
HAL Id: hal-03451266
https://hal.inrae.fr/hal-03451266v1

Submitted on 26 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Shallow Shotgun Metagenomics as a cost-effective and
accurate alternative to WGS for taxonomic profiling and

clinical diagnosis
Benoit Goutorbe, Anne-Laure Abraham, Mahendra Mariadassou, Anne

Plauzolles, Ghislain Bidaut, Philippe Halfon, Sophie Schbath

To cite this version:
Benoit Goutorbe, Anne-Laure Abraham, Mahendra Mariadassou, Anne Plauzolles, Ghislain Bidaut,
et al.. Shallow Shotgun Metagenomics as a cost-effective and accurate alternative to WGS for taxo-
nomic profiling and clinical diagnosis. Journées Ouvertes de Biologie, Informatique et Mathématique
(JOBIM), Jul 2021, Paris, France. �hal-03451266�

https://hal.inrae.fr/hal-03451266v1
https://hal.archives-ouvertes.fr


Shallow Shotgun Metagenomics as a cost-effective and accurate
alternative to WGS for taxonomic profiling and clinical diagnosis

Benoit Goutorbe1,2,3, Anne-Laure Abraham1, Mahendra Mariadassou1, Anne Plauzolles2,
Ghislain Bidaut3, Philippe Halfon2 and Sophie Schbath1
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Abstract Shallow shotgun metagenomics has been recently suggested as a promising strat-
egy to study human microbiota, providing nearly identical taxonomic profiles than deep
shotgun metagenomics with a sequencing cost similar to metabarcoding. With shallow se-
quencing approach (typically <1M reads/samples), taxonomic profiles are directly built by
mapping reads on a catalog of reference genomes, without assembly step.

In the present study, we first used simulated data set to design a dedicated workflow in
order to obtain reliable taxonomic profiles from shallow sequencing reads. We propose a
novel data-driven filtering method based on machine learning techniques that largely out-
performed basic filtering methods. We then used this approach on 3 real data sets, covering
patients from several continents and clinical conditions. Even if one looses some informa-
tion like rare taxa, our results clearly show that shallow shotgun metagenomics is able to
correctly retrieve structures like differences between groups of patients and diagnosis-like
classification.

Keywords Shallow shotgun metagenomics, Gut microbiota, Sequencing depth, Clinical
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1 Introduction

Allowing culture-free analysis of microbial ecosystems, high throughput sequencing revolutionized
our comprehension of the role that plays human associated microbiota in health and disease. It is
nowadays a very active clinical research field, with thousands of studies carried out each year, covering
many diseases [1] [2] [3]. Two sequencing strategies emerged to study microbiota, and the choice
depends on the sequencing cost, the size of the cohort, the expected level of taxonomic resolution and,
when possible, functional annotation. On the one hand, metabarcoding, which consists in targeted
sequencing of a phylogenetic marker (often rRNA gene 16S for bacteria, ITS for fungi), is a very
cost-efficient way to characterize diversity within and between samples and to obtain an approximate
taxonomic identification of microorganisms (often down to the genus level). On the other hand,
shotgun sequencing consists in sequencing all DNA material present in an environment, which allows
deeper taxonomic resolution (species, or even strain level), functional profiling (identification and
quantification of genes, metabolic pathways), and de novo assembly of uncultured organism genomes
as Metagenome Assembled Genomes (MAGs) [4].

Due to huge inter-patients variability and new insights into microbiome’s plasticity [5], clinical
studies need to include many patients [6], and have a longitudinal approach when possible, to ex-
tract reliable information. Despite the continuous drop in sequencing costs, metabarcoding is thus
often preferred to shotgun sequencing to carry out clinical studies, providing limited information and
hindering our comprehension of microbiota.

Shallow shotgun metagenomics has been recently suggested as an alternative [7], cost-competitive
to metabarcoding (allowing analysis of large cohorts) and providing nearly the same information
as deep shotgun sequencing. 20M reads/sample were typically used to characterize a human gut
microbiota samples with shotgun sequencing, while so called shallow shotgun metagenomics typically
deals with fewer than 1M reads/sample, drastically reducing sequencing costs. This is made possible



by assembly-free processing of reads, thus requires an exhaustive genome reference catalog for the
studied environment to process mapping [8] [9].

