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aUniversité Paris-Saclay, INRAE, UR HYCAR, 92160, Antony, France

Abstract

The scalar field and the non-equilibrium solutions of the linear advection-diffusion d2Q9 Lattice Boltzmann
(LBM) two-relaxation-times (TRT) scheme are constructed analytically. The scheme copes with an infinite
number of suitable, second-order accurate, equilibrium weights. Here, the simplest, translation-invariant ge-
ometry with an implicitly located, straight or diagonal, grid-aligned interface (boundary) is addressed. We
show that these two interface (boundary) orientations are accommodated with the help of two distinctive,
anisotropic, discrete-exponential algebraic solution components, referred to as the A-layer and the B-layer.
Being unpredicted by the perturbative analysis, such as the Chapman-Enskog, asymptotic or truncation,
their solution is derived symbolically from the TRT recurrence equations, subject to the local mass conser-
vation solvability and effective closure conditions. When the interface (boundary) is “diagonal”, the A-layer
perturbs the simplest physical solutions, like the piece-wise linear, polynomial or exponential scalar field,
rendering the macroscopic solution weight-dependent and delaying its convergence to the first order; the
A-layer base depends upon the weights, free relaxation parameter Λ and physical numbers. In contrast, the
B-layer, invisible to the scalar field, typically accommodates the non-equilibrium discrepancy between the
normal and diagonal directions on the “straight” interface (boundary); the B-layer base is fixed by Λ alone.
The A-layer and B-layer may coexist and degrade the physical solution gradient and its convergence. Only
the D2Q5 model is free from all these effects in the straight and diagonal orientations, while the diagonally-
rotated D2Q5 model is unsuitable because of the “checkerboard” effect. These spurious corrections are not
the Knudsen layers, but they present the LBM response for any-order bulk mismatch with the implicit or
explicit interface (boundary) treatment; the A-layer and B-layer bring them in evidence and provide excel-
lent benchmarks for their attenuation through interface-conjugate or adaptive refinement techniques. Our
approach extends to any lattice, linear collision, source term, heterogeneity and LBM problem class.

Keywords: analytical LBM solution; exponential accommodation; equilibrium weights; implicit interface;
bounce-back; local gradient estimate.

1. Introduction

Exact solutions of numerical schemes are interesting for numerous reasons, - they enhance our under-
standing of them, delineate their degrees of freedom and provide us the best benchmarks for implementation
and improvement. In this work, we construct the exact steady-state equilibrium and non-equilibrium so-
lutions of the Lattice Boltzmann method (LBM) for the linear advection-diffusion equation (ADE), in
the presence of an implicit interface between heterogeneous domains, characterized by piece-wise continu-
ous diffusion coefficients and mass-sources. Brought into the world about 30 years ago in the pioneering
works [52, 39, 40], the LBM has proven its reliability and efficiency in a very disparate panel of physi-
cal systems and industrial applications with respect to the heterogeneous physical parameters, boundaries
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and interfaces (see [46] and reference herein). Yet, the fundamental principle of the LBM analysis is the
Chapman-Enskog expansion [7, 19], ingeniously adapted by the Lattice-gas automata [20] and further gen-
eralized [41] for the multiple-relaxation-time (MRT) linear collision. Since the Chapman-Enskog analysis
unfolds the non-equilibrium in the form of a perturbative series around the local equilibrium, a smooth
behaviour of the macroscopic variables (population moments) and the relaxation rates must be postulated.
It follows that neither the Chapman-Enskog analysis nor the Fourier analysis [47, 3], truncation analy-
sis [58, 29, 60] or other alternative perturbative approaches, - asymptotic [43], Hilbert [13] or Taylor [17],
to mention a few examples, are valid across an interface. Furthermore, they are not able to provide exact
closed-form LBM solutions, except for some particular cases when the non-equilibrium fits into a finite series.

In this context, a very early seminal work [11] solved the Kramers problem [5], examined the exact steady-
state modes of the linearized Boltzmann approximation and demonstrated that the solvability conditions of
the scheme support the development of anisotropic exponential modes, referred to as the Knudsen layers.
It was found [11, 12] that the mass-conserving hydrodynamic wall condition, - a linear combination of
the bounce-back and the specular reflection, is “suitable”, in the sense that it suppresses those “spurious”
modes, either for a parallel or a perpendicular wall orientation with respect to the FHP lattice. Moreover,
it was suggested that (i) the solid body location is impacted by the kinetic degrees of freedom and (ii), the
effective location is anisotropic with respect to the lattice. These two suggestions were confirmed [22] for
the Maxwell reflections in the straight and diagonal Poiseuille Stokes flow via the exact Taylor boundary
analysis combined with the exact, third-order-accurate, Chapman-Enskog non-equilibrium expansion. This
combination becomes a key point in the construction of high-order accurate, wall-shaped boundary rules for
both flow and ADE problems, either with in-node based (LSOB) or directional (multi-reflection) techniques
(see [23, 24, 27, 48, 18, 61, 62, 63]).

Another analysis approach consists in the exact solution of the whole steady-state population update in
the discrete-velocity, single-relaxation-rate (BGK) basis [55], where the polynomial population distribution
is a priori prescribed [73, 66]. More generally, the solvability condition is reorganized [38] in the form
of the central finite-difference momentum equation, where its discrete solutions, either in polynomial or
exponential form, are recognized, and their free parameters are tuned to fit the boundary rule. Notably,
the bounce-back “slip” is observed [73, 38], but it is not linked with the kinetic effect. Nevertheless, the
solution procedure [38], although limited to the grid-aligned channel flow, gains popularity in establishing
the effective wall location [see [9] and reference herein]. However, a similar inconsistency is also observed for
effective bulk transport coefficients, e.g., the anisotropic modification of the Brinkman viscosity, either due
to linear velocity dependency of the resistance [54] or because of the “partial-bounce-back” BGK update [8,
70, 72] is recognized, but not connected with the Chapman-Enskog expansion. This happens because the
methodology [38] does not build any non-equilibrium solution explicitly.

The exact solvability condition and the exact non-equilibrium construct are handled together by the
recurrence equations [42]. Either transient or steady-state, the recurrence equations linearly inter-relate the
central-difference, equilibrium and non-equilibrium, operators to non-equilibrium solution. The recurrence
equations are especially attractive for being intuitive, dimension- and lattice-transparent with the directional
collisions, like the anisotropic-ADE L-basis [25] or its particular sub-class, the two-relaxation-time TRT
collision [24, 71, 53, 36]; the TRT is suitable for both hydrodynamic and advection-diffusion problems, [26].
The form of the recurrence solutions proves [42] that any steady-state TRT bulk solution is controlled by the
free-tunable product of its two relaxation eigenfunctions, Λ = Λ−Λ+. If the boundary scheme maintains this
parametrization, the error-estimate becomes transport-coefficient independent; the MRT shares this feature
provided that a specific scaling [14, 45] of its additional collision rates is accounted for. It is demonstrated [28]
that a perturbative expansion of the recurrence steady-state non-equilibrium solution into an infinite series
around an equilibrium coincides with the Chapman-Enskog expansion; the discrete solvability conditions
(mass-conservation equations) are then expressed through the moments of the recurrence relations exactly;
their Taylor expansion delivers the truncation corrections [29, 30].

However, the recurrence non-equilibrium solution can be perturbed [42] for zero-equilibrium by an ad-
ditive, directional correction of the type aqK

n + bqK
−n, which we are refer to as the B-layer. The B-layer

develops along the boundary-cut segment n~cq, its base K is determined by Λ and the constants are fixed
through the boundary rules. A very particular choice Λ = 1

4 expresses the non-equilibrium through the
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equilibrium variables exactly, and it constrains the B-layer correction to the boundary nodes. The simplest
example [27] has been given for the bounce-back straight Poiseuille flow profile, which is identical with the
parabolic (Stokes) and the quartic (Navier-Stokes) equilibrium thanks to the B-layer assistance. The B-layer
is typically overlooked when it accommodates the high-order mismatch with the boundary rule, where it
remains “invisible” to the macroscopic solution, e.g. [73, 38]. Yet, the boundary or interface closure rela-
tions are not necessarily illegitimate for their tangential component, even at the first order, [26, 25, 2, 50].
The bounce-back weight-dependent restriction of the tangential advection-diffusion flux gives an outstanding
example [24, 21, 48, 51]. Recall, there is an infinite number of suitable, advection and diffusion, equilibrium

weight families, ranging from the coordinate (d2Q5, d3Q7) to the diagonally-rotated (d2Q5(r), d3Q7(r))
stencil. Typically, the Λ impact on the accuracy largely exceeds the discretization [45] or weight-stencil
effects [15]. However, only the d2Q5 and d3Q7 moments do not suffer from the bounce-back tangential
spurious effect in the transient ADE solutions, as shown for the straight channel and the cylindrical capil-
lary, respectively, [32]. Otherwise, the B-layer accommodation explains (i) the retardation of the average
advection velocity (first moment), - evident in plug flow [24], and (ii), the decrease of the diffusion coefficient
(second moment), - revealed by the early work [16]. These two macroscopic corrections are proportional,
respectively, to the diagonal advection and diffusion weight, and they decay only when Λ reduces to zero; a
low-cost remedy [32] attenuates them by adapting distinctive Λ values in bulk and boundary nodes.

Curiously, the very similar but steady-state scalar solution of the bounce-back and implicit-interface
ADE reveals to be weight-independent in the straight geometry for a large variety of the mass sources and
velocity fields, [34]. This work extends the B-layer construct [32] to the implicit interface between two
heterogeneous domains, explains this apparent contradiction and reveals the B-layer importance for local
macroscopic gradient in steady-state straight solutions. On top of that, it is discovered that the scalar-field
itself becomes perturbed by the discrete-exponential accommodation on the diagonal interface/boundary.
This quite unexpected solution element is referred to as the A-layer; on top of Λ, the A-layer base depends
upon the equilibrium weights and physical governing parameters. For comparison, the bounce-back Stokes
pipe flow [23, 57] excites the spurious velocity modifications only in the lattice-rotated geometry, because
the parallel flow does not evolve along the boundary-normal link in the diagonal channel [22, 26], to be
contrasted with the d2Q9 equilibrium diffusion weight-stencil.

The two distinctive, weight-dependent accommodation mechanisms, the A-layer and B-layer, are not
predicted by the Chapman-Enskog analysis. In the previous symbolic “straight” constructs, the symmetric
non-equilibrium component in the ADE schemes [34], or the anti-symmetric non-equilibrium component in
the flow models [28, 31, 61], is uniquely identified through the symmetry conditions. Now we confront this
principal limitation and solve the complete set of the recurrence non-equilibrium equations. The obtained
solutions describe exactly how the A-layer and B-layer interplay with the canonical scalar profiles: (i) the
piece-wise linear in the pure diffusion; (ii) the discrete-exponential in the interface-perpendicular constant
velocity and (iii), the polynomial in the interface-parallel flow.

The modelled ADE with velocity-dependent sources allow us to predict the effective diffusivity and
the longitudinal Taylor-Aris dispersion [65, 1]; they are respectively, produced by the averaged scalar-field
solution gradient and the averaged scalar-field product with the longitudinal-velocity following [4, 56, 68, 67].
In that respect, we also examine the truncation corrections of the commonly used, local, non-equilibrium
gradient estimate, e.g. [6]. Perhaps surprisingly, it is shown that the truncation produces (i) a non-zero
solution gradient along the invariant direction, and (ii), a gradient dependency upon an additive solution
constant, e.g., in the parabolic and the higher-order polynomial velocity profiles. Finally, the individual role
of the rotation, truncation, the A-layer and B-layer accommodations in the scalar field and its gradient is
examined with respect to the reference solutions [33].

The paper is organized as follows. Sec. 2 recalls the TRT scheme and its recurrence equations, formulates
the effective ADE and its interface/boundary closure, introduces the A-layer and B-layer. Sec. 3 develops
solution procedure in the straight and diagonal heterogeneous layers. Secs. 4 applies it within the interface-
perpendicular, fully periodic evolution process. Sec. 5 addresses the interface-parallel, stratified, bounded
and unbounded systems. Sec. 6 concludes the paper, where the principal accommodation scenarios are
summarized in Table 1. Appendix A and Appendix B construct the A-layer and B-layer, respectively.
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2. Background

2.1. The two-relaxation-time TRT

The LBM is operated on the cuboid computational grid within the penetrable d-dimensional domain
~r ∈ V ; an equidistant mesh-size is set equal to one lattice unit. The neighboring nodes are interconnected
by the d−dimensional discrete velocity set dDqQ; it consists of a zero-amplitude vector ~c0 and Qm = Q− 1
vectors ~cq. The local variable of the scheme is the set of Q real numbers called “populations”: {fq(~r, t) , q =
0, .., Qm}. The populations {fq(~r, t)} enter into the local collision, sums with their post-collision values
{n̂q(~r, t)}, and then propagate to the neighboring sites along their discrete velocities. Any two populations
with the opposite velocities ~cq̄ = −~cq are decomposed into their symmetric and anti-symmetric components:
{f±q = 1

2 (fq ± fq̄)} and {n̂±q = 1
2 (n̂q ± n̂q̄)}. In the presence of the time-independent mass-source M(~r), the

TRT collision-stream algorithm reads:

fq(~r + ~cq, t+ 1) = fq(~r, t) + n̂+
q (~r, t) + n̂−q (~r, t) , q = 1, . . . ,

Qm
2

,

fq̄(~r + ~cq̄, t+ 1) = fq̄(~r, t) + n̂+
q (~r, t)− n̂−q (~r, t) , q = 1, . . . ,

Qm
2

,

f0(~r, t+ 1) = f0(~r, t) +M(~r)− 2

Qm/2∑
q=1

n̂+
q (~r, t) ,

with n̂±q (~r, t) = −
f±q (~r, t)− e±q (~r, t)

τ±(~r)
, q = 1, . . . ,

Qm
2

, ~r ∈ V . (1)

The equilibrium distribution eq(~r, t) is prescribed as the sum of its two counterparts, {eq = e+
q + e−q }:

e+
q (~r, t) = ce(t

(m)
q C(eq)(~r) + t(M)

q τ+(~r)M(~r))

= t(m)
q ce(C(~r) + Λ+(~r)M(~r)) + ce(t

(M)
q − t(m)

q )τ+(~r)M(~r) , (2a)

e−q (~r, t) = t(a)
q C(~r, t)~u(~r) · ~cq − t(m)

q
~Jk(~r) · ~cq , q = 1, . . . ,

Qm
2

, (2b)

C(~r, t) = C(eq)(~r, t) +
1

2
M(~r) , C(eq) = βe

ρ(~r, t)

φ(~r)
, βe ≥ 1 , ρ(~r, t) =

Qm∑
q=0

fq(~r, t) , (2c)

Qm∑
q=1

tqcqαcqβ = δαβ , ∀α , ∀β , tq = {t(m)
q , t(M)

q , t(a)
q } , tq = {tc, td} ≥ 0 . (2d)
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Figure 1: The d2Q9 discrete-velocity set, the diffusion-weight t
(m)
q = {t(m)

c , t
(m)
d }, the velocity-weight t

(a)
q = {t(a)c , t

(a)
d } and

the mass-source weight t
(M)
q = {t(M)

c , t
(M)
d }, Eq. (2). The d2Q5 [~cq = {~cx, ~cy}] is {tc = 1

2
, td = 0}. The “rotated” d2Q5(r)

[~cq = {~c‖, ~c⊥}] is {tc = 0 , td = 1
4
}.

