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REVIEW

A new generation of sensors andmonitoring tools to support
climate-smart forestry practices1

Chiara Torresan, Marta Benito Garzón, Michael O’Grady, Thomas Matthew Robson, Gianni Picchi,
Pietro Panzacchi, Enrico Tomelleri, Melanie Smith, John Marshall, Lisa Wingate, Roberto Tognetti,
Lindsey E. Rustad, and Dan Kneeshaw

Abstract: Climate-smart forestry (CSF) is an emerging branch of sustainable adaptive forest management aimed at enhanc-
ing the potential of forests to adapt to and mitigate climate change. It relies on much higher data requirements than tradi-
tional forestry. These data requirements can be met by new devices that support continuous, in situ monitoring of forest
conditions in real time. We propose a comprehensive network of sensors, i.e., a wireless sensor network (WSN), that can be
part of a worldwide network of interconnected uniquely addressable objects, an Internet of Things (IoT), which can make
data available in near real time to multiple stakeholders, including scientists, foresters, and forest managers, and may par-
tially motivate citizens to participate in big data collection. The use of in situ sources of monitoring data as ground-truthed
training data for remotely sensed data can boost forest monitoring by increasing the spatial and temporal scales of the
monitoring, leading to a better understanding of forest processes and potential threats. Here, some of the key develop-
ments and applications of these sensors are outlined, together with guidelines for data management. Examples are given of
their deployment to detect early warning signals (EWS) of ecosystem regime shifts in terms of forest productivity, health,
and biodiversity. Analysis of the strategic use of these tools highlights the opportunities for engaging citizens and forest
managers in this new generation of forest monitoring.

Key words: climate change, early warning signals, ecosystem regime shifts, wireless sensor network, Internet of Things,
citizen science, green technologies.

Résumé : La foresterie intelligente face au climat est une branche émergente de la gestion forestière adaptative et durable
dont l’objectif est d’accroître la capacité des forêts de s’adapter au changement climatique et d’en atténuer les effets. Cela
comporte beaucoup plus d’exigences en termes de données que la foresterie traditionnelle. Ces exigences en matière de
données peuvent être satisfaites grâce à de nouveaux appareils qui permettent de surveiller la forêt in situ en continu et en
temps réel. Nous proposons un réseau complet de capteurs, c.-à-d. un réseau de capteurs sans fil, qui peut faire partie d’un
réseau mondial d’objets interconnectés individuellement adressables, un Internet des objets (IdO) qui peut rendre les don-
nées disponibles presque en temps réel à de nombreux intéressés, incluant des scientifiques, des forestiers et des gestion-
naires forestiers, et qui peut en partie motiver les citoyens à participer à une importante collecte de données. L’utilisation
de sources in situ de données de suivi comme données d’entraînement validées sur le terrain pour des données de télédétec-
tion peut favoriser la surveillance des forêts en augmentant les échelles spatiale et temporelle, permettant ainsi une meil-
leure compréhension des processus forestiers et des menaces potentielles. Certains des développements et applications clés
de ces capteurs sont présentés dans cet article avec des directives pour la gestion des données. Des exemples de leur déploiement
pour détecter les signaux d’alerte rapide des changements de régime des écosystèmes en ce qui a trait à la productivité, l’état de
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santé et la biodiversité de la forêt sont présentés. L’analyse de l’utilisation stratégique de ces outils met en évidence les occasions
d’intéresser les citoyens et les gestionnaires forestiers à cette nouvelle génération de suivi des forêts. [Traduit par la Rédaction]

Mots-clés : changement climatique, signaux d’alerte rapide, changement de régime des écosystèmes, réseau de capteurs
sans fil, Internet des objets, science participative, technologies vertes.