In the present study, we aim to provide new insights towards usage of shallow shotgun metage-
nomics in clinical research, assessing the reliability of information that can be recovered from shallow
shotgun sequencing in comparison with deep sequencing. We first used simulations to design and
calibrate filters that efficiently identify organisms genuinely present in the mapping data providing
reliable taxonomic profiles at each sequencing depth. We then applied this approach to real data sets,
and assessed information recovery at a sample level and a study level. Our results show that some
information is lost if we want to obtain reliable profiles (rare taxa are filtered out to avoid having
massive identification of spurious taxa), but that structures like differences between groups of patients
and diagnosis-like classification are very well conserved using shallow shotgun metagenomics.

2 Material and Methods

2.1 Data

Simulated data sets. We retrieved taxonomic profiles of 19 human gut microbiomes from Qin
2014 [10] through curatedMetagenomicData [11], with a complexity of 98 ± 15 species per sample,
and species’ relative abundance ranging from 5.10−1 down to 10−6 (average 10−3). These profiles
were given using the NCBI’s taxonomy and were translated into UHGG’s taxonomy [12] by choosing
the UHGG species with the closest taxonomic assignation to the NCBI species (if several species
tied, one was chosen randomly), resulting in profiles with the exact same complexity, approximately
the same phylogenetic composition and some uncultured organisms (MAGs). UHGG genomes are
clustered into ”species clusters” (thereafter referred as species), that share at least 95% of identity
on 30% of the genomes, and one representative genome is chosen in each cluster for inclusion in the
mapping catalog. We generated profiles using either the species representative genome or using a
randomly selected genome belonging to the same species. The second scenario introduces noise in the
mapping data because of the intra-species diversity and corresponds to the more realistic case where
the genome is not necessarily in the database used for mapping. It is the one shown in the results. For
each sample, we used Grinder [13] to simulate 10M paired end reads (length of 2*125bp, insert size
normally distributed with an average of 500bp and standard deviation of 50 bp without sequencing
errors) and subsampled at 5 M , 1 M , 500 K, 100 K, 50 K and 10 K reads/sample.

Real data set. We used data from 3 clinical studies, for a total of N=439 samples covering patients
from several continents and clinical conditions (healthy patients, hepatic diseases at different stages,
cancer patients). Loomba et al. (2017) [14] compares the gut microbiota of patients suffering from
hepatic diseases at different stages (fibrosis vs NAFLD). Matson et al. (2018) [15] compares, among
patients having metastatic melanoma, those who responded to anti-PD-1 immunotherapy and those
who didn’t. Qin et al. (2014) [10] compares patients having liver cirrhosis and a group of healthy
controls, with a discovery and a validation cohort for both groups. We analyzed these data sets at full
depth and subsampled them to mimic shallow sequencing in the remainder.

2.2 Bioinformatics pipeline

Reads were pre-processed using trimmomatic [16], removing low quality reads and reads shorter
than 80 nucleotides. For real data sets, reads were also mapped to human genome to filter out host
contamination. Remaining reads were then mapped to UHGG catalog [12] using bwa mem [17] local
aligner. We also used bwa aln, and bowtie2 [18] in its end-to-end and local settings for comparison
in the simulated data, but we only present results for bwa mem as it resulted in a better trade-off
between overall mapping rate, false positive and multi-mapping rate.

Multi-mapping (ie reads that map to several genomes) occurs frequently when mapping shotgun
metagenomics reads to a catalog of reference genomes (26% and 42% of the mapped reads in simulated
and real data sets respectively), due to highly conserved genes and mobile elements notably. Thus,
we split mapped reads into unambiguous reads that mapped to one genome only, and other reads.
For each genome identified, we retrieved the reads count (RC) and the fraction of the genome covered



(FC) by at least one read, using either all reads or unambiguous reads only (uRC and uFC), as well
as a specificity ratio (SR) defined by the number of unambiguous reads divided by the total number
of reads mapped to this genome.

In order to estimate species’ relative abundances, we first compute the representative genomes’
average coverage Cs = 1

`s

∑
i ri,s, with `s being the length of the representative genome of species s

and ri,s the length of read i that is unambiguously mapped to s, and then we obtain the relative
abundance by normalizing across species to sum to 1 : As = Cs∑

j
Cj

. We refine this estimation by

reallocating the ambiguous reads by randomly assigning them to one of their hits, with a probability
proportional to the previously computed relative abundances.