We prescribe: (i) continuous steady-state velocity field ~u(~r); (ii) molecular diffusion coefficient D0; (iii)

diffusion-scale ce ∈]0, cmaxe (t
(m)
c )]; and (iv), block-wise heterogeneous porosity distribution φ(~r) = {φk},
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together with the associated diffusive-flux jump-term ~Jk(~r); hereafter, k specifies a sub-domain Vk ∈ V .
The two relaxation parameters τ± = {τ±k } are computed from the positive distribution Λ±(~r) = {Λ±k }
giving their free-tamable product Λ = {Λk}:

τ±k (~r) := Λ±k (~r) +
1

2
, τ±k >

1

2
, Λ−k := φkΛ− , Λ+

k := Λk
Λ−k

, Λ− := D0

ce
. (3)

Based either on the Chapman-Enskog expansion or the TRT recurrence-equations, the steady-state second-
order approximate of Eqs. (1)-(3) matches the linear advection-diffusion equation in the form:

∇ · (~u(~r)C(~r) − ~Jk(~r))−Mk(~r) = Dk∆2C(~r) , C(~r) = {Ck(~r)} , Dk = {φkD0} , ~r ∈ Vk , V = {Vk} . (4)

It is assumed that φ(~r) and ~u(~r) are periodic along mean seepage-velocity direction ~Uz′ = Uz′~1z′ , and the
mass source Mk(~r) is set velocity-dependent:

Mk(~r) = φkUz′ − uz′(~r) , Uz′ =
< uz′ >

< φ >
, M(~r) = {Mk(~r)} , < M >= 0 . (5)

Hereafter, < · > denotes an averaging over the penetrable part of a single periodic cell V ; < M >= 0
assures the solvability condition of Eq. (4) in fully periodic or impermeable domain. Eq. (4) is subject to
periodic, interface and boundary conditions, respectively:

C(~r + Lz′~1z′) = C(~r) , (6a)

||C||Aφ = 0 , || − Dk~n · ∇C||Aφ = ||~n · ~Jk||Aφ , (6b)

−Dk~n · ∇C|As = ~n · ~Jk|As , ~Jk = Dk~1z′ , (6c)

~n is an inward or outward, normal vector on the boundary As or interface Aφ, and || · || denote the jump
of a scalar variable along ~n. The boundary value problem (4)- (6) allows to predict [68, 33] the effective
diffusivity Deff of the porous structure and its Taylor dispersion coefficient DT in given velocity field.
Without loss of generality, we employ these two a posteriori functionals in the error-estimates of the local
gradient ∂z′C(~r) and the scalar-field C(~r), respectively. The EMM extends the model equation over the
higher-order moments (skewness, kurtosis, ...) produced with the recursively re-constructed polynomial and
exponential mass source, [68, 33]. In this work we construct the effective steady-state solutions of the TRT
scheme when it runs without any modification across the interface. The interface is set aligned with one
of the discrete d2Q9 velocities, either the coordinate (“straight”) or the “diagonal”. In this context, the

full-stencil d2Q9 scheme prescribes freely the three non-negative weight families tq = {t(m)
q , t

(a)
q , t

(M)
q }, where

we denote tc for the coordinate links and td for the diagonal links; the two values are only constrained to
Eq. (2d). We will operate the d2Q9 scheme assigned on the half velocity set ~cq = {~cx,~cy,~c‖,~c⊥} (see Fig. 1):

~cx = {1, 0} , ~cy = {0, 1} , ~c‖ = {1, 1} , ~c⊥ = {−1, 1} . (7)

The d2Q9 reduces to “grid-aligned” models: (i) d2Q5 [~cq = {~cx,~cy}] with {tc = 1
2 , td = 0}, and (ii), “ro-

tated” d2Q5(r) [~cq = {~c‖,~c⊥}] with {tc = 0 , td = 1
4}. Identical weight t

(a)
q = t

(m)
q = t

(M)
q = tq is a suitable

choice, including t
(a)
q = t

(m)
q = 1

4 in combination with Λ = 1
4 for advanced stability (see [29, 30] and reference

herein). The necessary stability conditions relate ce with the velocity amplitude ||~u||max in homogeneous
domain; on top of stability, the numerical [10] and truncation [29, 30] role of ce has been investigated.

The commonly used “hydrodynamic” weights obey one additional constraint: 2
∑Qm/2
q=1 tqc

2
qαc

2
qβ = 1

3 , α 6= β

[then {tc, td} = { 1
3 ,

1
12} in d2Q9]; the hydrodynamic weights assure the rotational invariance of the trun-

cation corrections [29]. Further details can be found on the TRT truncation and non-negativity [58, 59],
anisotropy [25, 29], weights- and Λ− joined effects [71, 15, 32], heterogeneity and acceleration parameter βe
to steady-state [68, 34]. It is noted that the steady-state solutions are independent of βe.
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2.2. Boundary/interface equations

Any interface-cut link ~cq connecting the node ~r
(1)
N in phase k = 1 to node r

(2)
0 = ~r

(1)
N +~cq in phase k = 2

implicitly introduces two interface closure conditions [26]:

[e+
q +

1

2
n̂−q − Λ+n̂+

q ]|
~r
(1)
N

= [e+
q −

1

2
n̂−q − Λ+n̂+

q ]|
r
(2)
0 =~r

(1)
N +~cq

, (8a)

[e−q +
1

2
n̂+
q − Λ−n̂−q ]|

~r
(1)
N

= [e−q −
1

2
n̂+
q − Λ−n̂−q ]|

r
(2)
0 =~r

(1)
N +~cq

. (8b)

These conditions present the linear combinations (the half-sum and half-difference, respectively) of the
steady-state TRT update from Eq. (1) using Eq. (3) to express the non-equilibrium component f±q − e±q =
−τ±n̂±q . When the anti-bounce-back (ABB) rule [24, 9, 32] applies as the Dirichlet boundary condition at

~rs = ~rN + 1
2~cq, or the bounce-back (BB) applies as the flux boundary condition, their steady-state closure

relations read:

ABB : fq̄(~rN ) := −[fq + n̂+
q + n̂−q ](~rN ) + 2e+

q (~rs) , then

e+
q +

1

2
n̂−q − Λ+n̂+

q |~rN = e+
q (~rs) , (9a)

BB : fq̄(~rN ) := [fq + n̂+
q + n̂−q ](~rN )− 2e−q (~rs) , then

e−q +
1

2
n̂+
q − Λ−n̂−q |~rN = e−q (~rs) , ~rs = ~rN +

1

2
~cq . (9b)

The linear combinations (9a) and (9b) of the collision and post-collision components are the same as the
implicit interface relations in Eqs. (8a) and (8b), respectively. It follows that the present analysis of the
implicit interface comprises both the ABB and BB closure conditions.

2.3. Recurrence equations, solvability condition and the A-layer

On top of Eq. (8), the steady-state evolution update from Eq. (1) is reformulated [42, 28] through the
equivalent central-difference recurrence equations, which present the three-point linear directional combina-
tions of Eq. (1). In the present context, they are valid inside the homogeneous domain ~r ∈ Vk. The two
pairs of the steady state recurrence equations read as follows [phase index k is dropped]:n̂±q (~r) = [∆̄qe

∓
q − Λ∓∆̄2

qe
±
q + (Λ− 1

4
)∆̄2

qn̂
±
q ](~r) , q = 1, . . . , Qm , n̂±0 ≡ 0 ,

[∆̄2
qe
±
q − Λ±∆̄2

qn̂
±
q − ∆̄qn̂

∓
q ](~r) = 0 , q = 1, . . . , Qm .

(10a)

(10b)

The central-difference operators apply link-wisely: ∆̄qψ(~r) = 1
2 (ψ(~r + ~cq) − ψ(~r − ~cq)) and ∆̄2

qψ(~r) =
ψ(~r + ~cq)− 2ψ(~r) + ψ(~r − ~cq), ∀ψ = {e±q , n̂±q }. The steady-state solvability condition of Eq. (1) reads:

M(~r) = 2

Qm/2∑
q=1

n̂+
q (~r) . (11)

Plugging Eq. (10a) for n̂+
q into Eq. (11), the steady-state mass conservation equation reads with Eq. (2):

∇̄ · (~uC − ~J)−M − E = ceΛ
−∆̄2C . (12)

The error-term E(~r) denotes the discrepancy with the central-difference approximation of Eq. (4):

E(~r) = Λce∆̄
2M(~r)− 2(Λ− 1

4 )
∑Qm/2
q=1 ∆̄2

qn̂
+
q (~r) + 2ceΛ

−(~r)τ+(~r)
∑Qm/2
q=1 (t

(M)
q − t(m)

q )∆̄2
qM . (13)

Eqs. (12)-(13) are expressed through the weighted central-difference operators ∇̄ · ~ψ :=
∑Qm
q=1 tq∆̄q

~ψ · ~cq
and ∆̄2ψ :=

∑Qm
q=1 tq∆̄

2
qψ. These discrete operators are weight-independent and rotational-invariant at the

6



second-order due to Eq. (2d); however, at the higher orders, they are both weight-stencil and angle-dependent
in the rotated coordinate system (x′, y′):

x′ = cos[θ]x+ sin[θ]y , y′ = − sin[θ]x+ cos[θ]y , θ ∈ [0,
π

2
] . (14)

The heterogeneous layers φ = {φk} are set parallel with the translation-invariant axis ~1x′ ; Eqs. (4) and (5) are
prescribed with ~u(y′), and then M(y′). Exact solutions [68, 33] to Eqs. (4)- (6) combine the polynomial and
exponential functions in the two basic cases: (i), in “series”, when the constant velocity is perpendicular with
the interface, ~u = u⊥~1y′ ; and (b), in “stratified layers”, when the interface-parallel velocity ~u = u‖(y

′)~1x′ is
polynomial or exponential. We assume that there exists the translation-invariant discrete solution C(y′) to
Eqs. (1)- (2) with the implicit interface conditions in Eq. (8). The scalar field is then decomposed on the
polynomial “(p)-”component P (y′) and the discrete-exponential “(a)-”component A(y′):

C(y′) = P (y′) +A(y′) , P (y′) =
∑
m=0

pmy
′m , A(y′) =

∑
j=1

aj(y
′)rj

y′ . (15)

The unknowns are coefficients {pm} and polynomials {aj(y′)}; the base {rj} is to be derived from the
solvability condition given by Eq. (12). The “a-”component sums the physical and accommodation branches.

Definition: The accommodation component of A(y′) is referred to as the A-layer. The A-layer modifies
directly the macroscopic scalar solution and hence, an equilibrium; its directional evolution modifies the
physical nonequilibrium solution.

In general, E(~r) from Eq. (13) vanishes if only M(~r) is piece-wise linear and Λ = 1
4 ; hence, the symbolic

solving of Eqs. (12)-(13) needs us to derive the set {n̂+
q (~r)} exactly. Its solution is known a-priori only in a

“straight” translation-invariant d2Q5 configuration y′ = y, e.g. [34]:

d2Q5 , θ = 0 , tq =
1

2
: n̂+

q (y′) = tqM(y′)c2qy′ . (16)

In this work, we exactly construct the effective solutions P (y′), A(y′) and {n̂±q (y′)} in the straight and the

diagonal d2Q9 systems. We operate them with the three distinctive weight-stencils but t
(m)
q = t

(M)
q vanishes

the last terms in Eqs. (2a), (13) and allows for their physical parametrization.

2.4. Non-equilibrium accommodation: the B-layer

Due to linearity, the recurrence equations in Eq. (10) all remain satisfied when n̂±q (~r) is summed with

the directional additive correction B̂±q (~r), which solves Eq. (10) with e±q ≡ 0:B̂
±
q (~r) = (Λ− 1

4
)∆̄2

qB̂
±
q (~r) , q = 1, . . . , Qm , B̂±0 ≡ 0 ,

[Λ±∆̄2
qB̂
±
q + ∆̄qB̂

∓
q ](~r) = 0 , q = 1, . . . , Qm .

(17a)

(17b)

The B-layer concept is introduced [42] as a way to adjust the closure relations of the directional boundary
schemes. In this work, the B-layer is constructed along the interface-cut directional segment ~rn between two
interface nodes ~r0 ∈ Vk and ~rN ∈ Vk inside the same phase “k” [Λ = Λk, phase index k is dropped]:

Λ 6= 1

4
: B̂±q (~rn) = b±q K

n
(σ) + d±q K

−n
(σ) , ~rn = ~r0 + n~cq , n = 0, . . . , N , (18a)

K(σ) =
2
√

Λ− σ
2
√

Λ + σ
, b−q = σ

√
Λ

Λ−
b+q , d

−
q = −σ

√
Λ

Λ−
d+
q , σ = ±1 . (18b)

Λ =
1

4
: B̂∓q (~r0) =

B̂±q (~r0)

2Λ∓
, B̂∓q (~rN ) = −

B̂±q (~rN )

2Λ∓
, 2Λ∓ =

1

2Λ±
. (18c)
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The B-layer obeys the symmetry argument: B̂+
q̄ = B̂+

q and B̂−q̄ = −B̂−q . When Λ 6= 1
4 , the system has two

(equivalent) roots: K(+1) = K−1
(−1); the unknown coefficients b±q and d±q are inter-related in Eq. (18b) [these

relations are obtained with the help of Eq. (17b)]. When Λ = 1
4 , the B-layer is set exclusively with the

interface (boundary) node values {B̂+
q (~r0), B̂+

q (~rN )}; their counterparts {B̂−q (~r0), B̂−q (~rN )} are expressed
from them through Eq. (18c). The unknown directional coefficients {b+q , d+

q }, or the accommodation node-

values {B̂+
q (~r0), B̂+

q (~rN )}, are derived from the interface (boundary) closure relations.

Definition: Solution {B̂±q } to Eq. (17) in the form of Eq. (18) is referred to as the B-layer. The B-layer
does not modify the scalar field directly; its base K(±1) is determined by Λ alone.

Appendix B specifies the B-layer construct in straight and diagonal interface geometry.

3. The straight and the diagonal heterogeneous layers

We solve the recurrence equations, subject to the local mass conservation solvability and the effective
closure conditions, in straight and diagonal heterogeneous layers described with an implicit interface. Sec. 3.1
specifies our geometrical set-up and the interface conditions. Sec. 3.2 formulates the symbolic solution
algorithm. Sec. 3.3 presents the numerical validation and the error-estimates.

3.1. Geometry, interface and boundary conditions

Our numerical and symbolic solutions in the straight and the diagonal layers are computed in a single
vertical column as sketched in Fig. 2; phase k = 1 is bellow the interface n = 0: φ = φ1, y ∈]−H1, 0[, and
phase k = 2 is above it: φ = φ2, y ∈]0, H2[, using convention:

θ = 0 : y′(n) = n(k) +
1

2
; (19a)

θ =
π

4
: y′(n) =

√
2

2
(n(k) +

1

2
) , n(1) = −H1, . . . ,−1 ; n(2) = 0, . . . ,H2 − 1 . (19b)

The “internal” numbering nk is convenient with the B-layer description in Eq. (18), and it is adopted
hereafter:

phase k = 1 : n1 = n(1) +H1 = 0, 1, . . . ,H1 − 1 ; (20a)

phase k = 2 : n2 = n(2) = 0, 1, . . . ,H2 − 1 . (20b)

The interface-perpendicular velocity (“series”) is vertical in the straight system, ~u = u⊥~1y, and complanar

with the ~c⊥ in the diagonal system: ~u = u⊥~1y′ = u⊥~1⊥. The interface-parallel velocity (“stratified layers”) is

horizontal in the straight system, ~u = u‖~1x, and complanar with the ~c‖ in the diagonal system, ~u = u‖~1x′ =

u‖~1‖ according to Eq. (7). The two exact closure relations per interface-cut link are set by Eq. (8); they
apply on the “internal” and “periodic” (bounding) interfaces sketched in Fig. 2. Eq. (9b) with e−q (~rs) = 0
replaces the bounding interface in impermeable system. The closure relations are all expressed through the
three evolution velocity vectors: ~cq[θ = 0] = {~cy,~c‖,~c⊥} and ~cq[θ = π

4 ] = {~cx,~cy,~c⊥}, with the help of the

symmetry argument: ψ+
q̄ = ψ+

q and ψ−q̄ = −ψ−q applied to all solution components, with ψ+ = {e+
q , n̂

+
q }

and ψ− = {e−q , n̂−q }.

3.1.1. The straight layers

Consider the interface nodes {n(1), n(2)} := {~r(1)
N , r

(2)
0 = ~r

(1)
N + ~cq} when θ = 0. The “internal” interface

imposes the six relations:

3 × Eqs. (8a)- (8b) with {n(1), n(2)} = {−1, 0} , ~cq = {~cy,~c‖,~c⊥} . (21)

The “periodic” interface relates the bounding nodes similarly:

3 × Eqs. (8a)- (8b) with {n(1), n(2)} = {−H1, H2 − 1} , ~cq̄ = {~cy,~c‖,~c⊥} . (22)
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θ = 0

B̂(2)
y B̂

(2)

‖B̂
(2)
⊥

B̂(1)
yB̂

(1)
⊥ B̂

(1)

‖

x′

y′

u‖

u⊥ φ1

φ2

φ1

φ2
θ = π

4

n1 = 0

n1 = H1 − 1

n2 = 0

n2 = H2 − 1

x′
y′

u‖
u⊥

φ2

φ1

φ1

φ2

B̂(2)
y

B̂(2)
x

B̂
(2)
⊥

B̂(1)
y

B̂(1)
x

B̂
(1)
⊥

Figure 2: The straight (left) and the diagonal (right) two-layered heterogeneous system is modeled as a single vertical column with

the help of the straight or diagonal, respectively, periodic conditions. The velocity field is ~u = {u‖, u⊥}; the implicit midway interface

between the blocks φ1 and φ2 is parallel with the ~1x′ [black dashed]. Two blocks in “series”: Eq. (4) applies with ~1z′ = ~1y′ = ~1⊥ in the

pure-diffusion process and the interface-perpendicular Darcy flow ~u = u⊥~1y′ . Two stratified layers: Eq. (4) applies with ~1z′ = ~1x′ = ~1‖

in the parallel flow ~u = u‖(y
′)~1x′ . When Λ = 1

4 , the B-layer {B̂±(k)
q } is constrained to the interface nodes (”filled circles”), and it

vanishes in the nodes with the single interface-cutted link (“empty circles”).