1. Introduction
Forests have traditionally been managed as large blocks with

uniform treatments. This approach simplifies management but
may miss shifts in forest dynamics over time; however, new
technology permits the collection of data at finer spatial and
temporal scales than in the past, providing indicators of forest
dynamics. For instance, long-term continuous monitoring of
physiological processes at the tree level (or smaller) can serve as
an early warning system by providing evidence of changes to bi-
ological processes that will eventually scale up to losses in pro-
ductivity or even tree mortality at the stand level. Long-term
monitoring can also be used to identify thresholds or tipping
points whereby key processes have been perturbed beyond a
point from which trees cannot recover. Likewise, large-scale
monitoring may provide insights into subtle impacts of chronic
events such as drought or increased temperature on spatially
diffuse tree mortality and on forest biodiversity.
Forests play a significant and beneficial role in climate change

mitigation. Climate-smart forestry (CSF) aims to validate, promote,
and deliver the climate-stabilizing benefits of forests on the tem-
perature of the atmosphere consistent with the recommendations
set out by the Paris Agreement (UNFCCC 2015). So far, the mitiga-
tion benefits of CSF have primarily focused on effective carbon
sequestration and energy substitution practices (Nabuurs et al.
2017; Kauppi et al. 2018). Nevertheless, a climate-smart perspective
that promotes synergies between climate and other services and
removes trade-offs between mitigation and adaptation strategies
(Bowditch et al. 2020) is warranted to meet the Paris Agreement’s
temperature goals. Long-term, large-scale monitoring of anthropo-
genic disturbances, wood extractions, and other practices are needed
to estimate the vulnerability of trees and forests and propose cli-
mate-smartmanagement strategies.
Here we review a new generation of tools for forest monitoring

across spatial and temporal scales to highlight their potential
advantages in forest management and the challenges due to their
implementation. Sensors and instruments that operate continu-
ously in situ andmounted on forest harvesting equipment, relay-
ing data to research laboratories and managers’ offices in real
time, are discussed. We also evaluate the effectiveness of data
gathering by citizen scientists and by sensors associated with
large-scale remotely sensed data.

2. Monitoring with in situ sensors

2.1. Forest productivity

2.1.1. Tree growth
The impacts of climate change on forest productivity since themid-

dle of the 20th century are documented thoroughly in Boisvenue and
Running (2006). While it is difficult to decipher a trend at fine spatial
scales, global changes in climate seem to have a net positive impact
on forest productivity when water is not limited. To understand the
reaction of trees to short-term changes in environmental conditions
such as air temperature, soil moisture, and precipitation patterns,
continuous monitoring of stem radial variation throughout the year
can behelpful (Deslauriers et al. 2007).
Monitoring tree stem circumference using in situ automatic

dendrometers allows the effect of climate on tree growth to be
distinguished from that of weather over different time scales.
These devices measure stem radial variation composed of diurnal
rhythms of water storage depletion and replenishment and

seasonal tree growth (Deslauriers et al. 2007; Vilas et al. 2019),
especially when linked to transpiration. Integrating dendrome-
ter time series and xylogenetic data disentangles swelling caused
by stem water replenishment from increases that can be attrib-
uted to actual radial growth (Cuny et al. 2015; Cruz-García et al.
2019), leading to a better understanding of wood formation proc-
esses and their response to environmental conditions (Cocozza
et al. 2016; Steppe et al. 2015). Automatic dendrometers could
also be useful tools for monitoring the response of trees to
extreme climatic events (Burri et al. 2019), as they can provide
high-frequency and long-term information on tree water status
across large scales (Vilas et al. 2019), in particular when coupled
with sap-flow sensors (Oogathoo et al. 2020, section 2.1.1).
The automatic dendrometers are classified in “point-type” (also

known as radial and diametral dendrometers) and “band-type”
(also known as circumferential dendrometers). The point den-
drometers measure changes in the radius of a branch or main
stem with a rod held against the outside surface by a constant
force, while the band dendrometers measure changes in circum-
ference with a band wrapped around the branch or main stem
and held by a constant force (Fig. 1).
The signal recorded by dendrometers contains three compo-

nents: long-term seasonal growth patterns, medium-term pat-
terns representing swelling after rainfall and subsequent drying,
and daily cycles of water uptake related to tree transpiration
(Vospernik et al. 2020). Point dendrometers are particularly use-
ful in studies on wood formation and are more suitable than
band dendrometers for large-scale tree growth measurements
and water stress monitoring because of their rapid response
(hourly or faster) and their ability to record dehydration and
rehydration events as well as growth (Wang and Sammis 2008). A
summary of dendrometer developments and guidance for den-
drometer selection is reported in Clark et al. (2000), while a
review of the use of precision dendrometers in research on stem
size and wood-property variation can be found in Drew and
Downes (2009).