2.3 Simulations analysis

Direct mapping of short reads on reference genomes produces false positives (genomes covered
by reads but not present) that need to be filtered out. We used simulated profiles, with known
composition, to determine the most efficient way to classify the genomes into true positives (TP)
and false positives (FP). In order to assess methods and compare them to each other, we computed
the area under the receiver operating characteristic (ROC) curve (AUC) for this classification task,
using evabic R package. We also implemented an automated threshold search, that allows for a false
discovery rate (FDR = FP

TP+FP ) of at most 10%, and compared false negative (FN) rates at this
threshold across methods and sequencing depths.

We first evaluated how genomes features (RC, uRC, FC, uFC and SR) can be used independently
to classify the genomes, and then combined them to train classifiers. We used logistic regression, linear
discriminant analysis (LDA) and random forests (RF), to perform classification, with uRC, uFC, SR
and total sequencing depth as input features. Finally, we used a 4-fold cross validation process to
evaluate the performance of these methods and determine suitable thresholds for each method and
sequencing depths.

2.4 Real data sets analysis

We analyzed real data set using (1) RF-based filters fitted on the simulations data and thresholds
that control FDR at each sequencing depth, and (2) a basic filtering that discards all species with a
relative abundance beyond 10−4, FC beyond 10−2 or uFC beyond 10−4. This filtering is inspired by
what was done in [8] and corresponds to currently used methods with a quite permissive threshold
due to low sequencing depths on which it will be applied.

We evaluated α-diversity using species richness and Shannon diversity, and β-diversity using Jac-
card distance and Bray-Curtis dissimilarity index using phyloseq [19]. In order to assess the impact of
sequencing depth on taxonomic profiles, we evaluated the correlation between subsampled and deep α-
diversity measures using Spearman and Pearson correlation as well as the correlation between species
relative abundance at full depth and shallower depths. We also measured the distance between low
depth samples and their full depth counterpart. Finally, for each data set, we evaluated the differences
between groups of interest, according to the sequencing depth, at different levels:

— differences in α-diversity between groups, through a Wilcoxon test using different metrics de-
scribed earlier,

— structure in the β-diversity matrix, through a PERMANOVA analysis using different metrics
described earlier,

— biomarker discovery using a Wilcoxon test with Benjamini-Hochberg correction that shows
differentially abundant species,

— patients’ classification in their group of interest, using random forests trained on taxonomic
profiles, with a feature selection step as performed in [14].

In order to perform unbiased comparison of p-values and AUCs across sequencing depths, we used
only samples having at least 10M high quality reads per sample for Loomba-2017 (N = 77), Matson-
2018 (N = 39) and 5M reads for Qin-2014 (N = 235, we reduced maximum sequencing depth to
include more patients).



3 Results

3.1 Filters design and performance on simulated data

Our raw mapping data from simulations showed that a small number of reads (8% of unambiguously
mapped reads) are mapped to an unexpected genome, resulting in a great number of false positives
genomes (FDR = 91% prior to any filter). The basic (threshold-based) filtering technique yielded
in overall FNR = 0.39 and FDR = 0.45. We sought optimal thresholds on read counts (RC), but
it appeared to be sub-optimal (AUC = 0.75). Using genomes’ fraction covered (FC) to determine
such a threshold was better (AUC = 0.85), and retrieving only unambiguous reads to compute this
statistics enhanced the classification (AUC = 0.856 using uRC, and AUC = 0.896 for uFC, see table 1)
thus was used for the following. As seen on figure 1A, a threshold based on uFC and/or uRC values,
which would correspond to horizontal and/or vertical line to discriminate TPs and FPs, is suboptimal
as it would miss the long tail of genomes with low uRC but comparatively high uFC values. These
results motivated our attempt to train classifiers able to take benefit from this pattern. To train such
classifiers, we used uRC, uFC, SR, as well as sequencing depth to predict genomes’ status (present or
absent).

