64 at 4 ◦C with agitation (1500 rpm). After a 1-h incubation, cells were spun at 700 g
for 3 min at 4 ◦C and prepared for immediate visualization (adapted from [20]). Cells were
visualized with a 100×/1.3 oil objective under an Axio Imager Cam MRM A2 microscope
(Carl Zeiss, White Plains, NY, USA) equipped with an excitation source and a range of
filters. For this study, we used filter 38 (excitation BP 470/40 and emission BP 525/50)
for visualizing GFP (488 nm excitation and 530 nm emission) and filter 20 (excitation: BP
546/12, emission: BP 575–640) for visualizing FM4–64 staining. Images of epifluorescence
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microscopy were captured and processed with ZEN 2012 software, version 1.1.2.0 (blue
edition; Carl Zeiss, New York, NY, USA). Confocal microscopy was performed with a
Confocal Leica 8 (Leica Microsystems CMS, Germany) with a 40×/1.1 oil objective. Fluo-
rescence emission was collected at 500–540 nm for GFP and at 600–650 nm for FM4–64 by
sequential acquisition. Images from confocal microscopy were treated and analyzed with
LAS X (Leica) and Fiji [21] software.

2.6. Analysis of Promoter Regions

Characterization of promoter regions was carried out using the YeTFaSCo database
v1.02 [22] to identify binding sites for transcription factors. A 500 bp region upstream the
start codon was analyzed against the expert-curated, non-dubious set of transcriptional
factors. Results were filtered for a value of maximum score higher than 95% identity.

2.7. Data Treatment and Statistical Analysis

Data were treated and analyzed using R v4.1.0 (R Core Team 2021) and RStudio (RStu-
dio Team 2020). Dedicated packages were used depending on the purpose: tidyverse [23]
for data manipulation and visualization; heatmaply [24] for heatmap construction and
agricolae package (Mendiburu and Yaseen, 2020) for statistical analysis.

3. Results
3.1. Evaluation of Substrate Specificity in Fot Family Members by Phenotype Microarrays

We sought to characterize the substrate preference of each Fot by phenotype mi-
croarrays. For this purpose, we first generated a complete knockout strain for oligopeptide
transport by deleting OPT1, OPT2 and DAL5 with CRISPR/Cas9 and substituting FOT1–FOT2
tandem genes by a KANMX4 cassette (Table 1). This knockout strain, denominated PepKO,
was unable to consume any of the 284 oligopeptides in the microarray, except for a weak
consumption of His–Pro, Thr–Ser and γ-Glu–Gly dipeptides (Figure 1, second to last row
in the heatmap; Table S3). The consumption of γ-Glu–Gly was probably due to the activity
of the general amino acid transporter Gap1, which has also been reported to transport
γ-glutamyl dipeptides [25]. In comparison, the wild-type strain 59A consumed 195 dipep-
tides and 12 tripeptides from a total range of 270 dipeptides and 14 tripeptides (Figure 1,
first row in the heatmap). This result confirms that we had deleted all significant di- and
tripeptide transporters in strain 59A. Using CRISPR/Cas9, each FOT gene was inserted
into the PepKO strain, substituting the KANMX4 cassette. In this way, we generated
S. cerevisiae strains containing single Fot family members as sole oligopeptide transporters
(Table 1), with FOT genes individually located in the original FOT1–FOT2 locus and there-
fore were under the regulation of the FOT2 promoter and FOT1 terminator. This allowed
the characterization of independent transporters that were under the same gene regulation.