The impermeable boundary replaces Eq. (22) by Eq. (9b) for 3× 2 wall-cut links. In total, there are 6× 2
interface/boundary closure relations in the two-layered straight system. They reduce to the 2×2 conditions

along ~cy in d2Q5, and the 4× 2 conditions along {~c‖,~c⊥} in d2Q5(r). The periodic conditions are imposed
for all outgoing horizontal links.

3.1.2. The diagonal layers

Consider the interface nodes {~r(1)
N , r

(2)
0 = ~r

(1)
N + ~cq} = {n(1), n(2)} when θ = π

4 . The “internal” interface
imposes

4 × Eqs. (8a)- (8b) with (23a)

{n(1), n(2)} = {−1, 0} , ~cq = −~cx , and {n(1), n(2)} = {−1, 0} , ~cq = ~cy , (23b)

{n(1), n(2)} = {−1, 1} , ~cq = ~c⊥ , and {n(1), n(2)} = {−2, 0} , ~cq = ~c⊥ . (23c)

The periodic interface prescribes

4 × Eqs. (8a)- (8b) with (24a)

{n(1), n(2)} = {−H1, H2 − 1} , ~cq = ~cx , and {n(1), n(2)} = {−H1, H2 − 1} , ~cq = −~cy , (24b)

{n(1), n(2)} = {−H1, H2 − 2} , ~cq = −~c⊥ , and {n(1), n(2)} = {−H1 + 1, H2 − 1} , ~cq = −~c⊥ . (24c)

The 4 bounce-back closure relations (9b) replace Eq. (24) on the impermeable ends. Altogether, there are
8× 2 interface/boundary closure relations. They reduce to the 4× 2 conditions, along {~cx,~cy} and {~c‖,~c⊥},
respectively, in d2Q5 and d2Q5(r). The diagonal periodic conditions are imposed for all outgoing links ~c‖.

3.2. Solution procedure

9



The scalar field Ck(n) is decomposed on polynomial “(p)” and accommodation “(a)” components with

Eq. (15); the post-collision n̂
±(k)
q (n) is additionally amended by the B-layer component B̂

±(k)
q (n) from

Eq. (18):

Ck(n) = Pk(n) +Ak(n) , Pk(n) =
∑
m=0

p(k)
m nm , Ak(n) =

∑
j=1

a
(k)
j (n)[r

(k)
j ]nk , (25a)

n̂±(k)
q (n) = P̂±(k)

q (n) + Â±(k)
q (n) + B̂±(k)

q (n) , q = 1, . . . ,
Qm
2

, n = −H1, . . . ,H2 − 1 , (25b)

P̂+(k)
q (n) =

∑
m=0

p̂(k)
q,mn

m , Â+(k)
q (n) =

∑
j=1

â
(k)
q,j (n)[r

(k)
j ]nk , nk = 0, 1, . . . ,Hk − 1 , k = 1, 2 . (25c)

The unknowns are: the base {r(k)
j }; the coefficients {p(k)

m , a
(k)
j } and the directional coefficients {p̂(k)

q,m, â
(k)
q,j }.

On top of them, the B-layer directional coefficients {b+(k)
q , d

+(k)
q } from Eq. (18b) or, when Λ = 1

4 , the

interface-node values {B̂+
q (~r0), B̂+

q (~rN )} from Eq. (18c), are unknowns. In our examples, {rj}, {p(k)
m } and

{b+(k)
q , d

+(k)
q } are piece-wise constant; {a(k)

j (n), â
(k)
q,j (n)} are either piece-wise constant or polynomial. The

symmetric post-collision components n̂
+(p,k)
q = P̂

+(k)
q (n) and n̂

+(a,k)
q = Â

+(k)
q (n) solve Eq. (10a):

n̂+(l,k)
q (n) = [∆̄qe

−(l,k)
q − Λ−∆̄2

qe
+(l,k)
q + (Λ− 1

4
)∆̄2

qn̂
+(l,k)
q ](n) , l = {p, a} , k = 1, 2 . (26)

Their counterpart n̂
−(l,k)
q = {P̂−(k)

q , Â
−(k)
q } is expressed from them by combining Eqs. (10a) and (10b):

Λ−k n̂
−(l,k)
q = [Λ−k ∆̄qe

+(l,k)
q − 1

4
∆̄2
qe
−(l,k)
q − (Λk −

1

4
)∆̄qn̂

+(l,k)
q ] , l = {p, a} . (27)

Eq. (11) implies the solvability conditions in the form:

Qm/2∑
q=1

n̂+(l,k)
q (n) =

1

2
M (l,k)(n) , l = {p, a} , (28a)

Qm/2∑
q=1

B̂+(k)
q (n) = 0 , k = 1, 2 . (28b)

The solution procedure consists of the following steps.

1. Eq. (25a) is plugged into e
+(l,k)
q ; Eq. (25c) expresses n̂

+(l,k)
q , l = {p, a}; Eq. (26) is discretized with

Eqs. (A.1)-(A.2) by substituting all these relations;

2. The directional relations {p̂(k)
q,m(p

(k)
m )} and {â(k)

q,j (a
(k)
j )} are derived from Eq. (26) by vanishing its

polynomial coefficients;

3. The obtained relations are substituted into Eq. (25c); the {P̂+(k)
q (n)} and {Â+(k)

q (n)} are then plugged
into solvability condition given in Eq. (28a);

4. Eq. (28a) is solved for {r(k)
j }, the second- and the higher-order coefficients {p(k)

m , m ≥ 2};
5. Eq. (27) expresses P̂

−(k)
q and Â

−(k)
q ;

6. The B-layer B̂
±(k)
q (n) is expressed through its unknown coefficients {b+(k)

q , d
+(k)
q }, Appendix B;

7. Eqs. (8)-(9) substitute e±q and n̂
±(k)
q (n) from Eq. (25b) with all derived relations, and close the system;

8. The closure equations are solved for the remaining coefficients; they determine solution in Eq. (25).

Typically, the closure relations fix the lower-order polynomial coefficients {p(k)
0 , p

(k)
1 } to an additive

constant; they also determine the A-layer coefficients {a(k)
j } and the B-layer coefficients {b+(k)

q , d
+(k)
q } [or,

when Λ = 1
4 , the B-layer in-node values, see Eq. (B.6)]; the Ak(n) can be based on the physical and

accommodation roots to solvability condition. Beyond the parabolic profile, Pk(n) deviates from the exact
solution due to the truncation corrections. The A-layer and/or B-layer accommodation is excited by the set of
the directional closure relations when the discrete, physical solution cannot satisfy them; the accommodation
may then modify the physical solution, its gradient and the next-order terms.
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3.3. Numerical validation

The symbolic, straight and diagonal, configurations are exemplified in the two next sections. The re-
sulting linear system includes up to 8× 2 closure equations, e.g. Eqs. (23)- (24); the whole system is solved
either symbolically or by substituting the numerical data. The symbolical procedure basically simplifies
when Λ = 1

4 . All constructed solutions are first verified on the numerical profile C(n) and the steady-state
post-collision output n̂±q (n) from Eq. (1). For that, we compare the normalized (constant-independent)
distributions C(n):

C(~r) = C(~r)− C , C =
< Cφ >

< φ >
, then

< Cφ >
< φ >

= 0 . (29)

One can also determine a particular constant value by fitting the predicted solution C(n) to the numerical
profile when the post-collision depends on an additive constant. The same value Λk = Λ is applied in both
phases but the solution procedure remains valid when Λk is piece-wise constant. Typically, we performed
the first verification using H1 = 8, H2 = 11, φ1 = 1

4 , φ2 = 1, ||~u|| = 10−2, ce = 0.1, Λ− = 1, and the

arbitrary prescribed weight families, e.g., t
(a)
c = 3

10 , t
(m)
c = 1

4 , t
(M)
c = 1

8 , with Λ = { 1
12 ,

1
4 , 2}. The numerical

convergence study is performed with tc = 1
3 and tc = 1

4 , when Λ = 1
4 and Λ = 1

6 [these two values enhance
the stability and the fourth-order spatial accuracy, respectively, see [29, 30]]. Numerical computations
confirm the superior stability of the combination {Λ = 1

4 , tc = 1
4}, e.g., when approaching the diffusion

stability limit on the fine grid [ce → cmaxe =
rφ

4t
(m)
c βe

using ce = 1/16, φ2 = 1, rφ = φ1/φ2 = { 1
8 ,

1
4}, and

βe ∈ [1, 4]]. A nearly linear acceleration to steady state is achieved using βe > 1. Once solution is validated,
the symbolic error estimate is examined in the full parameter range.

The boundary-value problem in Eqs. (4)-(6) allows to predict [68, 33] the effective diffusivity Deff and
the longitudinal Taylor dispersion coefficient kT :

D = Deff +DT , where (30a)

Deff = D0(1+ < ∂z′C(n) >) , < ∂z′C(n) >=

∑
n φ(n)∂z′C(n)

< φ >
, < φ >=

∑
k

φkHk , (30b)

DT = kTDeff , kT = −
∑
n uz′(n)C(n)

< φ > Deff
, uz′ = ~u(n) ·~1z′ , (30c)

with ~1z′ = ~1y′ if ~u = u⊥~1y′ , and ~1z′ = ~1x′ if ~u = u‖~1x′ . (30d)

The solution gradient ∂z′C(n) =
∑
l ∂z′C

(l)(n) is approximated locally:

∂z′C
(l)(n) :=

2

ce

Qm/2∑
q=1

n̂−(l)
q (n)cq,z′ , n̂

−(l)
q = {P̂−(k)

q , Â−(k)
q , B̂−(k)

q } , l = {p, a, b} , k = 1, 2 . (31)

The respective truncation “(p)”, A-layer “(a)” and B-layer “(b)” contributions are quantified as:

E(Deff ) = E(p) + E(a) + E(b) , E(p) = D0(1+<∂z′C
(p)>)

Deff − 1 , {E(a),E(b)} = D0<∂z′C
(l)>

Deff . (32)

In the presence of advection, the physical “(p)” and the A-layer “(a)” contributions to E(kT ) are quantified:

E(kT ) = E(k
(p)
T ) + E(k

(a)
T ) , E(k

(p)
T ) =

k
(p)
T

kT
− 1 , E(k

(a)
T ) =

k
(a)
T

kT
, k

(l)
T = −

∑
n uz′(n)C(l)(n)

< φ > Deff
, l = {p, a} . (33)

4. Heterogeneous layers in “series”

We consider (i) the pure diffusion in Sec. 4.1 and (ii) the interface-perpendicular Darcy flow ~u = u⊥~1y′

in Sec. 4.2. The one-dimensional advection-diffusion process is conducted through the periodic series of two
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Figure 3: The pure-diffusion process through the diagonal layers (a); (b) and (c), the A-layer with Λ = 1
6 , the four roots to Eq. (42)

are real when t(m)
c < 1

18 , Eq. (A.7); (d): the A-layer with Λ = 2, the four roots to Eq. (42) are real ∀t(m)
c when Λ > 1

4 ; (e): the A-layer

with t(m)
c = 1

2 , the four roots obey Eq. (A.8b); (f) the A-layer with Λ = 1
4 , the two roots from Eq. (43) are negative.

heterogeneous layers parallel with the axis ~1x′ : φ = φ1 when y′ ∈ [−h′1, 0] and φ = φ2 when y′ ∈ [0, h′2] (see
Fig. 3). Eqs. (4)-(6) read:

u⊥∂y′Ck(y′)−Mk = ∂y′Dk∂y′Ck(y′) , Mk := φkUy′ − u⊥ , k = 1, 2 , (34a)

Uy′ :=
< u⊥ >

< φ >
=

u⊥h
′

φ1h′1 + φ2h′2
, P e

(k)
⊥ :=

u⊥
Dk

, Pe :=
Uy′h

′

D0
, h′ = h′1 + h′2 , (34b)

C1|y′={0,−h′1} = C2|y′={0,h′2} , (34c)

−J1 −D1∂y′C1|y′={0,−h′1} = −J2 −D2∂y′C2|y′={0,h′2} , ~Jk = Jk~1y′ , Jk = Dk . (34d)

The mass-source Mk is piece-wise constant; the diffusion-flux jump is prescribed with Eq. (34d). We con-
struct the effective solutions C(y′) and n̂±q (y′); they extend the d2Q5 results [34] to d2Q9 in the two
grid-aligned considered orientations.

4.1. Pure diffusion

The pure diffusion process ~u = 0 develops in the interface-perpendicular direction ~1y′ . The coefficients of
the effective diffusivity, skewness and kurtosis are derived [33] (Eq. (52) there) and applied [34] to validate
the d2Q5 TRT scheme. In this work we limit ourselves to Deff [M = 0 in Eq. (34)], because the focus is
put on the accommodation effect in this characteristic measurement.
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4.1.1. Exact solution

The piece-wise linear solution Ck(y′) = Pk(y′) to Eq. (34) is defined to an additive constant p0:

P1(y′) = p0 + p
(1,ex)
1 y′ , p

(1,ex)
1 =

h′2(φ2 − φ1)

φ1h′2 + φ2h′1
, y′ ∈ [−h′1, 0] ,

P2(y′) = p0 + p
(2,ex)
1 y′ , p

(2,ex)
1 =

h′1(φ1 − φ2)

φ1h′2 + φ2h′1
, y′ ∈ [0, h′2] . (35)
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Figure 4: The pure-diffusion process through the diagonal layers. The normalized, theory (lines) and numerical (symbols) solution

C(n). (a) d2Q5: C(n) = P (n) = P (ex)(n), Eq. (35) with Eq. (19). The d2Q9: (b) the A-layer A(n) is built on the roots (42); (c)

P (n)− P (ex)(n) ; (d), (e), (f): the whole deviation P +A− P (ex) when Λ = { 1
6 ,

1
4 , 2} [dashed, dotted, dash-dotted]. Data: the d2Q9

with {t(m)
c = 1

4 , t
(m)
d = 1

8}], φ1 = 1
4 , φ2 = 1, H1 = 8, H2 = 11, ce = 10−1, Λ− = 1. E(Deff ) ≈ {1.05× 10−2, 8.8× 10−3, 2.9× 10−3},

(d)-(f).

The normalized solution C(y′) obeys Eq. (29) and it is illustrated in Fig. 4. Eq. (30b) gives Deff :

Deff = D0(1+ < φ >−1 (φ1

∫ 0

−h′1
∂y′C1dy

′ + φ2

∫ h′2

0

∂y′C2dy
′)) , < φ >= φ1h

′
1 + φ2h

′
2 , (36a)

Deff = DrD0 , Dr =
(1 + rh)2rφ

(rh + rφ)(1 + rhrφ)
, rφ =

φ1

φ2
, rh =

h′1
h′2

. (36b)

Thus, Deff is equal to the length-weighted harmonic mean of the two phase values, φ1D0 and φ2D0, divided
by mean porosity value φ̄ =< φ > /h′; Deff is rotational-invariant and it is fixed by the porosity contrast
rφ and the aspect ratio rh.
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4.1.2. The polynomial component

Assume the piece-wise linear solution Pk = p
(k)
0 + p

(k)
1 y′ and Mk = 0, then

e+(p,k)
q (y′) = t(m)

q cePk(y′) , e−(k)
q (y′) = −t(m)

q Jkcq,y′ , (37a)

P̂−(k)
q (y′) = t(m)

q cep
(k)
1 cq,y′ , p

(k)
1 = ∂y′Pk(y′) , (37b)

P̂+(k)
q (y′) = −Dkt(m)

q p
(k)
2 cq,y′ , Dk = Λ−k ce , p

(k)
2 = ∂2

y′Pk = 0 . (37c)

When ∂y′Pk is derived with Eq. (31) [~1z′ = ~1y′ ], Eq. (30b) gives:

Deff (Pk) = D0(1+ < φ >−1
∑
k φkp

(k)
1 Hk) , < φ >=

∑
k φkHk . (38)

Eq. (38) is equivalent to Eq. (36a) provided that the discrete aspect ratio is equal to rh and p
(k)
1 = p

(k,ex)
1 .