Fig. 1. Simulations results: (A) Unambigous fraction covered (uFC) and unambiguous read counts
(uRC) of genomes present in the expected profiles (TPs, blue points) or absent (FPs, red points).
(B) Distribution of FN species according to their relative abundances in the expected profiles, using
RF-based filters with a 10% FDR on the testing set of cross validation. The dot line represents the
distribution of all expected species.

method
AUC FN rate at threshold

training testing training testing
uRC 0.856 0.883
uFC 0.896 0.580

LDA 0.944 ± 0.002 0.944 ± 0.006 0.391 ± 0.010 0.391 ± 0.025
Logistic regression 0.955 ± 0.002 0.955 ± 0.006 0.386 ± 0.012 0.387 ± 0.032

Random forest 0.999 ± 0.0001 0.969 ± 0.007 0.017 ± 0.002 0.291 ± 0.040

Tab. 1. Area under ROC curves and false negative rates when threshold is set to tolerate 10% FDR. For

machine learning based methods, these measures are split into training and testing sets, using a 4-fold cross

validation.

We can see on table 1 that sophisticated classifiers largely outperform basic filtering. LDA and
logistic regression perform similarly, and yield nearly identical results in training and testing in the
cross validation process, highlighting very good generalization capabilities. RF appeared to be the
best method, yielding in a nearly perfect classification in training set, and still better than others in
the testing sets; RF will thus be used in the remainder. When setting a threshold that control the
FDR at 10%, we can see the interest of refining this classification, to drastically lower the FN rate,
although it remains quite high in the test samples.



We further characterized the information loss in the context of shallow sequencing metagenomics
by plotting the distribution of expected relative abundances of species that were absent in profiles
with respect to the sequencing depth, as seen on figure 1B, using RF-based filtering. We can see
clearly the inflation of FN while lowering sequencing depth, but we can also notice that, as expected,
the populations that are lost are relatively rare. For instance, at 500K reads/sample, all populations
with relative abundance greater than 10−2 were detected.

While focusing on TPs, we noticed that Pearson correlation between expected and estimated
species relative abundances went up from ρ = 0.54 to ρ = 0.60 by reallocating ambiguous reads.

3.2 Performance on real data sets for taxonomic profiling

Applying the RF-based filters on real data sets resulted in high quality profiles, with an average
diversity of 128±66 species per sample at full depth, which gradually decreased with sequencing depth,
down to 45 ± 21 at 500K reads/sample for example (fig 2A). In comparison, basic filtering were more
permissive, producing profiles with increased diversity and more resilient towards reduced sequencing
depths (fig 2D). The Shannon diversity index (fig 2B,E) was much less impacted by sequencing depth,
indicating that the species lost at low sequencing depth were mostly rare ones. Down to 500K reads per
sample, the correlation between full depth and subsampled Shannon indices was nearly perfect using
basic filtering and remained very high with RF-based filters. Distances between subsamples and their
reference, defined as the corresponding sample at full depth, gradually augmented when decreasing the
sequencing depth, and these distances were much more important using RF-based filters than basic
filters (fig 2C,F, both graphs share the same scale), and showed high replicability across data sets.

Fig. 2. Comparison between full depth and subsampled profiles for samples from the 3 data sets
considered : richness observed, Shannon diversity and Bray-Curtis distance between subsampled data
and reference (full depth data) using RF-based filtering (A, B and C respectively) and basic filtering
(D, E and F respectively)

Comparison between filtering strategies highlighted that filtering plays a key role while dealing with
shallow metagenomics data. If taxonomic profiles were less impacted by sequencing depth using basic
filters than RF-based filters, we know according to our simulations that lots of false positives are present



in the profiles, which introduces an important noise and jeopardizes the biological interpretation of
results.

3.3 Performance on real data sets for patients stratification

Fig. 3. Differences between patients groups in different studies : significance of inter-group difference
regarding Shannon diversity index (A), PERMANOVA analysis (B). AUC corresponding to random
forest classification (C) was performed in Loomba-2017 and Qin-2014, with a split between discovery
and validation cohorts in Qin-2014 as performed on the original paper of this study.