Strains containing single Fot members showed different peptide specificities. In
the cladogram to the right in Figure 1, 59A is grouped with strains expressing Fot1 and
Fot2 but not the non-Fot oligopeptide transporters, which are opt1∆opt2∆dal5∆ and
PepKO–Fot1Fot2. Strain opt1∆opt2∆dal5∆ resulted from DAL5, OPT1 and OPT2 dele-
tion in the wild-type strain 59A, while PepKO–Fot1Fot2 originates from the re-insertion
of FOT1–FOT2 in PepKO. Both strains consumed, respectively, 189 and 191 oligopep-
tides from a total of 207 oligopeptides consumed by the wild-type atrain, only differ-
ing in Gly–Leu and Lys–Trp, which were weakly consumed (consumption level = 1) by
PepKO–Fot1Fot2 (Table S3). This result confirms that the genome insertion of FOT genes
on the platform strain PepKO did not perturb the oligopeptide consumption pheno-
type. Strain fot1fot2∆ was able to consume 12 dipeptides and 2 tripeptides that were
also consumed by the wild-type and, conversely, not consumed by opt1∆opt2∆dal5∆ or
PepKO–Fot1Fot2. Therefore, this 14-oligopeptide fraction, characterized by the presence of
glycine at the oligopeptide N-terminus, is specifically consumed by strains expressing the
non-Fot oligopeptide transporters, Dal5, Opt1 or Opt2. Consequently, these results confirm
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that Fot1 and Fot2 are the main di- and tripeptide transporters in the wine strain 59A, as
we previously reported under different experimental conditions [7].

Among the strains containing single Fot, the strain with the widest range of oligopep-
tide utilization was the one expressing FotX, consuming 152 di- and tripeptides (Figure 1,
forthth row in the heatmap). Consumption profiles for cells expressing Fot2Tm and Fot2
from S. cerevisiae were highly similar (Figure 1, sixth–seventh rows in the heatmap), an
expected result considering they share the same protein sequence. Fot1 peptide preferences
were closer to those of Fot2 than to the ones of FotX or Fot3, which was an interesting result
considering that Fot1 shares 96.21% protein sequence identity with Fot2 and, respectively,
98.11% and 97.26% with FotX and Fot3 (Figure S1) ([7]; reviewed in [10]). Fot3 and FotY
were sub-grouped together in the dendrogram (Figure 1) since they had a comparatively
shorter range of oligopeptide utilization, i.e., 110 and 99 out of 284 di- and tripeptides,
respectively. The fact that the Fot3 strain had a peptide utilization closer to the FotY strain
than to the Fot1 or FotX strains was a priori unexpected, considering that Fot3 displays
97.26% and 98.8% amino acid sequence identity, respectively, with these transporters, but
only 92.21% with FotY. This result may indicate that the localized sequence differences
between Fot3 and FotX can result in a dramatic change in transport capabilities.

It was remarkable that Fot1 and Fot2 as sole transporters were not able to match
the transport specificity of strains containing both transporters, PepKO–Fot1Fot2 and
opt1∆opt2∆dal5∆. Strains expressing Fot1–Fot2 consumed 59 oligopeptides more than
strains with Fot1 (PepKO–Fot1) or Fot2 (PepKO–Fot2) only (Figure S2A). This difference
did not simply come from an expected additive effect of Fot1 and Fot2 acting together,
since the level of consumption of 21 out of these 59 oligopeptides was 4 in strains harboring
Fot1–Fot2 (high consumption) versus level 0 in strains with Fot1 or Fot2 (Figure S2B). The
group of 59 oligopeptides transported by Fot1 and Fot2 together but not singly were rich
in Gly and, to a lesser extent, in Trp, Glu, Pro and Asp, with the three latter particularly
abundant at the C-terminal position (Figure S2C). This result suggests a possible interaction
between Fot1 and Fot2 that causes a modification in their transport abilities and specificities.