We examine whether this exact solution may satisfy the implicit interface.

4.1.3. The straight system with the d2Q9: no A-layer, no B-layer

Eqs. (21)-(22) factorize t
(m)
q 6= 0:

t(m)
q (C1 +

1

2
∂y′C1cq,y′)|~r(1)N = t(m)

q (C2 −
1

2
∂y′C2cq,y′)|r(2)0 =~r

(1)
N +~cq

, (39a)

t(m)
q (−D1 +D1∂y′C1)|

~r
(1)
N

= t(m)
q (−D2 +D2∂y′C2)|

r
(2)
0 =~r

(1)
N +~cq

. (39b)

Eqs. (39) with Eq. (37) satisfy the system with the mid-grid interface for all straight-interface cut links;

then ∂y′Pk = p
(k)
1 = p

(k,ex)
1 and Eq. (38) is exact for any diffusion-weight t

(m)
q in Eq. (2) and any {Λk} in

Eq. (3).

4.1.4. The diagonal system with the d2Q5: no A-layer, no B-layer

The d2Q5 keeps the piece-wise linear solution (37) because it satisfies Eq. (39) on the vertical and
horizontal diagonal-interface cut links [see Fig. 2]. Their four interface equations are equivalent for −x and

y axes; the solution reads: p
(1)
0 = p

(2)
0 , p

(1)
1 = H2(φ2−φ1)

H2φ1+H1φ2
, p

(2)
1 = −H1(φ2−φ1)

H2φ1+H1φ2
. Since h′2/H2 = h′1/H1, the

d2Q5 solution coincides with Eq. (35) and Eq. (38) is kept exact.

Further, although one might suggest that the (diagonally-rotated) d2Q5(r) model replaces the d2Q5
in the diagonal orientation, this is only partially true. Indeed, thanks to symmetry, there is no either
A-layer or B-layer in d2Q5(r) because only one diagonal link is cut and its “mass” should be equal to zero
[Eqs. (11), (A.5b)]. However, the d2Q5(r) handles Eq. (1) through the two separate sub-diagonals: nk = 2m
and nk = 2m+ 1, m = 0, 1, 2, . . .; the two sub-diagonals are inter-connected only providing that H1 and H2

are of the different parity. This known d2Q5(r) “checkerboard” effect persists in all heterogeneous periodic
configurations considered below, and it makes the d2Q5(r) unsuitable for practical purpose. Although
the d2Q5(r) effective solutions have been constructed for validation purpose, they will not be considered
hereafter.

4.1.5. The diagonal system with the d2Q9: the A-layer + the B-layer

If we assume that the d2Q9 maintains the linear profile Ck = p
(k)
0 + p

(k)
1 y′, Eq. (39) locates the interface

midway the cut links; its location is hence shifted by
√

2
4 for {~cy,~cx}, on the one side, and ~c⊥, on the other

side [see Fig. 2, dashed (black) and dotted (red), respectively]. The accommodation is introduced to cure
of this mismatch. Solution to Eq. (26) is then looked for in the form of Eq. (25) and it reads with the help
of Eqs. (19) and (20):

Ck(n) = Pk(n) +Ak(n) , Pk(n) = p
(k)
0 + p

(k)
1 y′ , y′(n) =

√
2

2
(n+

1

2
) , (40a)

Ak(n) =
∑
j=1

a
(k)
j [r

(k)
j ]nk , Â+(k)

q (n) =
∑
j=1

â
(k)
q,j [r

(k)
j ]nk , k = 1, 2 . (40b)
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Thanks to the symmetry between the y and −x axes, the system obeys (see also Eq. (B.4)):

n̂±(l,k)
x = ±n̂±(l,k)

y , l = {p, a} , and B̂±(k)
x = ±B̂±(k)

y , B̂
±(k)
⊥ = −2B̂±(k)

y . (41)

The solvability equation is quartic and r = ∪4
j=1{r

(k)
j (t

(m)
q ,Λ)} obeys ( Appendix A.1):

ar4 + br3 + cr2 + dr + e = 0 , with a = e = (−1 + 4Λ)(1 + 6t(m)
c ) ,

b = d = −4(1− 2t(m)
c ) , c = −2(3 + 2t(m)

c + 4Λ(1 + 6t(m)
c )) . (42)

The four roots of Eq. (42) are fixed by Λ and t
(m)
c ; they are real for any weight-value t

(m)
c only when Λ > 1

4
[ see Eq. (A.7) and Fig. 3]. Eqs. (23) and (24) reduce to the 6 × 2 closure conditions thanks to symmetry.

Solution is fixed with six unknowns per phase k: {p(k)
0 , p

(k)
1 } and the four coefficients {a(k)

j }. The system is
hence satisfied without any help of B-layer. Fig. 4 displays the constructed solution: the A-layer component
A(n), the difference of the effective piece-wise linear profile with its exact solution, P (n) − P (ex)(n), and
the difference of the whole solution with the exact profile, C(n)− P (ex)(n). This total difference is exactly
validated on the normalized numerical solution, together with the predicted solution for Deff and the post-
collision distribution. Thereby, we stress that the A-layer modifies the gradient of the piece-wise linear

profile: p
(k)
1 6= p

(k,ex)
1 .
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Figure 5: The pure diffusion process through the diagonal layers [rφ = 1
4 , rh = 2, ce = rφ/4, H = 24, Λ = 1

4 ]. The non-equilibrium

contribution to the local gradient ∂⊥C(n) [~1z′ = ~1y′ = ~1⊥] in Eq. (31) from the A-layer (a) on the coordinate links x and y,
2×2
ce

Â−(k)
y c⊥,⊥, with Â−(k)

x = Â−(k)
y and (b), on the diagonal link: 2

ce
Â
−(k)
⊥ c⊥,⊥; (c) the whole contribution from the B-layer. legend

(a)-(c): t(m)
c = { 1

16 ,
1
8 ,

1
4 ,

1
3} [solid(red), dot-dashed(blue), dotted (black), dashed (magenta)]. (d) the contribution to Deff from the

A-layer (E(a)) and the B-layer (E(b)) versus t(m)
c when H = 6 and H = 12.

When Λ = 1
4 , Eq. (42) reduces to the quadratic equation with a = e = 0:

−(1 + r)2 + 2(−1 + r)2t(m)
c = 0 , r± =

2t
(m)
c + 1± 2

√
2t

(m)
c

2t
(m)
c − 1

, r+r− = 1 , r± < 0 , t(m)
c ∈]0,

1

2
[ . (43)

Eq. (43) degenerates when t
(m)
c = 1

2 [d2Q5] or t
(m)
c = 0 [d2Q5(r)]. The two roots to Eq. (43) are displayed

in Fig. 3. The number of unknowns {p(k)
0 , p

(k)
1 , a

(k)
1 , a

(k)
2 } reduces to the 4× 2. The 6× 2 closure equations

are then satisfied thanks to the 2× 2 B-layer interface values B̂
+(k)
x = B̂

+(k)
y [ Eq. (41)]. Further inspection

confirms that the A-layer and B-layer maintain the diffusion scaling: {P̂−q , Â−q , B̂−q } ∝ ce, and they are

independent of Λ−k . It follows that when Deff is derived with Eqs. (30b), (31), the relative coefficient Dr

in Eq. (36b) and E(Deff ) from Eq. (32) remain independent of D0. Fig. 5 displays the accommodation

contributions to ∂y′Ck(n) [ Eq. (31) with ~1z′ = ~1y′ ] and to E(Deff ) [E(a), E(b) from Eq. (32)]. The two

corrections E(a) and E(b) non-linearly depend on the diffusion-weight t
(m)
c , and they vanish in the d2Q5 and

d2Q5(r). In our example, |E(a)| exceeds E(b) by a factor of two and the two contributions have opposite

signs. This tells us that the two contributions are quite comparable. Fig. 6 demonstrates that E(a) and
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E(b) decay linearly with the space resolution. The first-order convergence is also observed in the piece-wise

linear gradient: E(∂y′P ) = |p(k)
1 /p

(k,ex)
1 − 1|. The E(Deff ) sums the three contributions in Eq. (32) and also

converges only with first-order rate.
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Figure 6: The pure diffusion process through the diagonal layers [rφ = 1
4 , rh = 2, ce = rφ/4, Λ = 1

4 ]. The contributions to error-

estimate err(Deff ) in Eq. (32) versus H = 6×2n, n ∈ [0, 7]. (a) from the linear profile: |E(∂y′P )| = |p(k)1 /p
(k,ex)
1 −1| with Eq. (35) in

two phases k = 1, 2; (b) from the A-layer: E(a); (c) from the B-layer: E(b); (d) the total error E(Deff ); (a)-(d): t(m)
c = { 1

16 ,
1
8 ,

1
4 ,

1
3}

[solid(red), dot-dashed(blue), dotted (black), dashed (magenta)]. The d2Q5 is exact.

4.1.6. Resume

The piece-wise linear scalar-profile and the effective-diffusivity Deff are exact with any diffusion-weight

{t(m)
q } in the straight heterogeneous layers. However, only the d2Q5 is exact in the diagonal system. The

d2Q5(r) piece-wise linear profile is sub-divided on the two sub-diagonals, depending on the system parity.
With the exception of these two models, the A-layer [Eq. (40b)] is excited in the diagonal pure-diffusion

system without B-layer, unless when Λ = 1
4 . The A-layer is built on the four roots {rj(t(m)

q ,Λ} to Eq. (42).
When Λ = 1

4 , the A-layer is built with the two roots (43) and complemented by the B-layer from Eq. (18c)
in the interface nodes. A key point is that the A-layer and B-layer modify the gradient of the piece-wise
linear profile ∂y′Pk. On top of that, the A-layer and the B-layer impact the local gradient ∂y′C(y′) directly

in Eq. (31). The D(num)
eff then converges to its exact (harmonic mean) value only with first-order rate; its

dependency upon {t(m)
q } and Λ is non-trivial. The mass-source weight {t(M)

q } is irrelevant in the constructed
solution because Mk ≡ 0.

4.2. The Darcy flow through the heterogeneous layers

We consider Eq. (34) with the interface-perpendicular Darcy flow ~u = u⊥~1y′ , Mk is then piece-wise
constant. TheDeff is complemented with the Péclet dependent Taylor dispersion coefficientDT = kTDeff in

Eq. (30c). The solution for DT , skewness and kurtosis is derived [33] with exact solution Ck(y′) = P
(k)
n (y′)+

P
(k)
n−1(y′)e

u⊥y
′

D0φk , where P
(k)
n are the n−order polynomials, n = {1, 2, 3} respectively. The d2Q5 “straight”

solution [34] then becomes expressed through the discrete-exponential branches, as Ck(y′) = P
(k)
n (y′) +

P
(k)
n−1(y′)rPe

(k)
⊥ y′ , where r solves Eqs. (12)-(13) and the polynomials are fixed by the solvability and interface

conditions. We construct the d2Q9 solution in the form of Eqs. (40)-(41) in the full weight-parameter space

{t(m)
q , t

(m)
q , t

(M)
q } for two configurations depicted in Fig. 2. The piece-wise linear isotropic term Pk(n) =

p
(k)
0 + p

(k)
1 y′ satisfies the scheme with p

(k)
1 = Mk

u⊥
; the anisotropic discrete-exponential component is built

in Appendix A.2 with the straight and diagonal configurations.

4.2.1. The straight system with the d2Q9: the B-layer

The “(a)” component of Eq. (28a) is weight-independent and it reduces to the quadratic equation:

θ = 0 : 2(−1 + r)2 − (−1 + r2)Pe
(k)
⊥ = 0 , r = {1, rk} . (44)
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Hence, Eq. (40) reads with the non-trivial root rk to Eq. (44):

Ck(n) = p
(k)
0 + p

(k)
1 n+ a

(k)
1 rnkk , p

(k)
1 = Mk

u⊥
, rk =

1+Pe
(k)
⊥ /2

1−Pe(k)⊥ /2
. (45)

Eq. (45) solves Eq. (34a) in the discrete form [with y′ = y]:

u⊥∆̄y′Ck(y′)−Mk = φkD0∆̄2
y′Ck(y′) . (46)

Eq. (46) reads with: ∆̄y′ψ = 2
∑Qm/2
q=1 tq∆̄qψ(y′) · cq,y′ and ∆̄2

y′ψ = 2
∑Qm/2
q=1 tq∆̄

2
qψ(y′)c2q,y′ , and it fits

Eq. (12) with E = 0. Eqs. (45)-(46) are valid for any weights. Hence, in the straight geometry, Ak = a
(k)
1 rnk

expresses the physical solution. Further, when the weights are all the same, t
(m)
q = t

(a)
q = t

(M)
q , Eqs. (21)-

(22) factorize them for all links. Otherwise, the system is accommodated by the B-layer from Eq. (B.2); it

complements Eq. (16) in the d2Q9 scheme. Due to symmetry: B̂
+(k)
‖ = B̂

+(k)
⊥ = − 1

2 B̂
+(k)
y , the B-layer is

fixed with the two coefficients of B̂
+(k)
y per phase. Together with {p(k)

0 , a
(k)
1 }, they are derived from the set

of the 4× 2 interface conditions. The B-layer does not affect ∂yC in Eq. (31) [here, ~1z′ = ~1y]. The obtained
scalar-field solution in Eq. (45) and DT are weight-independent and the same as in d2Q5, [34].

4.2.2. The diagonal system with the d2Q5 and d2Q5(r): no A-layer, no B-layer

The solvability condition from Eq. (A.13) reads:

d2Q5 : (4− 4r +
√

2Pe
(k)
⊥ (1 + r))(4Λ(−1 + r2)2 − (1 + r2)2) = 0 , (47a)

d2Q5(r) : (2− 2r2 +
√

2Pe
(k)
⊥ (1 + r2))(4Λ(−1 + r)2 − (1 + r)2)(1 + r) = 0 . (47b)

The five roots to Eq. (47) are:

d2Q5 : ∪5
j=1rj = r

(k)
1 ∪ r|(u=0)

d2Q5
, with r

(k)
1 =

4 +
√

2Pe
(k)
⊥

4−
√

2Pe
(k)
⊥

, (48a)

d2Q5(r) : ∪5
j=1rj = r

(k)
1,2 ∪ r|

(u=0)

d2Q5(r) ∪ {−1} , r(k)
1,2 = ±

√√√√2 +
√

2Pe
(k)
⊥

2−
√

2Pe
(k)
⊥

. (48b)

The rj = r
(k)
1 and rj = {r(k)

1,2} are the physical roots and they vanish the term of (Λ− 1
4 ) in Eq. (13); Eq. (12)

is then solved with E = 0 because the mass-source is piece-wise constant. The pure-diffusion roots r|(u=0)

d2Q5

and r|(u=0)

d2Q5(r) solve Eqs. (A.8a) and (A.9a); they are given in Eqs. (A.8b) and (A.9b), respectively. The

two models do not need any accommodation. The d2Q5 maintains n̂+
q (y′) in the form of Eq. (16), and it

extracts {p(k)
0 , a

(k)
1 } from the 2 × 2 Eqs. (23b) and (24b) to an additive constant. The d2Q5(r) produces

their individual solutions on the two sub-diagonals and remains unsuitable.