2.1.2. Timber production and transformation
Useful data for monitoring forest functioning and dynamics

can also be collected from the sensors installed on machines
deployed for timber production. Most modern harvesters and
forwarders can already interact with a digital forest inventory
management system, both getting information (e.g., for organiz-
ing harvest operations of marked trees or forwarding piled logs
along predefined paths) and feeding new data to the system such
as diameters and lengths of the logs produced. The latter data
are generally georeferenced, are communicated between com-
puters in forest machines in the StanForD file structure standard
(Arlinger et al. 2010), and are used for invoicing timber produced
and delivered; however, the same data can also return a detailed
account on the quantity of the round wood yielded in the har-
vested plot (Rossit et al. 2019) needed for drawing the balance
between net annual increment and annual harvesting of a given
forested area. In the near future, the contribution of machines to
forest monitoring and CSF is expected to grow steadily, as sensors
are increasingly deployed in the forest supply chain for early detec-
tion of timber quality (along with quantity). Particularly promising
for this purpose are optical spectrometers (Sandak et al. 2016, 2020),
which can be operated manually or directly by the machines. The
latter modality has been successfully tested by Sandak et al. (2019),
who installed several sensors for timber quality grading on a
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prototype of processor head. Optical spectrometers have been used
to identify resin pockets, resistance, and juvenile wood, while me-
chanical sensors and sensors able to collect signals generated by
stress wave propagation have been employed to measure timber
density and provide a branch index value per log.
Data generated during harvesting operations and integrated

with information provided by other types of sensors at tree or
plot levels could also be valuable in forest management andmon-
itoring. For this purpose, it is essential to automatically relate
single logs and quality data to the original standing tree. Among
the available options, radio-frequency identification technology
(RFID) seems to be the most effective solution for marking trees
in the forest (and processed logs) linking their identifier to the
entity in the database of a digital forest inventory management
system (Pichler et al. 2017). Furthermore, RFID tags have been
shown to survive the harsh conditions of timber procurement,
effectively transferring the information from the standing tree
to the products delivered as logs to the sawmills (Picchi et al.
2015; Picchi 2020).
In the industrial context, for wood quality assessment, more

sophisticated and precise sensors than optical spectrometers
must be deployed such as three-dimensional (3D) log tomography
systems (X-ray) or near-infrared (NIR) hyperspectral imaging.
These are used to return a detailed analysis of the logs and opti-
mize the sawing process. Examples of this application are pro-
vided by Stängle et al. (2014), who compared terrestrial laser
scanning (TLS) with X-ray computed tomography (CT) for analysis

of stem and branch scars; Uner et al. (2009), who used X-ray CT to
highlight the effects of thinning on timber density; and Ma et al.
(2018), who applied NIR spectroscopy to assess wood stiffness and
fibre coarseness of boards. X-ray CT is also a powerful imaging
procedure for measuring density distributions and water content
in the xylem with high spatial resolution, representing a link
with xylem physiology and wood anatomy (Tognetti et al. 1996;
Fromm et al. 2001).
The integration of such sensors and tools, i.e., sensors installed

on timber harvesting machines with RFID tags on logs with tools
in the industries, provides infrastructure for the sensing, wire-
less transfer, and cloud-elaboration of the data produced within
the timber supply chain (Fig. 2) and represents a clear opportu-
nity for forest monitoring and inventory purposes.
In a long-term application, sawmill and machine-installed sen-

sors could be used to adjust and enhance the models for interpre-
tation of the raw data provided by the in situ sensors installed to
monitor tree health and physiological parameters thanks to the
capacity to relate the data collected along the supply chain with
that recorded on the original tree in the field. We suggest that
the analysis could be akin to retrospective epidemiological
cohort studies in human health, where the consequences of
the exposure to a given factor (e.g., historical data on drought
stress) are identified through the analysis of industrial data,
e.g., timber properties or branch and tree-ring development.