Figure 1. Fot have different peptide specificities. The heatmap represents the consumption of di- and tripeptides (columns)
by Fot-containing strains (rows). Strains are sorted by consumption preferences similarity, represented by the cladogram to
the right. The cladogram on top of the heatmap ranks the di- and tripeptides according to their preferential consumption.
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3.2. Specificity of Fot Members Depends on the Type of Amino Acid Located in the Oligopeptide
N-Terminus

The results of the di- and tripeptide consumption from the Phenotype Microarrays
(PM) plates were categorized based on the type of amino acid located at the N-terminal
position (Figure 2). In this way, we observed how, in general, Fot preferably transport
peptides with hydrophobic amino acids at the N-terminus (Figure 2A), with the general
exception of Gly-X and Pro-X oligopeptides. Within the group of oligopeptides with
hydrophobic amino acids at the N-terminus, those containing Glu, Asp, Lys, Gly or Pro at
the C-terminus were weakly or not consumed by Fot-expressing strains, with the exceptions
of Phe–Glu, Phe–Asp or Phe–Gly, moderately consumed in the presence of FotX. Peptides
with Trp at the N-terminus were less consumed, although Trp-Tyr was highly consumed
by strains harboring FotX, Fot1 and Fot2, but moderately so by strains expressing the
other transporters. Except for Cys–Gly, peptides with polar, uncharged amino acids in the
N-terminus were also generally consumed by strains harboring Fot members (Figure 2B),
particularly if these oligopeptides contained Tyr and/or a hydrophobic amino acid at the
C-terminus. Peptides containing charged amino acids were generally not consumed by
strains with single Fot, either in N- (Figure 2C) or C-terminal positions, with the exception
of His-containing peptides, which were moderately to highly consumed when any Fot
was present. A general exception to all these observations regarded peptides containing
an Arg in the C-terminal position, which were generally well consumed by all strains
expressing any single Fot member, while oligopeptides with Arg in the N-terminus were
not consumed by strains containing single Fot or Fot1–Fot2 (except for Arg–Trp, Arg–Lys
and Arg–Tyr, consumed in a level range of 2 to 4 by opt1∆opt2∆dal5∆ and PepKO–Fot1Fot2;
Table S4). Exceptions to this observation were Pro–Arg, highly consumed by FotX and
Fot1–Fot2 strains only, and transporter FotY, which did not allow any Met–Arg, Trp–Arg or
Pro–Arg consumption. The case of Arg suggests that localization of amino acids within the
oligopeptide is also important for oligopeptide recognition as a substrate. Gln was also
more frequent at the C-terminal position of peptides consumed by single Fot-containing
strains rather than at the N-terminus (Table S4). Moreover, peptides with D-, β- or γ-amino
acids were not consumed by any strain, with the exception of γ-Glu-Gly which was weakly
consumed by all strains including PepKO.
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Figure 2. Oligopeptide preferences depend on the character of the amino acid residues. In this figure, di- and tripeptides
are classified based on the amino acid type at the N-terminal position. Levels of consumption are expressed in comparison
to the consumption value of L-glutamine, as a positive control in each plate; level 0, 0–20% of consumption on L-Gln;
level 1, 21–40%; level 2, 40–60%; level 3, 60–80%; level 4, 80–100%; level 5, >100%. (A) Peptides with hydrophobic amino
acids. (B) Peptides with polar, uncharged amino acids; (C) Peptides with charged amino acids.
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3.3. FOT Genes Expression Depends on the S. cerevisiae Strain Background, Type of Nitrogen
Source and Stage of Enological Fermentation

Two S. cerevisiae wine strains were selected to analyze the expression of FOT1, FOT2
and FOT3. Strain 59A contains FOT1 and FOT2 tandem genes, while strain MTF2533 only
has FOT3. Two conditions of enological fermentation were evaluated: on one hand, a natu-
ral Colombard grape must (Caussens, France, 2019) containing 257 mg/L of assimilable
nitrogen and 183 g/L of sugars; on the other hand, a synthetic must with the same concen-
trations of assimilable nitrogen and sugars. Additionally, FOT expression was analyzed at
two key points of enological fermentation (Figure S3): 10% of fermentation, point at which
cells were at mid-log phase of growth and had not yet reached the maximum fermentation
rate or Vmax, and 40% of fermentation, which corresponded to a time point of fermentation
after Vmax, when cells were in stationary phase. FOT expression was quantified by qPCR
and normalized with expression values of the housekeeping gene SCR1.