4.2.3. The diagonal system with the d2Q9: the A-layer + the B-layer

When Λ 6= 1
4 , the solvability condition is given by the six order (sextic) polynomial equation; when

Λ = 1
4 , the solvability equation is quartic. In the two cases, one root is equal to one, the reduced quintic

(fifth-order) and cubic equations are given by Eqs. (A.13) and (A.14a), respectively. Eq. (40) reads:

θ =
π

4
: Ck(n) = p

(k)
0 + p

(k)
1 n+

N∑
j=1

a
(k)
j rnj , rj = r

(k)
j (t(a)

q , t(m)
q ,Λk, P e

(k)
⊥ ) , (49)

with N |Λ6= 1
4

= 5 and N |Λ= 1
4

= 3. The set {rj} is composed of the one physical root and the four or two

A-layer roots, respectively. The A-layer has the same number of roots as in pure diffusion [cf. Eqs. (42)-

(43)], but they depend upon the two weight families, Λk and Pe
(k)
⊥ . The set of three roots to Eq. (A.14a)

is illustrated in Fig. 7; the contour plot of Eq. (A.14b) bounds their real domain.
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Figure 7: (a) The interface-perpendicular Darcy flow through the diagonal layers. The three A-layer roots from Eq. (A.14a) when
Λ = 1

4 and all weights are identical. Top row: (b) and (c): the three roots {rj} versus Pe⊥; the “physical” root is r|Pe⊥=0 = 1 [solid

(red)]. (b) |R[r]| when tc = 1
4 [ Pemin⊥ ( 1

4 ) = 8
√

3
3 ]. (c) |R[r]| when tc = 1

3 [ Pemin⊥ ( 1
3 ) ≈ 1.65, Pemax⊥ ( 1

3 ) ≈ 20.57]. Bottom row: (d)

region plot Pe⊥ ∈ {Pemin⊥ (tc), Pe
max
⊥ (tc)}, Eq. (A.14b), all three roots are real outside of the shaded area, t(a)c ∈ [0, 1

2 ] && (Pe⊥ <

Pemin⊥ (tc)), and tc ∈ [ 14 ,
1
2 ] && (Pe⊥ > Pemax⊥ (tc)), with Pemax⊥ |

tc→ 1
4

= ∞. Inside the shaded area, only one root is real, e.g.: (e)

±=[r] when t(a)c = { 1
8 ,

1
4} (dot-dashed (blue), dashed (black)); (f) ±=[r] when t(a)c = 1

3 .
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Figure 8: The normalized solution components in the interface-perpendicular Darcy flow through the diagonal layers. (a) the piece-

wise linear polynomial component P (n) (dashed-red) and the physical exponent A(ph)(n) (solid-black). (b) the A-layer A(n). (d) their

sum C(n) = P + A(ph) + A (solid) and the numerical solution (symbols); (a)-(d): phase 1: n ∈ [−8,− 1
2 ] and phase 2: n ∈ [− 1

2 , 10].

Data: H = 19, rh = 8/11, rφ = 1
4 , φ2 = 1, u⊥/D0 = 10−1, ce = 10−1, tc = 1

4 , Λ = 1
4 .
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The coefficients are fixed by the closure conditions as in pure diffusion [see Sec. 4.1.5]. Fig. 8 displays the
normalized components: (a) the linear Pk(n) and the physical exponential branch A(ph)(n); (b) the A-layer
A(n); and (c), their sum C(n) which coincides with the numerical solution. Similar solutions are constructed
and validated when Λ 6= 1

4 .

4.2.4. The dispersion coefficient in the interface-perpendicular flow

The dispersion coefficientD = Deff (1+kT ) sumsDeff (rφ, rh) from Eq. (36b) andDT = DeffkT (rφ, rh,Pe)

[kT is derived in [33], Eq.(58) there]. The kT converges to the finite value kT (rφ, rh) =
rh(r2φ−1)2

rφ(1+rhrφ)2 when

Pe → ∞, and kT vanishes when Pe → 0, then D → Deff . The three normalized coefficients, D−1
0 Deff ,

kT and D−1
0 D are illustrated in Fig. 9. The symbolic and numerical procedures compute D(num)

eff with
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Figure 9: The interface-perpendicular Darcy flow when rh = 2, rφ = 1

4 [(a) and (c)]. a) The predicted transport co-

efficients versus Pe: Deff = D−1
0 Deff (rφ, rh) = 2

3 [Eq. (36b), dot-dashed(blue)], kT = D−1
effDT (Pe) with its asymptotic

limPe→∞ kT = 25
8 [ dotted (black)], and D̄ = D−1

0 D with its asymptotic [solid (red)]. (b) and (c): identical error-estimate
is produced by the d2Q9 [θ = 0] and the d2Q5 [θ = π

4 ] with Eq. (50); (b) |E(D)| versus λ [H = 24, Pe = 100] when

rφ = { 1
4 ,

1
8 ,

1
16 ,

1
32} [solid(red), dot-dashed(blue), dotted (black), dashed (magenta)]. (c) |E(D)| and |E(kT )| versus λ at Pe = 10

[solid(red), dot-dashed(blue)] and Pe = 100 [dotted (black), dashed (magenta)].

Eq. (30b) using Eq. (31) for ∂y′Ck(n), and D(num)
T = k

(num)
T Deff with Eq. (30c); the two relative errors,

E(D) = D(num)/D − 1 and E(kT ) = k
(num)
T /kT − 1, are examined. In the straight system, the kT and

Deff are weight-independent together with the Ck and ∂yCk, respectively; they are weight-dependent in the
diagonal system. The two following dependencies Λ(ce) parametrize any one-dimensional system through a
free-tunable parameter λ, and they produce identical error-estimates in the straight [d2Q9] and the diagonal
[d2Q5] layers:

d2Q9 , θ = 0 : Λk = Λ(0,Q9) =
λ

1− ce
, (50a)

d2Q5 , θ =
π

4
: Λk = Λ(π4 ,Q5) =

λ

1− 2ce
, ce ∈]0,

1

2
] , (50b)

then E(D)|θ=0 = E(D)|θ=π
4
, E(kT )|θ=0 = E(kT )|θ=π

4
, ∀ {rφ , rh , Pe} and ∀λ > 0 . (50c)

Recall, the TRT steady-state bulk solutions are fixed by Pe, the aspect ratios and Λ on the given grid; they
are hence the same for any u⊥ and Λ− = D0/ce when Pe and ce is fixed. Using Eq. (50), the macroscopic
solution C(y′) becomes independent of the diffusion-scale parameter ce, but it depends on λ. Plugging
Eqs. (50a) [θ = 0, c2qy′ = 1] and (50b) [θ = π

4 , c2qy′ = 1
2 ] with λ = 1

4 into Eq. (13), the two first terms are

summed and E(y′) vanishes for any mass term M(y′) when t
(m)
q = t

(M)
q ; otherwise, when M(y′) is piece-wise

linear (constant) [our example alike]. Fig. 9 demonstrates that E(D) and E(kT ) scale linearly with λ; their
amplitudes grow with the porosity contrast and Pe. Fig. 10 [first diagram] shows that when Λ and ce are
fixed to the same values when θ = 0 and θ = π

4 , their solutions are distinct because Eq. (50) is not satisfied;
the straight solution is slightly more accurate within the examined parameter range; the accuracy degrades
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with λ but the error-estimates all converge with second-order rate. Fig. 10 [second diagram] displays the
predicted d2Q9 solutions for E(D) and E(kT ) versus tc ∈]0, 1

2 ] with Λ = 1
4 and Pe = {10, 100}. This

symbolic estimate shows that E(D) and E(kT ) increase with Pe for all weight values; the d2Q5 remains
the most accurate. The two last diagrams in Fig. 10 extend these results to Λ = 1

6 and examine the error
convergence at fixed Pe when tc = { 1

3 ,
1
4}, decreasing u⊥ with H; the second-order d2Q5 error-estimate

is plotted together. The numerical and symbolic results coincide in the coarse resolution; the asymptotic
behaviour is then established with the help of the numerical simulations. The coarse-grid second-order d2Q9
rate is followed by the asymptotic, first-order convergence. Asymptotically, the d2Q5 with Λ = 1

6 is much
more accurate than d2Q9; otherwise, the d2Q9 with tc = 1

3 and Λ = 1
6 is slightly more accurate among the

four examined full-stencil parameter combinations.
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Figure 10: The interface-perpendicular Darcy flow. (a) |E(D)| [solid(red), dotted (black)] and E(kT ) [dot-dashed(blue),dashed
(magenta) ] versus H are displayed together for θ = 0 [d2Q9] and θ = π

4 [d2Q5] at Pe = 102, the three groups apply Λ = { 1
16 ,

1
4 , 1}

from the bottom to the top: the convergence rate is H−2. (b)-(d): the diagonal layers. (b): E(D) and E(kT ) versus tc ∈]0, 1
2 ]

when Λ = 1
4 and H = 24, Pe = 10 (the two bottom lines) and Pe = 102 (the two upper lines); (c) and (d): E(D) and E(kT ) when

tc = { 1
2 ,

1
3 ,

1
4} with Λ = 1

4 [dotted(orange), solid(red), dashed (magenta)] and Λ = 1
6 [dot-dashed (orange), dot-dashed (blue), dotted

(black)]. The H−2 asymptotic rate is only produced by the d2Q5 [tc = 1
2 ]. (a)-(d): rh = 2, rφ = 1

4 , ce = rφ/4, φ2 = 1. (c) and (d):

Pe = 24, |u⊥| = 1
8 × 2−m when H = {6× 2m,m ∈ [0, 7]}, with Hmax = 18× 27, Λ− = 1.

4.2.5. Resume

When the series of the heterogeneous blocks is aligned with the coordinate axis and the weight families

are distinct, t
(m)
q 6= t

(a)
q , the B-layer accommodates the d2Q9 solution in the interface-perpendicular Darcy

flow. However, the B-layer does not impact the scalar field C(n), the effective-diffusivity or the Taylor
dispersion coefficient; they remain weight-independent and the same as with the d2Q5. In the diagonal
channels, the A-layer complements the physical exponential mode; the whole system is built with the five
roots to Eq. (A.13) [when Λ 6= 1

4 ]; otherwise, with the three roots to Eq. (A.14a), assisted by the B-layer.

The base roots {rj} depend upon the advection and diffusion weights {t(m)
q , t

(a)
q }, Λk and the local Péclet

number Pe
(k)
⊥ . Hence, the physical root is also weight- and rotation-dependent, meaning that it is different

with the d2Q5 and d2Q5(r), Eq. (47). In these two models, the remaining [accommodation] roots are the

same as in the pure diffusion, and they are not excited, unless when the mass-source weight t
(M)
q differs from

the two other weights. This methodological configuration is exemplified in Appendix A.2.
The parametrization by the governing numbers, physical Péclet and collision Λ, is more complicated in

the ADE than in flow models [42, 45]; that is because the kinematic viscosity ν = 1
3Λ+ is fixed by Λ+ but

D0 = ceΛ
− depends upon two free-tunable parameters. In any one-dimensional evolution process without

A-layer, the d2Q9 [θ = 0] and d2Q5 [θ = π
4 ] produce ce−independent scalar-field provided that Λ and ce

are inter-related, as Λ = λ/(1 − ce) and Λ = λ/(1 − 2ce), respectively. The relative error-estimates, E(D)
and E(kT ), then converge with second-order rate; they reduce linearly to zero with λ thanks to reduction
of the leading-order corrections in the interface-continuity relations when Λ→ 0. However, the asymptotic
d2Q9 rate reduces to the first-order in the diagonal system thanks to A-layer, even when the three weight
families are all the same. The solution remains parametrized by Pe and Λ, but it depends upon ce at fixed
value of D0. Hence, the A-layer delays the solution convergence and discards its parametrization Λ(ce).
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5. Parallel heterogeneous system

Consider two stratified porous layers φ = {φ1, φ2}, periodic along the x′−axis with ~u = ux′~1x′ given by

ux′(y
′) = u‖ , y

′ ∈ [−h′1, 0] , φ = φ1 ,

ux′(y
′) = u‖ −

1

2
Ψy′(y′ − h′2) , y′ ∈ [0, h′2] , φ = φ2 . (51)

Solution to Eq. (4) is translation-invariant along the velocity direction ~1x′ . Since the flow is complanar

with the interface [~1z′ = ~1x′ ], the advective-diffusive flux is continuous in Eq. (6b) [||~n · ~Jk|| = 0] and the
effective diffusivity in Eq. (30c) should reduce to D0 on the numerical solution. Eq. (51) is applied in three
configurations: (i) the system is periodic along the y′−axis and ux′(y

′) = u‖ (Ψ = 0) presents a constant
Darcy flow; the open/porous system is either (ii) bounded [B-OPL] or (iii) periodic [OPL] along the y′−axis,
where pure-diffusive layer (φ = φ1, u‖ = 0, Ψ = 0) is adjacent with the Poiseuille flow (φ2 = 1, u‖ = 0).
The B-OPL reduces to the Poiseuille channel when the porous layer vanishes (h′1 = 0). The coefficients
of the Taylor dispersion, skewness and kurtosis are predicted for (i) OPL [68], (ii) stratified Darcy flow,
(iii) Poiseuille channel and (iv) B-OPL (Secs. 5.2, 5.3 and C.4 [33], respectively). These exact solutions
are employed [34] to examine the d2Q5 symbolic solutions. We extend them to d2Q9 in the straight and
diagonal channels, and evaluate the transport coefficients Deff and DT in Eq. (30).

5.1. The truncation effect in polynomial solution component

The mass-source Mk(y′) = Ux′φk − ux′(y′) in Eq. (4) is piece-wise constant with constant Darcy ve-
locity and parabolic in the Poiseuille flow. Accordingly, Pk(n) is either quadratic or quartic [Eq. (25a)],

and e
−(p)
q (y′) = t

(a)
q Pk(y′)ux′(y

′)cqx′ is either quadratic or sextic [Eq. (2)]. Hence, according to Eq. (26),

P̂
+(k)
q (y′) is looked for as the first- and fifth-order polynomial, respectively:

{P1, P2} = {
2∑

m=0

p(1)
m y′

m
,

4∑
m=0

p(2)
m y′

m} , (52a)

{P̂+(1)
q , P̂+(2)

q } = {
1∑

m=0

p̂(1)
q,my

′m,

5∑
m=0

p̂(2)
q,my

′m} . (52b)

The coefficients p̂q,m(y′) are expressed for four links ~cq = {~cx,~cy,~c‖,~c⊥} from Eq. (26). Eq. (52b) is then

substituted into Eq. (28) to derive {p(k)
m } for m ≥ 2 (phase-index k is dropped):

p2 =
1

12
(−6ψ′ + Ψ′(−1− 6Λ(−1 + ce))) , ψ

′ =
M

ceΛ−
, θ =

πm

2
, m = 0, 1, . . . (53a)

p2 =
1

12
(−6ψ′ + Ψ′(−2 + 3t(m)

c + 6Λ(2− 3t(m)
c − ce))) , θ =

πm

4
, m = 1, 3, · · · (53b)

p3 =
Ψ′h′

12
, θ =

πm

4
, m = 0, 1, . . . , p4 = −Ψ′

24
, ∀ θ ,Ψ′ =

Ψ

ceΛ−
. (53c)

Eq. (53) reduces to the parabolic profile P (y′) with p2 = −M
2ceΛ−

in constant Darcy flow. Otherwise, when the

mass-source is parabolic, p2 depends upon the inclination, the diffusion-weight {t(m)
c , t

(m)
d } and Λ, thanks

to the fourth-order truncation; p2 is the same with θ = 0 and θ = π
4 only when the hydrodynamic weight

{t(m)
c , t

(m)
d } = { 1

3 ,
1
12} is applied in the diagonal system. Additionally, p2 depends on ce because the mass-

source is parabolic, unless when Λ and ce are inter-related via Eq. (50a) [θ = 0] or by Eq. (54) [θ = π
4 ]:

d2Q9 , θ =
π

4
: Λk = Λ(π4 ,Q9) = λ

2−3t
(m)
c −ce

, t
(m)
c ∈ [0, 1

2 ] , ce ∈]0, cmaxe (t
(m)
c )] . (54)
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Eqs. (52b)-(53) determine E in Eq. (13), with E(p) due to the polynomial component alone when θ = π
4 :

d2Q9 , θ = 0 : E = α(0,Q9)∆̄2
yM(y) , α(0,Q9) =

1

4
− (1− ce)Λ ,

E = 0 with Λ = Λ(0,Q9) if λ =
1

4
, (55a)

d2Q9 , θ =
π

4
: E(p) = α(π4 ,Q9)∆̄2

y′M(y′) , α(π4 ,Q9) =
1

4
(2− 3t(m)

c )− Λ(2− 3t(m)
c − ce) ,

E(p) = 0 with Λ = Λ(π4 ,Q9) if λ =
2− 3t

(m)
c

4
. (55b)

The “optimal” Λ(λ) values differ between the continuous case −M(y′) = ceΛ
−∂2

y′B(y′) and the discrete

case −M(y′) = ceΛ
−∆̄2

yM(y′), both in the straight [cf. Eqs. (53a) and (55a)] and the diagonal cases [cf.

Eqs. (53b) and (55b)], where λ(t
(m)
c = 1

3 ) = 1
6 and λ(t

(m)
c = 1

3 ) = 1
4 , respectively, with Eq. (54).