2.2. Forest health

2.2.1. Evapotranspiration
The energy associated with the latent heat flux, i.e., evapo-

transpiration, is a fundamental component of the Earth’s surface
energy balance. Evapotranspiration, which links soil, vegeta-
tion, and the atmosphere, is controlled by many environmental
variables such as solar radiation, vapour pressure deficit (VPD),
air temperature, and soil water content (SWC). Atmosphere–
vegetation–soil feedback occurs as trees may lower surface tem-
perature by evaporative cooling, which depends on the latent
heat of evaporation (evapotranspiration rate), the incoming
radiation, and the convection of heat away from the leaves.
Plant water stress and eventual tree mortality occur when the
transpiration demand of leaves exceeds available water. In most
temperate climates, evapotranspiration is expected to decrease
with decreasing soil moisture and increasing VPD (Tognetti
et al. 2009; Juice et al. 2016). While this expectation is also met
in dry boreal forests such as in Western Canada (Pappas et al.
2018), it is not met in moist humid boreal forests, as demon-
strated by Oogathoo et al. 2020, who harnessed a network of for-
est plots equipped with Granier-type sap-flow probes (Granier
et al. 1996), which measure transpiration flow as the ascent of
sap within xylem tissue, coupled with point dendrometers.
Indeed, in the moist boreal forests of Eastern Canada, soil mois-
ture was found to exert little influence on sap-flow rates, which
continued to be driven by VPD and radiation even during a
drought (Oogathoo et al. 2020). There is thus likely a threshold
of absolute rather than relative soil moisture beyond which the
drivers of transpiration change. Researchers should consider
absolute versus relative drought conditions when comparing
ecosystems. These contrasting results highlight the importance
of a network of sensors deployed across local, regional, and con-
tinental scales to accurately assess differences in tree evapo-
transpiration to climate stress such as drought (e.g., Poyatos
et al. 2016, 2020).
Drought is triggered by weather patterns, which determine the

amount of moisture and heat in the atmosphere. A lack of precip-
itation for a protracted period of time results in a reduction in
soil moisture, in turn decreasing the amount of water available
for plants. To be considered a drought, the reduction in available
moisture will be below the climate normal and the drought timing

Fig. 1. Examples of an automatic band dendrometer (upper
instrument on tree) co-located with an automatic point dendrometer
band (middle left on tree) and standard manual band dendrometer
(lowest instrument on tree) at the Hubbard Brook Experimental
Forest, N.H., USA (photograph by L.E. Rustad).
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should be clearly stated using a specific metric, because severity
and length will influence effects (Slette et al. 2019). Drought-
induced imbalance in water supply and demand can be exacer-
bated by global warming (Jung et al. 2010; Van Loon et al. 2016).
Although the documented increases in forest dieback across bio-
mes are correlated with regional warming, causation has not been
established, which would require long-term and high-frequency
records of tree functions in prolonged drought conditions.
Data from trees monitored with coupled sap-flow sensors, which

at the tree level estimate transpiration (Cermák et al. 2015), and auto-
matic dendrometer bands can be used to relate tree rehydration,
dehydration, and sap flow to the commencement of growth in ring-
porous and diffuse-porous trees, as well as in conifers (Oogathoo
et al. 2020). These real-time measurements can be linked to other
physiological (e.g., water potential, stomatal conductance, photo-
synthetic efficiency, and hydraulic architecture) and biometric
(e.g., basal area, crow projection, tree height, and root volume)
measurements to evaluate tree function and forest health. Thus,
real-time sap-flow monitoring can be used to provide a mechanis-
tic understanding of how key climate parameters influence water
transport in trees and thus how different species in different regions
respond to climatic stress.
A combination of sap flow measurements (i.e., mensuration of

stomatal conductance as regulator of transpiration over a short
time period) and stable isotope data (i.e., carbon isotope ratio,
d13C, to derive water use efficiency) may also provide an individ-
ual tree based estimate of gross primary productivity (GPP) (Klein
et al. 2016; Vernay et al. 2020). Transpiration could also be further
scaled up, e.g., from stand to watershed, using remote-sensing
images (Cermák et al. 2015).