Relative expression values of FOT genes were low in both strains (Figure 3), although
particularly low for FOT3 in strain MTF2533. Generally, these expression values were even
lower in natural must than in synthetic must, although only statistically significant for FOT1
and FOT2 at 40% fermentation. Contrary to this result, we expected a higher expression
of FOT genes in natural must since grape juice contains oligopeptides as nitrogen source,
while synthetic must does not. In addition, FOT1 and FOT2 showed higher expression
values at 40% of fermentation in both synthetic and natural must; however, the most
notable expression was observed for FOT1 at 40% of fermentation in synthetic must, with a
10-fold expression compared to that at 10%; FOT1 was also 3.46-fold more expressed than
FOT2 in the same medium and at the same stage of fermentation. Finding higher expression
values at 40% of fermentation, i.e., during stationary phase (Figure S3) was also unexpected,
since nitrogen is no longer consumed by yeast at this point of fermentation [15]. To predict
how FOT expression is regulated, we analyzed the promoter regions of FOT1, FOT2 and
FOT3, and those of FOTX, FOTY and FOT2Tm from T. microellipsoides using the scanner
tool of the YeTFaSCo database (Table S5). Several binding motifs for transcriptional factors
involved in the Nitrogen Catabolite Repression (NCR) such as Gln3 or Cup9 were found in
the promoter regions of all FOT genes. Gln3 is a transcriptional activator of genes under the
regulation of the NCR system, and Cup9 is a transcriptional repressor of both the dipeptide
transporter gene PTR2 and tetrapeptide transporter gene OPT2 in S. cerevisiae [26,27].
Therefore, these findings suggest that FOT genes may be under NCR system repression in
the presence of preferred nitrogen sources such as ammonium and certain amino acids,
which is the case during the growth phase, and be are only expressed when these sources
are scarce, which would agree with FOT1 overexpression at the stationary phase.
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Figure 3. Expression of FOT genes at two points of fermentation in different enological conditions.
Scale of Y-axis for gene expression of FOT1 and FOT2 in strain 59A and FOT3 in MTF2533 differs to
facilitate visualization. Letters indicate the statistical groups from a Tukey analysis, p-value < 0.001; n = 3.

3.4. Fot1 Is Located in S. cerevisiae Plasma Membrane

To assess the subcellular localization of Fot in yeast, we generated several constructs
harboring FOT1 fused with GFP either at its 5′- or 3′ ends, using pRS316 and YEp352 as core
plasmids (Table S2), which have distinct origins of replication. The resulting proteins, when
expressed in S. cerevisiae strain 59A, contained GFP fused either at the N- (pGFP–Fot1) or
at the C-terminus (pFot1–GFP) of Fot1. In a preliminary analysis, we found no differences
in the expression and localization of the fusion proteins resulting from the use of the
two plasmids (data not shown); therefore, we selected the pRS316-based clones for further
analysis, termed pFot1–GFP and pGFP–Fot1.