5.2. The truncation effect in local gradient

We examine now how the parallel velocity ux′(y
′) affects the local gradient in the translation-invariant

direction ~1x′ , where one expects to get ∂x′P = 0. Let us put aside the truncation term (Λ − 1
4 )∆̄2

qn̂
−
q in

Eq. (10) and substitute into Eq. (31): P̂−q (y′) = ∇qe+(p)
q (y′)−Λ+∆̄2

qe
−(p)
q (y′) with t

(m)
q = t

(M)
q , e

−(p)
q (y′) =

t
(a)
q ux′(y

′)P (y′)cqx′ , ∆̄2
q ≈ ∂2

y′c
2
q,y′ . Eq. (31) then gives:

∂x′P (y′) := 2c−1
e

Qm/2∑
q=1

P̂−q (y′)cqx′ ≈ ∂x′P (y′) + Λ+∂x′M
(p)(y′) + E(p,∇)(y′) , (56a)

E(p,∇)(y′) = −2c−1
e Λ+ ∂2

y′(ux′P (y′))

Qm/2∑
q=1

t(a)
q c2q,x′c

2
q,y′ . (56b)

Eq. (56a) reads with ∂x′P (y′) = 0 and ∂x′M
(p)(y′) = 0 thanks to translation invariance. However, E(p,∇)

gives non-zero truncation correction; it is isotropic only with the hydrodynamic advection-weight, and it
vanishes only in d2Q5 [θ = 0] and d2Q5(r) [θ = π

4 ]. Hence, when ux′(y
′)P (y′) is the parabolic- or the higher-

order polynomial, the local gradient-estimate ∂x′C(y′) is not equal to zero for solution-invariant direction.
Moreover, when ∂2

y′ux′(y
′) 6= 0, e.g. in the parabolic profile (51), ∂x′P (y′) depends on an additive constant

[p
(k)
0 in Eq. (25a)]. These two artefacts modify the Deff , which is expected to be equal to zero according to

Eq. (30b).

5.3. The straight system with the d2Q9

Recall that there is no A-layer in the straight layers, either in the pure diffusion or the interface-
perpendicular flow [ in this last case, the B-layer accommodates the solution when the weight families are
distinct, Sec. 4.2.1]. There is no A-layer also in the interface-parallel flow, but the B-layer from Eq. (B.2) is

exhibited with any weights except the d2Q5. Substituting B̂
+(k)
y = −(B̂

+(k)
‖ +B̂

+(k)
⊥ ), the B-layer coefficients

{b(+,k)
‖ , b

+(k)
⊥ , d

(+,k)
‖ , d

+(k)
⊥ } are derived together with the {p(k)

0 , p
(k)
1 } from the whole closure system (21)- (22).

When the three weight families are the same, the B-layer vanishes on the vertical link and C(y′) becomes

weight-independent. It follows that D(num)
T from Eq. (30c) is weight-independent, and hence the same as in

d2Q5. This explains the numerical observation [34].

5.4. The diagonal system with the d2Q5

To be contrasted with the pure diffusion and the interface-perpendicular flow, the d2Q5 requires the
B-layer in the parallel flow. To explain this point, consider the constant Darcy flow ~u = u‖~1x′ where
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Mk(y′) is piece-wise constant; Pk(y′) is parabolic and the polynomial solution to Eq. (10) coincides with the

Chapman-Enskog expansion expressed through cqx′ =
√

2
2 (cq,x + cq,y) and cq,y′ =

√
2

2 (cq,y − cq,x):

P̂−(k)
q = t(m)

q ce∂y′Pk −t(a)
q Λ+

k u‖∂
2
y′Pkcqx′c

2
q,y′ , (57a)

P̂+(k)
q = t(a)

q u‖∂y′Pkcqx′cq,y′ − t(m)
q Λ−k ce∂

2
y′Pkc

2
q,y′ . (57b)

The set {Pk, P̂+(k)
q } satisfies Eq. (12) with E = 0, then −Mk = ceΛ

−
k ∂

2
y′Pk. Making use of this equation in

e
+(p,k)
q , the interface-continuity condition (8a) reads [with the weights {tc, td}]:

||[tcce(Pk+ 1
2∂y′Pkcq,y′ + Λk(1− 2ce)∂

2
y′Pkc

2
q,y′) −

1

2
tcΛ

+
k u‖∂y′Pkcqx′c

2
q,y′) ||r(k)0

= 0 . (58)

The last term in Eq. (58) has different signs for interface-cut coordinate links cqx′ = cx̄ = −1 and cq,y′ = cy =

1 [ c2q,y′ = 1
2 in d2Q5]. The B-layer with B̂

±(k)
x (n) = ∓B̂±(k)

y (n) is called to compensate for this mismath: its

coefficients {b+(k)
y , d

+(k)
y } are determined together with {p(k)

0 , p
(k)
1 } from the 4×2 coordinate closure relations.

It is to note that Eq. (58) then becomes exact on the parabolic profile thanks to Λ(π4 ,Q5)(λ = 1
8 ) = 1

8(1−2ce)
[

cf. Eq. (50b)]. Recall, Λ = { 1
8(1−ce) ,

1
8(1−2ce)

} correspond to Λ = { 3
16 ,

3
8} in the hydrodynamic solutions [26],

where the kinematic viscosity ν = 1
3Λ+ formally replaces D0 = ceΛ

− with ce = 1
3 . Finally, if t

(m)
c = t

(a)
c = 1

2

but t
(M)
c 6= 1

2 , the A-layer is additionally built on the four roots (A.8b): it modifies C(y′), and hence DT in
Eq. (30c). A similar situation has been encountered in the interface-perpendicular flow in Appendix A.2.

5.5. The diagonal system with the d2Q9

The A-layer solves Eq. (42) derived in the pure diffusion problem (see Appendix A.3). However, unlike

in the pure diffusion, the −x and y axes are not interchangeable [then n̂
(+,k)
x 6= n̂

(+,k)
y ], and the interface

system is closed with the help of the B-layer coefficients {b+(k)
y , d

+(k)
y } [Eq. (B.4) with B̂

+(k)
x = −B̂+(k)

y ,

B̂
+(k)
⊥ = 0]. The 8 × 2 coefficients, {p(k)

0 , p
(k)
1 }, {a

(k)
j , j = 1, . . . , 4} and {b+(k)

y , d
+(k)
y }, are to be derived

from the whole system of the 8 × 2 Eqs. (23)-(24); Eq. (24) becomes replaced by a couple of the 4 × 2
bounce-back closure relations (9b) in the bounded system. When Λ = 1

4 , the A-layer is built with the two
roots (43) and the B-layer is fixed with the 4× 2 interface-node corrections. Hence, the A-layer and B-layer
coexist ∀Λ thanks to parallel flow.
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Figure 11: (a) The normalized solution in the diagonal periodic parallel system OPL from Eq. (53): theory (solid) and numerical
results (symbols). (b) the polynomial component Pk(n). (c) the A-layer Ak(n). (d) Ck(n) = Pk(n) + Ak(n), k = {1, 2}. Data:

H = 19, rh = 8/11, rφ = 1
4 , Ψ = 1.67706× 10−2, Λ− = 1, ce = 10−1, t(a)c = 1

4 , t(m)
c = 1

8 , t(M)
c = 3

16 , Λ = 1
8 .

Solution components are illustrated in Figs. 11-13 in OPL system when t
(m)
c = 1

8 and Λ = 1
8 . Fig. 11

displays (i) Pk [it is parabolic in the diffusive layer and quartic in the parabolic flow]; (ii) the A-layer Ak(n)
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(solid) and numerical results (symbols); an additive constant fits the numerical data. Top row: the anti-symmetric component (“-”).

Bottom row: the symmetric component (“+”). (a),(e): the polynomials, P̂±(k)
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[r solves Eq. (42): 7+24r+66r2 +24r3 +7r4 = 0]; and (iii), their normalized sum Ck(n) which coincides with
the numerical solution in all grid points. Figs. 12 and 13 display the three post-collision solutions for {~cx,~cy}
and for ~c⊥, respectively. In two layers, the piece-wise polynomial {P̂−(k)

q } is linear and cubic, {P̂+(k)
q } is

constant and parabolic. It is noted that the polynomial (physical) and the A-layer post-collision have quite

comparable magnitude. The B-layer B̂
±(k)
y = ∓B̂±(k)

x is built with K(k)|Λ= 1
8

= −3 + 2
√

2 [Eq. (18b)]: it
has much smaller amplitude. The sum of these three components coincides with the steady-state output
n̂±q (n) in all grid points provided that solution is fixed to its numerical value in one point, because of the
post-collision dependency upon an additive constant, Eq. (56b).

5.6. The dispersion coefficients in parallel flow

The truncation and accommodation contributions to dispersion values are examined in Poiseuille flow,
stratified constant Darcy flow and the bounded B-OPL system. In theory, Deff = D0, however, we quantify

the truncation effect in the local gradient, and then Deff . It is confirmed that all k
(num)
T contributions scale

as Pe2; the relative error estimates in Eq. (33) are then Pe−independent.

5.6.1. The Poiseuille channel

Consider an open profile φ ≡ 1, ux′(y
′) = − 1

2Ψy′(y′ − h′), y′ ∈ [0, h′], h′ = H cos[θ], kT = Pe2

210 , where

Pe = Ux′h
′

D0
is defined with Ux′ = h′−1

∫ h′
0
ux′(y

′)dy′ = Ψh′2

12 ; Ux′ becomes replaced by Ux′(1 + 1
2H
−2) in

Eq. (4) because of the summation. Plugging then Eqs. (52a)- (53) into Eq. (30c), k
(p)
T reads:

k
(p)
T = k

(0)
T − α

′ (H
2 − 1)(H2 − 4)Pe2

5H6
, k

(0)
T =

Pe2

210
+

(20− 21H2)Pe2

210H6
, (59a)

d2Q9 , θ = 0 : α′ =
1

4
− (1− ce)Λ , k

(p)
T |Λ(0,Q9)= 1

4(1−ce)
= k

(0)
T ; (59b)

d2Q9 , θ =
π

4
: α′ =

3− 4t
(m)
c

4
− 2Λ(2− 3t(m)

c − ce) , t(m)
c 6= 0 ; (59c)

d2Q5 , θ =
π

4
: k

(p)
T |Λ(π

4
,Q5)= 1

4(1−2ce)

= k
(0)
T . (59d)

Thanks to symmetry, k
(p)
T is independent of the gradient value p1 [Eq. (52a)] ; hence, Eq. (59) is not sensitive

to the effective bounce-back closure [Eq. (9b)]. The k
(0)
T replaces kT when the Taylor Ansatz [65], expressed

here by Eqs. (4)-(5), is solved with the discrete Laplacian and integration in Eq. (30c) is performed via

summation; k
(0)
T converges to kT as H−4 (see [30, 34]). Since there is no A-layer in the straight [d2Q9] and

the diagonal [d2Q5] channels, k
(num)
T = k

(p)
T and it is parametrized by λ with Eq. (50); further, k

(num)
T = k

(0)
T

with Eqs. (55a) and (55b), respectively. Otherwise, the A-layer and B-layer adjust together the bounce-back
diagonal closure relation with the polynomial (quartic) solution C(y′). The unknowns, {p0, p1} and the six
accommodation coefficients, are defined by the 4× 2 bounce-back closure relations to an additive constant

p0. Fig. 14 [second diagram] displays E(k
(p)
T ) = k

(p)
T /kT − 1 from Eq. (59c); this result is exact only for

d2Q5. The numerical result E(kT ) is matched exactly when E(k
(a)
T ) is added in Eq. (33). The last diagram

then displays the numerical convergence study of E(kT ) with the three weight families, tc = { 1
2 ,

1
3 ,

1
4}. It is

observed that the A-layer produces the most disparate and weight-dependent behaviour on the coarse grid
[the sign change explains the non-monotonicity of |E(kT )|]. However, despite the A-layer, E(kT ) converges
with second-order rate in the diagonal Poiseuille flow due to homogeneity (symmetry). The d2Q5 with
Λ = 1

4 is the most accurate as might be expected from Eq. (59d), because Λ(π4 ,Q5) ≈ 1
4 when ce is small.

In resume, the d2Q9 [θ = 0] and d2Q5 [θ = π
4 ] produce the expected Taylor result with a fourth-

order accuracy employing Λ(0,Q9) and Λ(π4 ,Q5), respectively. The d2Q9 is impacted by the accommodation
corrections in the diagonal channel but E(kT ) preserves the second-order rate in a homogeneous flow.
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Figure 14: The Taylor dispersion in the diagonal Poiseuille flow is modeled in the single column versus H = 6×2m, m ∈ [0, 7]. (b) the

predicted polynomial error component E(k
(p)
T ), Eq. (59c). (c) the total error E(kT ) = E(k

(p)
T ) + E(k

(a)
T ) (the predicted and numerical

results coincide). (b) and (c): tc = { 1
2 ,

1
3 ,

1
4} with Λ = 1

4 (dotted(orange), solid(red), dashed(black)) and Λ = 1
6 (dot-dashed (orange),

dot-dashed (blue), dashed (magenta)). The error-estimate is Pe−independent; ce = 3
16 , Ψ|H=6 = 2.37161 × 10−3Eq. (51), Ψ linearly

reduces with H. To be compared with Figs. 16 and 17 in heterogeneous channels.

5.6.2. The straight Darcy flow: truncation and B-layer effects in solution gradient

Consider now the Darcy flow ~u = u‖~1x′ in Eq. (51) where P (y′) is parabolic and given by Eq. (53a) with
Ψ′ = 0; this solution is invariant by rotation and E = 0 in Eq. (13). The Deff reduces to D0 in parallel
system; the kT has exact solution [68, 33]:

Ψ = 0 : kT =
Pe2r2h(−1+rφ)2(rh+rφ)
12(1+rh)4rφ(1+rhrφ) , rh =

h′1
h′2
, rφ = φ1

φ2
. (60)

In the straight parabolic profile, the relative discrepancy E(k
(p)
T ) in Eq. (33) is only expected from the

interface continuity condition and the summation effect, [34]. However, when Deff is computed with Eq. (31)

at non-zero velocity, the measured dispersion value D(num) sums E(k
(p)
T ) with tdE

(p,∇) [thanks to truncation

in Eq. (56)] and with tdE
(b) [thanks to B-layer] [we factorize here tdkT in the two last estimates], cf. Eq. (32)]:

d2Q9 , θ = 0 : k
(num)
T =

D(num)

D0
− 1 = kT (1 + E(k

(p)
T )) + tdkT (E(p,∇) + E(b)) , (61a)

E(k
(p)
T ) = −1− 12(1− ce)Λ

H2
f(rh, rφ) , f(rh, rφ) =

(1 + rh)2(1 + rhrφ)

rh(rh + rφ)
, (61b)

tdE
(p,∇)

E(k
(p)
T )

=
−8tdu⊥

∑
k φkHkΛ+

k p
(k)
2

kTE(k
(p)
T )ce < φ >

=
48Λtd

1− 12(1− ce)Λ
. (61c)

Since P̂−q is piece-wise linear, tdE
(p,∇) is quantified exactly, it converges with second-order rate and linearly

grows with Λ; tdE(p,∇)

E(k
(p)
T )

is then H−independent and it grows linearly with td; the two corrections vanish with

d2Q5 [td = 0]. The B-layer correction tdE
(b) also scales linearly with td and vanishes when Λ = 0. The

two relative contributions, E(k
(p)
T ) and td(E

(p,∇) + E(b)) are found exact with the numerical measurements

of k
(num)
T and D(num)

eff , respectively. Fig. 15 illustrates E(k
(p)
T ), E(p,∇) and E(b) versus λ when Λ = Λ(0,Q9)

[Eq. (50a)]: E(k
(p)
T ) and E(p,∇) are linear with λ [or Λ], E(b) is almost linear with it; the three components

have the same order of magnitude. Fig. 15 shows that E(b)/E(p,∇) is almost H−independent, and hence,

E(b) converges with second-order rate. In resume, the truncation and B-layer effects may produce quite
comparable, non-zero local gradient values along the translation-invariant direction in the parabolic profile
C(y). These two deficiencies of the local gradient converge with second-order rate and they may concern
any LBM problem.
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Figure 15: (a) The straight stratified Darcy flow [ce = rφ/4, rφ = 1
4 , rh = 2, Λ = λ/(1 − ce)]. The three contribution to E(kT ),

Eq. (61): (b) (polynomial) E(p), (truncation) E(p,∇) and (the B-layer) E(b) versus λ when H = 24; (c) E(b)(rh, rφ, ce, λ,H); and (d);

E(b)/E(k
(p)
T ) versus H when λ = { 1

8 ,
1
4 ,

1
2 , 1} [solid(red), dot-dashed(blue), dotted (black), dashed (magenta)].