2.2.2. Leaf temperature
Differences in temperature between leaves of neighbouring trees

can be used to detect drought stress because drought reduces tran-
spiration and transpiration reduces leaf temperature (Leuzinger
and Körner 2007; Lapidot et al. 2019). At dry sites, further increases
in summer temperatures and drought due to climate changemight

change the competitive abilities of tree species in favour of those
that are able to maintain transpiration and growth. Temperatures
of multiple trees and large canopy areas can be compared, thereby
quantifying differences in leaf temperature due to direct versus
indirect solar radiation and identifying microclimatic environ-
ments within forest stands (Bowling et al. 2018). Large differences
in leaf temperature (>1 °C) can help explain partial or complete
mortality of leaves in the crown due to either biotic or abiotic fac-
tors. Moderate differences in leaf temperature (�1 °C) can be an in-
dication of decreased stomatal conductance due to drought stress
or can serve as an early warning of pest or pathogen infection.
Common tools for leaf temperature measurements include ther-

mal resistance sensors, thermocouples, infrared (IR) thermometers,
and IR thermographic cameras.Thermal resistance sensors and ther-
mocouple and IR thermometers provide simple and accurate single-
point temperature measurement of the temperature of individual
leaves when correctly installed in contact with the underside of the
leaf, whereas IR thermographic cameras allow a broader area to be
considered. Leaf temperature measured using IR thermographic
cameras can be used to derive leaf transpiration and stomatal con-
ductance through leaf energy balance equations (Vialet-Chabrand
and Lawson 2019) due to the inverse proportional relationship
between transpiration and leaf-to-air temperature differences.Varia-
tion in leaf temperature distribution can be an indicator of soilmois-
ture stress, and its measurement by means of IR thermographic
cameras, though challenging, can be applied to stress detection.
Canopy temperature measured by IR thermographic cameras is
affected by canopy architecture and leaf traits (Bridge et al. 2013),
which, in turn, influence the degree of coupling between the canopy
and the atmosphere. A drawback of the IR thermographic cameras
is thatmeasurementsmay be affected by the emissivity of individual
leaves; for this reason, calibration against “black” and “white” stand-
ards is therefore required to obtain accurate temperature values
This is necessary for absolute rather than relative temperature com-
parisons and to make broader assessments of stand-level water use
among sites. In addition, themajor impediment to the use of IR ther-
mographic cameras, beyond its high price, is that temperature

Fig. 2. Example of interaction among sensors installed or deployed for forest monitoring, forest inventory, and timber supply chain:
(1) forest survey with digital sensors enables the creation of a three-dimensional (3D) forest model; (2) on-the-ground and highly detailed
data are collected manually and with stationary sensors; the link with the 3D forest model is provided by traceability systems such as
RFID tags; (3) forest machines used for timber production deploy timber quality sensors, providing tree-specific ground-truthing data; and
(4) the traceability system allows linking the highly detailed data generated in the sawmill for log analysis with the single trees and
related data stored in the 3D forest model.
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differences between leaves are relatively small compared with those
of other objects in the environment, so obtaining the appropriate re-
solution of false-colour images to compare between trees or leaves
can be difficult against a background of large environmental tem-
perature gradients (Yu et al. 2016). IR imaging technologies, in con-
junction with remotely sensed data from satellites or unmanned
aerial vehicles (UAVs), may enable detailed surveys of canopy tem-
perature, water status, and pathogen attack in forest stands over
large areas (Scherrer et al. 2011; Lapidot et al. 2019).