In strain 59A expressing pFot1–GFP or pGFP–Fot1, we observed the Fot1 fusion
protein localized at the plasma membrane after 1 h of growth in YPD (Figure 4A). This
conclusion was corroborated by FM4–64 staining, a membrane-selective fluorescent dye
(Figure S4). We also observed some internal vacuolar fluorescence, most probably due
to the overexpression induced by the TEF promoter of the plasmid. By contrast, GFP
fluorescence signal in control strain 59A-GFP–with the GFP gene in substitution of the
coding sequence for cytosolic protein Amn1–was observed at the cytosol. Although the
GFP signal was detected at the plasma membrane when Fot1 was tagged at the N- or
C- terminus, (Figure 4A,B, 1 h of growth in YPD), the signal was clearer and more stable in
cells expressing Fot1 with an N-terminal GFP fusion, with GFP fluorescence detected at the
plasma membrane even after 6 h (Figure 4B). However, no pFot1–GFP fluorescence was
detected at the plasma membrane time after 1 h of growth on YPD. This instability of the
pFot1–GFP signal hindered its co-localization study with FM4–64 by confocal microscopy
(Figure 4C). Confocal microscopy analysis showed that the GFP signal in control strain
59A-GFP was found in the cytosol and did not overlap with FM4–64 signal peaks at
the plasma membrane, despite some partial internalization of the dye into the vacuolar
membrane and lumen Fot1 (Pearson’s coefficient = 0.532). By contrast, the peaks of the GFP
signal overlapped with those of FM4–64 signal in pGFP–Fot1 (Pearson’s coefficient = 0.773),
confirming the Fot1 plasma membrane localization in S. cerevisiae.
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Figure 4. Detection of pFot1–GFP and pGFP–Fot1 localization at the plasma membrane in S. cerevisiae 59A cell by fluores-
cence microscopy. (A) Visualization by epifluorescence microscopy of 59A cells expressing pGFP–Fot1 or pFot1–GFP after
1 h of growth in YPD. Strain 59A-GFP was used as control of the subcellular localization; 59A–GFP contains the GFP gene in
substitution of the AMN1 gene and it is therefore expressed in the cytosol. FM4–64 dye was used for plasma membrane
staining; BF: bright field. (B) Visualization by epifluorescence microscopy of 59A cells expressing pFot1–GFP and pGFP–Fot1
over time in growth on YPD. (C) Confocal microscopy analysis of GFP and FM4–64 signal co-localization in 59A-GFP strain and
59A containing the pGFP–Fot1 plasmid. FM4–64 and GFP signals are labeled in magenta and green, respectively.
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4. Discussion

In the present study, using phenotype microarrays, we confirmed that Fot1 and Fot2
are the main di- and tripeptide transporters in the S. cerevisiae strain 59A. Our work sheds
new light on a previous study performed during enological fermentation [7]. Individually,
Fot1, Fot2, Fot3, FotX and FotY display a substrate preference for oligopeptides mainly
containing hydrophobic amino acids (Ala, Val, Leu, Ile, Met, Phe), Tyr (polar, uncharged)
or His (positively charged), with distinct levels of consumption. Although Marsit et al. [7,8]
showed that the oligopeptide fraction from grape must consumed by Fot1–Fot2-expressing
strains was particularly rich in Glu/Gln, we characterized here oligopeptide preferences
from phenotype microarrays. The range of di- and tripeptides offered by phenotype
microarrays is not necessarily representative of the oligopeptides present in grape must,
which additionally includes even longer oligopeptides.

In addition to hydrophobic amino acids, the preference of strains expressing Fot family
members for oligopeptides containing Arg at the C-terminal position was remarkable. In
their study of di- and tripeptide utilization by S. cerevisiae, Homann et al. [19] detected
an unusual consumption of peptides with Arg in C-terminal position not due to Ptr2 or
Dal5 in the vineyard-isolated strain RM8. The presence of Fot within the RM8 strain might
therefore explain the preference of this strain for peptides with Arg in the C-terminal when
Ptr2 and Dal5 were deleted. Interestingly, the S. cerevisiae di- and tripeptide transporter Ptr2
has similar preferences of oligopeptide composition, with a higher affinity for aromatic,
branched or basic amino acids in the N-terminal position, also known as N-end rule
dipeptides, and a lower affinity for negatively charged amino acids, i.e., Gly or Pro [28].
On the other hand, the allantoate permease Dal5, which is the main dipeptide transporter
in some S. cerevisiae strains, preferably transports non-N-rule dipeptides [29].