5.6.3. The diagonal Darcy flow: the A-layer solution effect

The d2Q5 is A-layer−free in the diagonal system, the E(kT ) is then only due to the polynomial component
[f(rh, rφ) is defined in Eq. (61b)]:

d2Q5 , θ =
π

4
: E(kT ) = E(p) = − 1−12(1−2ce)Λ

H2 f(rh, rφ) , E(kT ) = 0 if Λk = Λ(π4 ,Q5) , λ = 1
12 . (62)

The E(kT ) converges with second-order rate and produces the same accuracy as the d2Q9 in the straight

system with Eq. (50a) and λ = 1
12 [when E(k

(p)
T ) = 0 in Eq. (61b)]. It is to note that although the mid-grid

interface is located exactly with λ = 1
8 in Eq. (58), the summation effect shifts this exact result to λ = 1

12 .
We examine now the A-layer contribution when tc ∈]0, 1

2 [ and Λ = 1
4 .
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Figure 16: The diagonal stratified Darcy flow. (a) the polynomial [E(k
(p)
T ) =

k
(p)
T
kT
− 1] and (b) the A-layer [E(k

(a)
T ) =

k
(a)
T
kT

]

contributions versus tc; (c): E(k
(a)
T ) versus H, Λ = 1

4 , tc = { 1
3 ,

1
4}; (d): the total error-estimate |E(kT )| = |E(k

(p)
T ) + E(k

(a)
T )| when

tc = { 1
2 ,

1
3 ,

1
4} with Λ = 1

4 [dotted(orange), solid(red), dashed(magenta)] and Λ = 1
6 [dot-dashed (orange), dot-dashed(blue), dotted

(black)]. The E(kT ) converges with H−2 rate only with d2Q5 [tc = 1
2 ] where the A-layer vanishes and E(kT ) = E(k

(p)
T ). Data (a)-(b):

Λ = 1
4 , ce = rφ/4, rh = 8

11 , H = 19. Data (c)-(d): rh = 2, ce = 1
16 , H = 6× 2n, n ∈ [0, 7].

Fig. 16 displays E(k
(p)
T ) and E(k

(a)
T ) in Eq. (33). It is observed that E(k

(p)
T ) is not monotonous with

tc, but E(k
(a)
T ) increases monotonously when tc → 0 from E(k

(a)
T )|tc= 1

2
= 0; E(k

(p)
T ) and E(k

(a)
T ) have the

same sign and order of magnitude. Fig. 16 [third diagram] indicates that E(k
(a)
T ) reduces with second-order

rate, on the coarse grid at least. However, the last diagram in Fig. 16 shows that the total deviation

E(kT ) = E(k
(p)
T )+E(k

(a)
T ) asymptotically converges only with first-order rate, as H−1. It is highlighted that

this first-order effect is due to E(k
(p)
T ), because the A-layer modifies the parabolic profile. Asymptotically,

the d2Q5 is then much more accurate than the d2Q9. As might be expected, and similar to the interface-
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perpendicular Darcy flow, the d2Q9 with the larger weight tc = 1
3 and the smaller value Λ = 1

6 is most
accurate among the four examined configurations.

5.6.4. The bounded stratified parabolic flow: the A-layer solution effect

The B-OPL system is described by Eq. (51) and it is closed by the solid walls. The transport coefficients
are weight-independent in the straight layers, their TRT solution for kT , Sk and Ku is displayed in Sec.6.2 [34]

using Λ(0,Q9) = 1
4(1−ce) . We provide the exact solution kT (rφ, rh) and the second-order error-estimate E(k

(p)
T )

using parametrization dependency Λ(0,Q9) from Eq. (50a):

kT (rφ, rh) =
Pe2(1 + cX)

210a(1 + cRφ)
, X = 9 + 78c+ r2

h , a = 1 + c , c = rhrφ , Rφ = r−1
φ ; (63a)

θ = 0 , d2Q9 : E(k
(p)
T ) = H−2E(p,2) +O(H−4) +O(H−6) ,

E(p,2)(rφ, rh, λ) =
7(1 + rh)2(−3 + 12aλ(1 + 6c) + c(−20 + c(3 + 20cR2

φ)))

2(1 + cX)
, (63b)

E(k
(p)
T )|θ=0 = E(k

(p)
T )|θ=π

4
if Λ|θ=0 = Λ(0,Q9) and Λ|θ=π

4
= Λ(π4 ,Q5) , with λ =

1

6
. (63c)

When rh → 0, the B-OPL reduces to the Poiseuille channel, then E(p,2)(λ) = 21(−1+4λ)
2 corresponds to the

second-order term in Eq. (59a) with Eq. (59b). The two systems, d2Q9 [θ = 0] and d2Q5 [θ = π
4 ], converge

with second-order rate; they have the same accuracy only when λ = 1
6 [Eq. (63c)]. Otherwise, the A-layer

impacts solution in the diagonal system. Fig. 17 displays the relative polynomial [E(k
(p)
T )] and the A-layer
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Figure 17: The diagonal bounded open-porous system B-OPL, following Fig. 16.

[E(k
(a)
T )] contributions to Eq. (33) in the diagonal system when Λ = 1

4 ; both of them grow monotonously

when tc → 0; E(k
(a)
T ) behaves very similar to the Darcy flow in Fig 16, and |E(k

(a)
T )| even exceeds |E(k

(p)
T )|.

It is then shown that |E(k
(a)
T )| monotonously reduces with second-order rate when tc = { 1

3 ,
1
4}. Nevertheless,

the last diagram confirms that the total result E(kT ) asymptotically converges only with first-order rate due

to the the polynomial component E(k
(p)
T ), as with the Darcy flow in Fig. 16. In summary, the interface

accommodation modifies the polynomial solution and slows the kT convergence to first order on a diagonal
mid-grid interface, with the d2Q5 exception.

5.7. Resume

When the stratified layers and interface-parallel flow are aligned with the coordinate axis, the B-layer
accommodates the d2Q9 solution on the interface (boundary), and it vanishes in d2Q5. The B-layer does
not impact the modeled Taylor dispersion coefficient kT in Eq. (30c) and kT remains weight-independent.
The scalar field and the kT are properly controlled by Pe when Λ = λ

1−ce . However, when one computes
Deff in Eq. (30b) from the local gradient in interface-parallel velocity field, then the truncation and the
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B-layer affect Deff in proportion to the diagonal weight value, Eq. (61). Moreover, although the scalar
solution of the given boundary-value problem is determined to an additive constant, the locally derived
gradient becomes constant-dependent in the parabolic velocity profile. Finally, Deff then depends on ce at

fixed D0. In the diagonal channels, the d2Q5(r) remains unsuitable because of the “checkerboard” effect.
Otherwise, the polynomial solution becomes assisted by the B-layer even in d2Q5, because the interface-

parallel flow breaks the symmetry between the two coordinate axes. The d2Q9 with any weights, except for
d2Q5 and d2Q5(r), needs both the A-layer and the B-layer; the A-layer is built on the four diffusion roots to
Eq. (40b); the accommodation coefficients solve the whole system of the interface and boundary conditions,
Eqs. (23)-(24). The accommodation maintains the kT scaling with Pe2 and the relative error-estimate is then
Pe−independent [at fixed ce]; however, the gradient of the polynomial solution component gets modified.
In the homogeneous (open) diagonal channel, the parabolic mass-source and velocity field activate the two
accommodations but, thanks to symmetry, kT converges with second-order rate to its famous Taylor value.
The d2Q9 [θ = 0] and d2Q5 [θ = π

4 ] converge kT with the fourth-order rate using, respectively, Λ = 1
4(1−ce)

and Λ = 1
4(1−2ce)

, Eq. (59). In the heterogeneous channels, only d2Q5 maintains the second-order rate

relatively the mid-grid interface. The d2Q9 converges kT with first-order asymptotic rate, either on the
parabolic or quartic solutions.

6. Concluding remarks

This work presents a novel piece of the linear algebra behind the exact construction of the steady-
state scalar-field and non-equilibrium solutions of Lattice Boltzmann schemes. The advection-diffusion
d2Q9 TRT model is operated on its full parameter space; it is composed of the two relaxation parameters
Λ± per phase, the diffusion-coefficient scale ce and the three equilibrium weight-families for (i) diffusion,
(ii) advection and (iii) mass-source. All solution components are decomposed into their polynomial and
discrete-exponential counterparts; the equilibrium and non-equilibrium are exactly inter-related with the
TRT recurrence equations, subject to local mass-conservation solvability constraint. The whole solution is
fixed with the exact intrinsic closure relations of the implicit-interface and bounce-back boundary, assumed
to be located mid-grid in the straight and diagonal two-layered configurations. When the advection-diffusion
process is perpendicular to the interface, the constant flux jump produces a non-zero solution in the fully
periodic heterogeneous system.

Straight Diagonal

~u = 0 ~u = u⊥~1y′ ~u = u‖~1x′ ~u = 0 ~u = u⊥~1y′ ~u = u‖~1x′

Q5 Q9 Q5 Q9 Q5 Q9 Q5 Q9 Q5 Q9 Q5 Q9
A-layer − − − − − − − + − + − +

B-layer − − − t
(a)
q 6= t

(m)
q − + − Λ = 1

4 − + + +

Table 1: This table summarises the presence (+) or absence (-) of the A-layer in equilibrium [A(y′) from Eq. (15) ], and the

B-layer in post-collision [B̂±q (n) from Eq. (18b)], with the d2Q5 [“Q5”] and an arbitrary advection-diffusion d2Q9 stencil [“Q9”,

∀ {t(m)
q , t

(a)
q }, t

(M)
q = t

(m)
q ]. The three corresponding piece-wise scalar-field solutions C(y′) are (a) linear [~u = 0, M = 0];

(b) discrete-exponential [~u = u⊥~1y′ , M(y′) is piece-wise constant]; and (c), polynomial [~u = u‖(y
′)~1x′ , M(y′) is piece-wise

polynomial]. The d2Q5(r) does not need either A-layer or B-layer in the diagonal orientation; however, its scalar field solution
is unsuitably shifted on the two sub-diagonals.

Is is demonstrated that these simplest mass-conserving closure conditions may excite an exponential
accommodation of the scalar field, referred to as the A-layer. The A-layer covers for the weight-depending
mismatch between the bulk solution across the interface; its base depends upon the weights, free-tunable
collision parameter Λ = Λ−Λ+, and the physical governing numbers. The complementary, additive, B-layer
directional post-collision correction solves the recurrence equations for zero equilibrium, and its base is fixed
by Λ alone. The B-layer is singular when Λ = 1

4 , and it is then constrained to the interface and boundary
nodes. The considered physical problems constitute three groups of increasing complexity, ranging from the
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one dimensional pure diffusion and interface-perpendicular flow to the two-dimensional, constant and piece-
wise parabolic, interface-parallel flow problems. Table 1 summarizes their accommodation counterparts. In
resume, the B-layer does not modify the scalar field and its scalar solution is weight-independent for a straight
d2Q9 system; however, the B-layer may bring the linear weight-dependency into the locally derived solution
gradient. The A-layer renders the macroscopic scalar field depending on the weights and the diffusion-scale
ce in the diagonal d2Q9 system. Furthermore, the A-layer degrades the local gradient of the piece-wise
linear profile, which is the most classical first-order Chapman-Enskog prediction [20, 11].

On top of the accommodation effects, the local gradient-estimate may become inconsistent in the

translation-invariant direction due to the truncation of the type ∂xC(y) ≈ c−1
e ∂2

y [u‖(y)C(y)]
∑Qm
q=1 t

(a)
q c2qxc

2
qy

when ~u = u‖(y)~1x: ∂xC(y) differs from zero even on the parabolic C(y) profile in constant flow, and it
depends on an additive constant in the parabolic profile ∂2

yu‖(y) 6= 0. The truncation and accommodation
contributions may reach quite comparable amplitudes. In contrast with the truncation, the accommodation
is beyond the reach of the perturbative analysis, but it explains the first-order solution and its gradient con-
vergence delay in the grid-rotated geometry. In this regard, we note that the A-layer and B-layer are not the
Knudsen layers in the kinetic sense [64], where they should appear only in extension of the hydromechanical
models to account for the “higher-order effects in the Knudsen number”.

The explicit interface (boundary) treatment, accurate with respect to the physical continuity relations,
is expected to damp the spurious accommodations in any grid-rotated geometry [23]. The d2Q4 interface-
conjugate, decomposition-flux scheme [48, 49] is found accurate [15] on the diagonal interface. However, the
local gradient rate degrades on the circular (spherical) surface with the full-weight interface-conjugate, from
−1.5 [d2Q5] towards −0.5 [d2Q9], [51]. It might be suggested that the full-weight scheme does not attenuate
sufficiently the accommodation layers due to the nonphysical tangential diffusive-flux constraint. A poor
accuracy because of an implicit, straight interface tangential-coupling has been also encountered with the
discontinuous anisotropic weights, and improved for their leading-order mismatch [25]. Our recent work [35]
confirms that the second-order interface-conjugate extension of this last approach vanishes the exponential
accommodations of the arbitrary-placed rotated interface in the parabolic profiles. It would be interesting to
examine and extend from this perspective the known interface, boundary and grid-refining approaches. All
in all, we hope our approach to become helpful for the understanding of the LBM steady-state and transient
accommodations, and for their distinction from the LBM kinetic behaviour.

Appendix A. The A-layer accommodation

The solution procedure from Sec. 3.2 is applied in the pure diffusion, interface-perpendicular and interface-
parallel flow. We make use the solution invariance along ~cx [θ = 0] and ~c‖ [θ = π

4 ]; Eqs. (26) and (27) are
then expressed with the exact central-differences:

∆̄qψ(n) =
1

2
(ψ(n+ δq)− ψ(n− δq)) , (A.1a)

∆̄2
qψ(n) = ψ(n+ δq)− 2ψ(n) + ψ(n− δq) , ∀ ψ = {ψk} , (A.1b)

∆̄qr
n =

1

2
r(n−δq)(−1 + r2δq ) , ∆̄2

qr
n = r(n−δq)(−1 + rδq )2 , (A.1c)

with

θ = 0 : δq = {1, 1, 1} for ~cq = {~cy,~c‖,~c⊥} , (A.2a)

θ =
π

4
: δq = {−1, 1, 2} for ~cq = {~cx,~cy,~c⊥} . (A.2b)

Appendix A.1. Pure diffusion through the diagonal layers

Solution is looked for in the form of Eqs. (40)-(41). The A-layer solves Eq. (26) with ~u = 0 and hence,

e
−(a)
q ≡ 0 [phase-index k is dropped]:

âq,jr
n
j = −Λ−cet

(m)
q aj∆̄

2
qr
n
j + (Λ− 1

4
)âq,j∆̄

2
qr
n
j , q = 1, . . . ,

Qm
2

, j = 1, 2, . . . . (A.3)
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When t
(m)
c 6= 0, Eq. (A.3) is expressed with Eq. (A.1) and solved for âx,j(aj) [~cq = ~cx, δq = −1] and ây,j(aj)

[~cq = ~cy, δq = 1]; the diagonal component â⊥,j is expressed from Eq. (28a):

t(m)
c 6= 0 : âx,j = ây,j = â

(u=0)
j (aj , t

(m)
c ) , with â

(u=0)
j (aj , tq) = − ajΛ

−cetq(−1 + rj)
2

rj − (Λ− 1
4 )(−1 + rj)2

, (A.4a)

â⊥,j = −(âx,j + ây,j) for ~cq = ~c⊥ . (A.4b)

When t
(m)
d 6= 0, solution of Eq. (A.3) for ~cq = ~c⊥ reads:

t
(m)
d 6= 0 : â⊥,j = â

(u=0)
⊥,j (aj , t

(m)
d ) with â

(u=0)
⊥,j (aj , tq) =

4ajtqceΛ
−(−1 + r2

j )
2

4Λ(−1 + r2
j )

2 − (1 + r2
j )

2
, (A.5a)

âx,j = ây,j = −1

2
â

(u=0)
⊥,j . (A.5b)

Equating Eqs. (A.4a) and (A.5b), or Eqs. (A.5a) and (A.4b), one gets the solvability condition in the form

of the quartic equation given by Eq. (42) with the roots r = ∪4
j=1{r

(k)
j (t

(m)
q ,Λ)}. These roots are illustrated

in Fig. 3. The auxiliary functions to Eq. (42) are:

∆0 = c2 − 3bd+ 12ae , ∆1 = 2c3 − 9bcd+ 27b2e+ 27ad2 − 72ace , (A.6a)

∆ = − 1

27
(∆2

1 − 4∆3
0) = 8388608t(m)

c (t(m)
c − 2(Λ− t(m)

c + 6Λt(m)
c )2)2 , (A.6b)

P = 8ac− 3b2 = 128(4t(m)
c − Λ(1 + 6t(m)

c )(1− 2t(m)
c + 2Λ(1 + 6t(m)

c ))) , (A.6c)

D = 64a3e− 16a2c2 + 16ab2c− 16a2bd− 3b4

= −2048(1− 4t(m)
c (7 + 3t(m)

c ) + 8Λ(1 + 2t(m)
c )(1 + 6t(m)

c ))× (−t(m)
c + 2(Λ− t(m)

c + 6Λt(m)
c )2) . (A.6d)

One interesting case is Λ = 1
6 , t

(m)
c = 1

18 , then ∆ = 0 in Eq. (A.6b), and Eq. (42) reduces to − 4
9 (1 + r(4 +

r))2 = 0, with the two double roots r1,2 = r3,4 = −2 ±
√

3. Otherwise, Eq. (A.6) allows to examine the
roots. When ∆ > 0, P < 0, D < 0, the four roots are all real [69]. These conditions are all satisfied when

(Λ >
1

4
, ∀ t(m)

c ) || (Λ =
1

6
, t(m)

c ∈]0,
1

18
[) || (t(m)

c ∈]0, tmaxc (Λ)] , ∀ Λ 6= 1

6
) ,

tmaxc (Λ)] =
1 + 4Λ(1− 6Λ)−

√
1 + 8Λ(1− 6Λ)

4(1− 6Λ)2
, ∆(tmaxc ) = 0 . (A.7)

We note that all four roots are real with any weights when Λ > 1
4 . The d2Q5 holds four non-trivial roots:

t(m)
c =

1

2
, Λ 6= 1

4
: 4Λ(−1 + r2)2 − (1 + r2)2 = 0 , (A.8a)

∪4
j=1rj = r|(u=0)

d2Q5
= ±

√
2
√

Λ− σ
2
√

Λ + σ
, σ = ±1 . (A.8b)

The d2Q5(r) has only two non-trivial roots:

t(m)
c = 0 , Λ 6= 1

4
: 4Λ(−1 + r)2 − (1 + r)2 = 0 , r3,4 = −1 , (A.9a)

{r1, r2} = r|(u=0)

d2Q5(r) =
1± 4

√
Λ + 4Λ

4Λ− 1
= {K(σ) , σ = ±1} . (A.9b)

The two roots r|(u=0)

d2Q5(r) are equivalent to B-layer roots (18b).
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Appendix A.2. The interface-perpendicular Darcy flow ~u = u⊥~1y′

The exponential components reads with: e
+(a)
q = t

(m)
q ce

∑
j=1 ajrj

nk , e
−(a)
q = t

(a)
q u⊥cq,y′

∑
j=1 ajrj

nk .

Eq. (26) then reads as [rj = r
(k)
j , k is dropped]:

âq,jr
n
j = u⊥cq,y′t

(a)
q aj∆̄qr

n
j − Λ−cet

(m)
q aj∆̄

2
qr
n
j + (Λ− 1

4
)âq,j∆̄

2
qr
n
j , ∀ q = 1, ..,

Qm
2

, j = 1, 2, . . . .(A.10)

Eq. (A.10) reduces to Eq. (A.3) when u⊥ = 0. We first solve Eq. (A.10) for the coordinate links:

θ = 0 : ây,j = â
(u=0)
j (aj , t

(m)
c ) +

1

2
â

(u)
j (aj , t

(a)
c ) , (A.11a)

â⊥,j = â‖,j = −1

2
ây,j , âx,j = 0 ; (A.11b)

θ =
π

4
: âx,j = ây,j = â

(u=0)
j (aj , t

(m)
c ) +

√
2

4
â

(u)
j (aj , t

(a)
c ) , (A.11c)

â⊥,j = −(âx,j + ây,j) , â‖,j = 0 ; (A.11d)

θ = {0, π
4
} : â

(u)
j (aj , tq) =

ajtqu⊥(−1 + rj
2)

rj − (Λ− 1
4 )(−1 + rj)2

. (A.11e)

Eq. (A.4) gives â
(u=0)
j (aj , tq). Eq. (A.10) is now solved for the diagonal links:

θ = 0 : â‖,j = â⊥,j = â
(u=0)
j (aj , t

(m)
d ) +

1

2
â

(u)
j (aj , t

(a)
d ) , (A.12a)

ây,j = −(â‖,j + â⊥,j) ; (A.12b)

θ =
π

4
: â⊥,j = â

(u=0)
⊥,j (aj , t

(m)
d ) +

√
2

4
â

(u)
⊥,j(aj , t

(a)
d ) , (A.12c)

âx,j = ây,j = −1

2
â⊥,j ; (A.12d)

θ = {0, π
4
} : â

(u)
⊥,j(aj , tq) = − tqaju⊥(−1 + rj

4)

4Λ(−1 + r2
j )

2 − (1 + r2
j )

2
. (A.12e)

Eq. (A.5a) gives â
(u=0)
⊥,j (aj , tq). The obtained solution for the coordinate links from Eq. (A.11), and the

diagonal links from Eq. (A.12), is summed and equated to zero in Eq. (28a). In the straight layers, â
(u=0)
j

and â
(u)
j from Eqs. (A.11a) and (A.12a) scale with t

(m)
q and t

(a)
q , respectively. The solvability condition

ây,j+ â‖,j+ â⊥,j = 0 is then weight-independent due to Eq. (2d), it is quadratic and given in Eq. (44). In the

diagonal system, the solvability condition âx,j + ây,j + â⊥,j = 0 is expressed by the sextic (Λ 6= 1
4 ) and the

quartic (Λ = 1
4 ) equations with one root equal to 1. The reduced quintic and cubic equations, respectively,

are given in Eqs. (A.13) and (A.14):

Λ 6= 1

4
, ∀ t(a)

q , t(m)
q :

5∑
j=0

bjr
j = 0 , with

b0 = −η1(P3 + 2ζ1) , b1 = 4Λk(P4 + 2ζ1) + P5 + 6− 28t(m)
c , b2 = 4(P2 + η2ζ1) ,

b5 = −η1(P3 − 2ζ1) , b4 = 4Λk(P4 − 2ζ1) + P5 − 6 + 28t(m)
c , b3 = 4(P2 − η2ζ1) ,

η1 = 4Λk − 1 , η2 = 4Λk + 1 , Pi =
√

2Pe
(k)
⊥ ζi , i = 2, . . . , 6 , P e

(k)
⊥ =

u⊥
Dk

,

ζ1 = 1 + 6t(m)
c , ζ2 = 1 + 8Λkt

(a)
c , ζ3 = 1 + 2t(a)

c ,

ζ4 = 1− 6t(a)
c , ζ5 = 3− 2t(a)

c , ζ6 = −1 + 2t(a)
c . (A.13)
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When Λ = 1
4 , Eq. (12) reduces to cubic equation [ in notations of Eq. (A.13)]:

Λk =
1

4
, ∀ t(a)

q ,∀ t(m)
q : ar3 + br2 + cr + d = 0 , with

d = −2 + 4t(m)
c + P6 , c = −2ζ1 − P3 , b = 2ζ1 − P3 , a = 2− 4t(m)

c + P6 . (A.14a)

Q(Pe, tc)|t(a)c =t
(m)
c =tc

= 128t(a)
c + Pe

(k)
⊥

2
(2 + Pe

(k)
⊥

2
(−1 + 4tc)

3 + 8tc(−11 + 13tc)) . (A.14b)

Eq. (A.14b) is proportional to determinant [44] of Eq. (A.14a) when the two weight families are the same.

In d2Q5 [t
(a)
c = t

(m)
c = 1

2 ], Eq. (A.14a) is satisfied with two real roots, r = 0 and r
(k)
1 from Eq. (48a). In

d2Q5(r) [t
(a)
c = t

(m)
c = 0], Eq. (A.14a) is satisfied with r = −1 and two roots r

(k)
1,2 from Eq. (48b); r

(k)
1,2 are

real when Pe
(k)
⊥ <

√
2. In turn, Eq. (A.14a) has three real roots when t

(a)
c ∈ [0, 1

2 ] && (Pe
(k)
⊥ < Pemin⊥ (tc)),

or when tc ∈ [ 1
4 ,

1
2 ] && (Pe

(k)
⊥ > Pemax⊥ (tc)), with Pemax⊥ |tc→ 1

4
= ∞. In that, {Pemin⊥ (tc), P e

max
⊥ (tc)} are

the two positive roots to Eq. (A.14b). Otherwise, one root is real and the two others are complex-conjugate.

A singular weight-value is t
(a)
c = t

(m)
c = 1

4 , where Pemin⊥ |(tc= 1
4 ) = 8

√
3/9 and Pemax⊥ |tc→ 1

4
= ∞. The roots

to Eq. (A.14a) are illustrated in Fig. 7.

Example: Consider the d2Q5[t
(a)
c = t

(m)
c = 1

2 ] and d2Q5(r)[t
(a)
c = t

(m)
c = 0] when t

(M)
q 6= t

(m)
q in the

diagonal system. These two cases are instructive because the last term in Eq. (2a) becomes piece-wise
constant and non-zero for all links; it excites the A-layer in these two models. The d2Q5 constructs the

A-layer with Â
+(k)
x = Â

+(k)
y on the four roots r|(u=0)

d2Q5
from Eq. (A.8b), following the general procedure from

Sec. 4.2.3. The d2Q5(r) builds the accommodation with the two B-layer roots r|(u=0)

d2Q5(r) from Eq. (A.9) using

Eqs. (A.12c)-(A.12e) for â
(k)
q,j (a

(k)
j ). The A-layer is then inter-connected through the coordinate links, but

the set {p(k)
0 , a

(k)
1 } remains decoupled on the two sub-diagonals with d2Q5(r). When Λ = 1

4 , the diffusion

roots vanish and the B-layer accommodates the case t
(M)
q 6= t

(m)
q .

Appendix A.3. The A-layer in interface-parallel velocity

We address Eq. (51) with ux′ = u‖(y
′)~1x′ ; Eq. (26) then reads :

âq,jr
n
j = ajt

(a)
q ∆̄qux′(n)cqx′r

n
j − ajΛ−cet(m)

q ∆̄2
qr
n
j + (Λ− 1

4
)âq,j(n)∆̄2

qr
n
j . (A.15)

The solution can be presented in the form:

âx,j(n) = â
(u=0)
j (aj , t

(m)
c )− â(u)

j (n) , ~cq = ~cx ,

ây,j(n) = â
(u=0)
j (aj , t

(m)
c ) + â

(u)
j (n) , ~cq = ~cy ,

â⊥,j = −(âx,j + ây,j) = −2â
(u=0)
j (aj , t

(m)
c ) . (A.16)

When ~u = 0, Eq. (A.16) reduces to â
(u=0)
j (aj , t

(m)
c ) in Eq. (A.4). The two coordinate links, ~cq = ~cy and

~cq = ~cx, get the coefficients ±â(u)
j (n) in Eq. (A.16), and they become polynomial together with ux′(n). The

â⊥,j remains velocity-independent in Eq. (A.16); the roots {rj} then solve Eqs. (42) and (43) derived in
pure diffusion.

Appendix B. The B-layer accommodation

The B-layer from Eq. (18) applies along the directional segment {~rn = ~r0+n~cq, n = 0, . . . , N} connecting
the interface nodes ~r0 and ~rN inside phase k. Eq. (18) is prescribed in this work with K(+1) = {Kk}:

Λk 6= 1
4 : Kk = 2

√
Λk−1

2
√

Λk+1
, Kk|Λk→0 = −1 , Kk|Λk→∞ = 1 , k = 1, 2 . (B.1)

The B-layer obeys the local mass-conservation with Eq. (28b), and it vanishes on the translation-invariant
direction ~1x′ .
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Appendix B.1. The straight layers

Consider θ = 0 and construct the B-layer along ~cq = {~cy,~c‖,~c⊥}:

θ = 0 : B̂+(k)
q (n) = b+(k)

q Knk
k + d+(k)

q K−nkk , B̂−(k)
q (n) =

Λk

Λ−k
(b+(k)
q Knk

k − d
+(k)
q K−nkk ) , (B.2a)

B̂±(k)
x = 0 , B̂±(k)

y + B̂
±(k)
‖ + B̂

±(k)
⊥ = 0 , nk ∈ [0, Hk − 1] . (B.2b)

Making use of Eq. (B.2b), the B-layer is fixed with the four coefficients per phase k, say {b(+,k)
‖ , d

(+,k)
‖ , b

+(k)
⊥ , d

+(k)
⊥ }.

The B-layer vanishes in d2Q5 due to Eq. (B.2b), and it is fixed with two coefficients in d2Q5(r):

θ = 0 , d2Q5 : B̂±(k)
q = 0 , ∀ q ; (B.3a)

θ = 0 , d2Q5(r) : B̂
±(k)
‖ = −B̂±(k)

⊥ , b
(+,k)
‖ = −b+(k)

⊥ , d
(+,k)
‖ = −d+(k)

⊥ . (B.3b)

When Λ = 1
4 , the B-layer is defined with the four (interface-node) values, e.g., {B̂+(k)

‖ , B̂
+(k)
⊥ }|nk={0,Hk−1};

the set {B̂−(k)
q } is expressed through these coefficients with Eq. (B.2a).

Appendix B.2. The diagonal layers

Consider θ = π
4 and prescribe the B-layer along ~cy and −~cx in sign convention of Eq. (18):

θ =
π

4
: B̂+(k)

y (n) = b+(k)
y Knk

k + d+(k)
y K−nkk , B̂−(k)

y (n) =
Λk

Λ−k
(b+(k)
y Knk

k − d
+(k)
y K−nkk ) ; (B.4a)

B̂+(k)
x (n) = b+(k)

x Knk
k + d+(k)

x K−nkk , B̂−(k)
x (n) = − Λk

Λ−k
(b+(k)
x Knk

k − d
+(k)
x K−nkk ) , (B.4b)

B̂
±(k)
‖ (n) = 0 , B̂

+(k)
⊥ (n) = −(B̂+(k)

x + B̂+(k)
y ) , then B̂

−(k)
⊥ (n) = B̂−(k)

x − B̂−(k)
y . (B.4c)

The B-layer is fixed through {b+(k)
x , b

+(k)
y , d

+(k)
x , d

+(k)
y }; this set reduces to two coefficients in d2Q5 and it

vanishes in d2Q5(r):

θ =
π

4
, d2Q5 : B̂±(k)

x = ∓B̂±(k)
y , b+(k)

x = −b+(k)
y , d+(k)

x = −d+(k)
y ; (B.5a)

θ =
π

4
, d2Q5(r) : B̂±(k)

q = 0 , ∀ q . (B.5b)

When Λ = 1
4 , the B-layer is set with the four (interface-node) values {B̂+(k)

x , B̂
+(k)
y }|n(k)={0,Hk−1}; the set

{B̂−(k)
x , B̂

−(k)
y }|n(k)={0,Hk−1} is related to them through Eq. (18c):

θ =
π

4
, Λk =

1

4
: {B̂−(k)

y } = {− B̂
+(k)
y

2Λ−
|k=1
n=−1,

B̂
+(k)
y

2Λ−
|k=2
n=0,

B̂
+(k)
y

2Λ−
|k=1
n=−H1

,− B̂
+(k)
y

2Λ−
|k=2
n=H2−1} ; (B.6a)

{B̂−(k)
x } = { B̂

+(k)
x

2Λ−
|k=1
n=−1,−

B̂
+(k)
x

2Λ−
|k=2
n=0,−

B̂
+(k)
x

2Λ−
|k=1
n=−H1

,
B̂

+(k)
x

2Λ−
|k=2
n=H2−1} ; (B.6b)

{B̂+(k)
⊥ } = {−(B̂+(k)

x + B̂+(k)
y )} , then {B̂−(k)

⊥ } = {B̂−(k)
x − B̂−(k)

y } . (B.6c)

The B-layer coefficients are fixed by interface (boundary) conditions together with the polynomial and
A-layer remaining unknowns; the B-layer vanishes when there is only one interface-cut link.
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