2.2.3. Defoliation and crown dieback
Crown defoliation and dieback can be a key metric for infer-

ence of forest canopy health, particularly if crown transparency
can be explicitly connected to tree physiology (Dobbertin et al.
2010). Changes in canopy density occur with seasonal leaf phenol-
ogy and through insect defoliation. These two processes are often
correlated as climate stress related phenological changes in the
timing of tree bud and leaf developmentmay increase a tree’s sus-
ceptibility to pests and pathogens, as found in Norway spruce
(Picea abies L. Karst.) (Schlyter et al. 2006), balsam fir (Abies balsamea
(L.) P. Mill.), and black spruce (Picea mariana (Mill.) Britton, E.E.
Sterns & Poggenb) (Pureswaran et al. 2019) subject to insect defoli-
ation. Early detection of pathogen outbreaks in forests is crucial
in mitigating their damage (MacLean 2019). Long-term monitor-
ing of canopy openness, through leaf area index (LAI) or plant
area index (PAI), can be performed through a network of ground-
or tower-based sensors or by using ground-based cameras. Detailed
measurements of LAI can be obtained with repeated measure-
ments over time from a fixed upward-pointing camera position
(Chianucci 2020) allowing for the monitoring of seasonal changes
in vegetation canopies (Wingate et al. 2015; Hufkens et al. 2018;
Brown et al. 2020). For simplicity, two methods have been tested
for repeated photographic estimates of canopy openness: a re-
stricted-view approach, which is based on upward images acquired
with a camera mounted with a normal lens, and a wide-view
approach, which is based on collecting upward images with the
camera mounted with a fisheye lens. The first approach allows for
maximizing the full frame due to the narrow field of view, but it
requires independent measurements of leaf inclination angle to
estimate LAI from gap fraction (Chianucci 2020). The second
approach enables a larger footprint and increased angular sam-
pling, which can be used to estimate canopy leaf angle distribution,
removing the requirement for ancillary information in the re-
trieval of LAI. When used with photon sensors, fish-eye photogra-
phy can provide accurate estimates of changes in canopy light
interception (Brown et al. 2020), foliage area, and potentially long-
term forest canopy health. Furthermore, by combining LAI with
sap-flowmeasurements (see section 2.2.1), a link can be created that
allows assessment of the physiological effects of drought stress on
water loss (Wang et al. 2012). To interpret possible drought effects,
LAI measurements allow for the assessment of potential transpira-
tional cooling of the stand (Bréda 2003). Increasingly, these approaches
allow ecological and physiological phenotypic data to be linked to
genetic and molecular data (Kim et al. 2014), adding value to both
perspectives and providing guidance for climate-smart forest man-
agement using a combination of these two viewpoints.

2.2.4. Phenology
The monitoring of forest phenology enables us to collect data

on the status and development stages of forest trees over the
course of the year, determine their dependence on local (e.g., me-
teorological and site) conditions including extreme events, and
document and explain possible changes in the timing of these
stages (Vilhar et al. 2013).
Changes in leaf emergence and tree growth can be used to deter-

mine how trees are responding to climate change (Rossi et al. 2011).
In turn, phenological shifts can affect climate (Richardson et al.

2013). Indeed, the earlier presence of green land cover and the delay
in autumnal senescence and leaf fall of deciduous canopies may al-
ter seasonal climate through the effects of biogeochemical proc-
esses (especially photosynthesis and carbon sequestration) and
physical properties (mainly surface energy and water balance) of
vegetated land surfaces (Peñuelas et al. 2009). Changes in budburst,
flowering, and fruiting phenology can result in asynchronies
between these food resources and a diverse range of microbes,
insects, birds, andmammals in forests, as well as the emergence of
defoliators that can have negative effects on canopy structure and
health (Pureswaran et al. 2015; Pureswaran et al. 2019).
Digital repeat photography for phenological monitoring such