Therefore, Dal5 and Ptr2 have complementary activities that allow S. cerevisiae to
widen the spectrum of assimilable oligopeptides [19]. Considering that S. cerevisiae wine
strain EC1118 has a non-functional Ptr2, it seems consistent that FOT acquisition from
T. microellipsoides served to compensate for the lack of N-end rule oligopeptide consumption.
However, Fot1–Fot2 in strain 59A, as well as EnvFot-F and EnvFot-A from unidentified
eukaryotes have shown wider oligopeptide consumption than strains expressing Ptr2 or
Dal5 [5], evidencing that FOT acquisition by S. cerevisiae wine strains not only fulfilled the
need to compensate Ptr2 activity but also enlarged their ability to consume oligopeptides
from the environment. Nonetheless, comparative studies on the presence of Fot, Pot/Ptr,
Opt and Dal5 transporters among fungi are still required to better understand the evolution
and biological relevance of oligopeptide transport in this kingdom.

Despite the general preference for N-end rule di- and tripeptides among strains with
the distinct Fot members, levels of consumption did differ. The most extreme difference was
found between FotX and FotY (Figure 1, rows 4 and 9 in the heatmap, respectively), with
74 di- and tripeptides consumed by the strain harboring FotX but not by FotY-expressing
strain (Table S3). Considering the 91.87% of protein sequence identity between FotY and
FotX (identity even higher between the other Fot members), the hypothesis is that Fot
substrate specificity may depend on localized sequence differences. Fot1, which originated
from gene conversions between FOTX and FOT2Tm from T. microellipsoides [7], displays
a higher sequence identity with FotX (98.11% at protein level) than with Fot2 (94.66%);
therefore, it was expected that Fot1 substrate preferences would be close to those of FotX.
However, Fot1 oligopeptide preferences were closer to those of Fot2 (Figure 1, rows 5 and
6–7 in the heatmap, respectively), which indicates that the gene segment provided by
FOT2Tm to FOT1 might be crucial for substrate specificity, binding and transport. Ad-
ditionally, we observed that 59 oligopeptides were only consumed by strains containing
both Fot1 and Fot2 and not by those strains that had either Fot1 or Fot2 alone (Figure S2).
These 59 oligopeptides were particularly rich in Gly and Trp at N- and C-termini, and Glu
at the C-terminus. This striking difference between single Fot1 or Fot2 and Fot1–Fot2 to-
gether may indicate an interaction between these two transporters, such as oligomerization,
with a potential effect on their transport properties; indeed, this phenomenon has been
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reported in other proton-coupled nutrient transporters located in the plasma membrane
of plant cells [30]. In the filamentous fungus Aspergillus nidulans, dimerization of the
H+-coupled uric acid–xanthine symporter UapA is suggested to have a role in transport
activity [31]. Exploring the potential dimerization between Fot1 and Fot2 by bimolecular
fluorescence complementation assays or with a yeast two-hybrid system could contribute
to understanding Fot transport mechanisms and substrate specificity.

Levels of FOT gene expression were evaluated in two different S. cerevisiae wine strains
at two key points of fermentation in two enological conditions. Normalized values of
gene expression showed that, at the stationary phase, FOT1 was more expressed than
FOT2 in strain 59A or FOT3 in strain MTF2533, particularly in fermentation with synthetic
must (Figure 3). It was unexpected to find a higher FOT expression in synthetic rather
than in natural must, mainly because natural must contains Fot substrates as nitrogen
sources, while synthetic must does not. Moreover, FOT1 was more highly expressed
after the depletion of assimilable nitrogen sources, which coincides with the entry in
stationary phase. Previous studies have suggested that FOT genes were expressed from
the beginning of fermentation since oligopeptide consumption by Fot took place before
the consumption of some amino acids [8]. However, transcriptomic analyses on the
commercial wine strain EC1118 during fermentation have shown that FOT1 and FOT2 are
overexpressed in nitrogen-limiting conditions and repressed in nitrogen-rich media [32]. In
addition, it was recently shown that FOT1 displays higher transcriptional and translational
levels in enological fermentations carried out in nitrogen-limiting conditions [33]. These
results support the hypothesis that FOT genes are under NCR control, which prevents the
expression of genes involved in the uptake of non-preferred nitrogen sources. Our findings
on the presence of several Gln3- or Cup9-binding motifs in the promoter regions of FOT1,
FOT2/FOT2Tm, FOT3, FOTX and FOTY (Table S5) further support this hypothesis. In this
way, FOT expression would follow a pattern similar to that of the other genes coding for
oligopeptide transporters in S. cerevisiae, viz. PTR2, DAL5, OPT1 and OPT2, which are
under NCR control and whose expression is induced upon the starvation of preferred
nitrogen sources [1,32–38]. Transcriptomic analyses of the strains within the evaluated
conditions of the present study by RNA-Seq would enable the comparative analysis of FOT
expression and expression profiles of GLN3, other NCR regulators and genes reported to
be under control of the NCR system.