Here, we assess the robustness of biological signal found in the different data sets towards se-
quencing depth. As expected according to previous results, differences in α-diversity between groups
were maintained using shallow sequencing : p-values were concordant across sequencing depths (see
Fig. 3A), with a strong difference in Qin-2014 data set, a slight difference between groups that is
not significant in Loomba-2017 and no differences between groups in Matson-2018. PERMANOVA
analysis led to similar results (Fig. 3B), showing that the structure of the matrix distances between
samples is very marginally impacted by sequencing depths. The p-value regarding Loomba-2017 on
RF-based filtered data increased, but stayed significant, even under 1M reads/sample, traducing the
absence of key populations at such sequencing depths. Out of the 7 differentially abundant taxa in
Loomba-2017 with RF-based filtering found at full depth (FDR < 0.1), 5 taxa were still identified
at 1M reads/sample and 4 at 500K reads/sample. Basic filtering, allowing more taxa in the profiles,
identified more differentially abundant taxa (19 at full depth, 12 at 500K reads/sample) but the re-
liability of these taxa is questionable. As previously discussed, signal was much more important in
Qin-2014 data set: 25 differentially abundant taxa were identified at full depth with RF-based fil-
tering (FDR < 0.05 in both discovery and validation cohorts), 13 taxa at 1M reads/sample and 9
at 500K reads/sample. Again, basic filtering allowed to identify more taxa (124 at full depth, 72 at
500K reads/sample). Finally, classification of patients using RF was performed in Loomba-2017 and
Qin-2014 (see Fig. 3C). In Loomba-2017, we could perform a better classification using basic filtering,
with an AUC similar to full depth AUC down to 500K reads/sample, while it gradually decreased as
sequencing depth decrease using RF-based filters, due to some key taxa for the classification being
lost. On Qin-2014 data set, we could perform a very good classification on both discovery and vali-
dation cohorts even at low sequencing depth, with performance very stable using basic filtering down
to 100K reads/sample using basic filtering and that gradually decreased with RF-based filters under
5M reads/sample.

4 Discussion

Direct mapping of reads on catalogs of reference genomes was previously suggested as the most
suitable way to build taxonomic profiles from shallow sequencing metagenomics data [7] [9], as it pro-
duced nearly identical taxonomic profiles across sequencing depths. Our simulations highlighted the
need to refine filters on genomes identified by such mapping, and to perform depth dependent thresh-
olds to obtain reliable profiles at each sequencing depth. This step is crucial to prevent misleading
interpretations and to provide trustful biological knowledge. Controlling the FDR in the taxonomic
profiles had the direct consequence of decreasing the number of identified species, especially at low
sequencing depth. The benefit of RF-based filters, and to a lesser extent other machine learning based



models tested, over simple filtering based on species features independently (RC, uRC, FC and uFC)
was remarkable, allowing to identify more species and rarer ones for equivalent FDR. The application
of such techniques, as they rely on a learning step, is by definition limited to the training conditions.
In our case, usage of our RF-based model to filter genomes should be limited to ecosystems with
similar complexity, sequenced with short reads at depth included in the range used for the training
and mapped to a catalog similar to representative genomes of UHGG in terms of completeness, intra
and inter species diversity.

On the three real data sets considered, our analysis showed that differences between groups of
patients observed at full depth where still recovered at low sequencing depth. Permissive and depth-
independent filtering, as performed in previously published papers on shallow shotgun metagenomics,
allowed a little improvement in structure recovery than our stringent RF-based filters: these structures
were less sensible to the noise introduced by FPs in the profiles using basic filtering, than to the removal
of key species induced by our stringent RF-based filter.

Overall, our results show that (1) one needs to perform stringent and depth-dependent filters to
obtain reliable profiles in shallow sequencing data, (2) resulting taxonomic profiles are limited to most
abundant taxa in shallow sequencing context, and (3) shallow shotgun metagenomics can be a suitable
approach to perform diagnosis-like classification of patients even if further investigations should be led
to assess generalization capability and interpretability of signatures obtained with shallow sequencing.

Shallow shotgun metagenomics requires an exhaustive reference database regarding the studied
ecosystem to build taxonomic profiles. Although it produced reduced complexity profiles if we want
to ensure reliability of results, it appeared to be a very good alternative for clinical studies, and
sufficient to classify patients, when discrimination between groups is expected to be important and to
rely on relatively dominant taxa. Therefore, it can be profitable in such cases to favour the number of
patients included or to introduce a longitudinal aspect, rather than per sample sequencing depth. For
other body sites (vaginal, oral or skin microbiota) host contamination should be taken into account
when determining sequencing depth, as host reads will be discarded. Shallow shotgun metagenomics
could also be used to perform functional analysis, for example for coarse grain identification of family
of genes (like KOs), as the sequencing depth could not allow the identification of very specific genes
and SNPs that require assembly, such as antibiotic resistance.
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