Although current induction experiments conducted by Damon et al. (2011) [5] sup-
ported the hypothesis that Fot were plasma membrane transporters, proof was still lacking
for their exact localization. In this work, we provide experimental evidence that Fot1 is
localized in the plasma membrane in S. cerevisiae (Figure 4). During these experiments,
we also observed a high instability of the C-terminal Fot1–GFP fusion. A possible expla-
nation for this result lies in Fot secondary structure and membrane topology. Fot protein
sequence analysis predicts a consensus membrane topology with an N-terminus located in
the cytosol whereas the C-terminus faces yeast periplasm [5]. Under this assumption, GFP
would be located at the surface of yeast cells expressing pFot1–GFP. Although there are
examples of yeasts expressing GFP-fusion proteins at the extracellular side of the plasma
membrane [39], there is also the assumption that GFP cannot emit fluorescence outside the
cell due to structural instability, which may be due to proteolytic cleavage when the protein
is exported [40]. However, since there are no experimental data available for the study of
Fot protein structure, we cannot rule out other explanations for the weak signal observed
for Fot1–GFP. The Fot1 C-terminal domain may be involved in regulatory processes that
could be compromised, due to GFP interference in cells expressing the Fot1–GFP fusion.
Indeed, in the sodium-coupled neutral amino acid transporter 2 Snat2, a membrane trans-
porter with the same membrane topology as predicted for Fot [41], the C-terminal domain
is a key element in the membrane voltage regulation for a normal amino acid translocation
activity [42]. In the same way, the C-termini of Fot family members could be involved in
the targeting at the plasma membrane or in membrane stabilization.
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In conclusion, with this work we have increased our knowledge on the Fungal
Oligopeptide Transporters family at three different levels: substrate specificity, subcellular
localization in yeast and gene expression. Linking the differences found in oligopeptide
consumption between Fot family members with their sequence divergence can reveal
crucial protein motifs for substrate recognition, binding and transport. Further studies on
the regulatory pathways involved in Fot expression in S. cerevisiae wine strains can lead to
a better understanding of nitrogen metabolism during enological fermentation and to an
overall vision of the role of oligopeptides as nitrogen sources in natural environments.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jof7110963/s1, Table S1: Primers used in this study. Table S2: Plasmids used in this study.
Table S3: Level of consumption of each oligopeptide by the different strains tested. Table S4: Amino
acid composition of N- and C-termini of oligopeptides consumed by Fot. Table S5: Binding motifs
for transcription factors (TFs) found in FOT promoter regions. Figure S1: Sequence alignment of Fot
protein sequences from S. cerevisiae wine and T. microellipsoides. Figure S2: Oligopeptides consumed
by strains with Fot1 and Fot2 together but not singly. Figure S3: Fermentation kinetics and growth
of strains 59A and MTF2533 for gene expression analyses. Figure S4: Superposition of GFP and
FM4–64 fluorescence channels in strains 59A-GFP and 59A containing pGFP–Fot1 or pFot1–GFP.
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