as those deployed in phenocam networks across Europe, North
America, and Asia (Nagai et al. 2018) offers an automated and
cost-effective way to characterize temporal changes in vegeta-
tion. In short, digital cameras, installed overlooking the vegeta-
tion of interest, record images throughout the day, from sunrise
to sunset, in time-lapse mode. Information about vegetation col-
our such as “canopy greenness” is extracted from the imagery
and used to quantify phenological changes. Specific phenophase
transition dates, e.g., corresponding to the onset of spring green-
up, can be identified from the seasonal trajectory of canopy
greenness. Image analysis can be conducted for individual organ-
isms or at the canopy scale (Seyednasrollah et al. 2019). Amajor li-
mitation in using these cameras is that large differences can
occur in phenology estimates (Liu et al. 2019). In particular, the
cardinal direction and inclination angle of the camera have a
large effect on the estimate of spring budburst. To address the
first issues, the sensor direction must be standardized. The effect
due to the inclination angle is harder to adjust as it differs accord-
ing to the species composition of the canopy (Liu et al. 2019).
Camera exposure settings are also a concern when estimating
changes in phenology, particularly in autumn when leaf colour
change affects the results (Mizunuma et al. 2013). The error asso-
ciated with the use of inconsistent exposure settings over leaf
flush, for example, can exceed the total difference in PAI over
that period. To deal with these aspects and effectively track the
phenological progression of canopy development in forest
stands, a proposed solution is to combine digital cameras with
photosynthetically active radiation (PAR) sensors for canopy-
cover assessments of LAI and PAI (Toda and Richardson 2018).

2.2.5. Soil conditions
Low soil moisture is one of the dominant drivers of forest die-

back (Adams et al. 2017; Choat et al. 2018) and, together with air
temperature, forest productivity, and silvicultural practices, also
influences decomposition of soil organic matter (SOM), rates of
soil carbon dioxide (CO2) emissions, and soil rhizosphere com-
munities with consequences for the carbon balance of forest eco-
systems (Valentini et al. 2000; Janssens et al. 2001; Reichstein
et al. 2003). Soil moisture measurements can be confounded by
inherent heterogeneity of forest soils and can be influenced by
sensor placement and density (Rundel et al. 2009). A variety of
sensors for indirect estimation of SWC are available on the mar-
ket, differing in technology, frequency of measurement, energy
requirement, and price (Susha Lekshmi et al. 2014). The most reli-
able and commonly used sensors for continuous SWC measure-
ments at the point scale are those based on electromagnetic
methods such as time domain reflectometry (TDR), which are
precise but relatively expensive, and frequency domain reflec-
tometry (FDR) and capacitance sensors, which are less expensive
and relatively accurate but more susceptible to soil environmen-
tal effects (Matula et al. 2016; Bogena et al. 2017) such as soil tex-
ture, electrical conductivity, and temperature (Kizito et al. 2008);
however, to create high-densitywireless sensor networks in remote
areas requires that single sensor costs are minimized while sensor
lifetimes are maximized (Matula et al. 2016). Consequently, FDR-
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based and capacitance sensors are the most widely used in SWC
sensor networks both at the plot (Pascual et al. 2019) and catchment
scales (Bogena et al. 2010). Recently, an increase in the deployment
of inexpensive and stand-alone sensors in ecological research stud-
ies is already contributing to databases linked to biogeography and
plant traits that can be used to develop valuable neural network
models to predict soil conditions (Hashimoto et al. 2015).
Microbial activity and SOM decomposition, as well as root res-

piration, are affected by soil moisture availability. Soil gas emis-
sions can be measured in the field with IR and laser-based gas
analyzers connected to multiple automated dynamic chambers
(Wingate et al. 2010; Courtois et al. 2019). These gas analyzers are
able to record simultaneous and continuous measurement of up
to five greenhouse gases (N2O, CH4, CO2, NH3, and H2O) as well as
their isotopic compositions (Midwood and Millard 2011). Major
drawbacks of such installations are the costs and energy require-
ments of the analyzers and pumps, which limit their deployment
in remote areas without a stable power supply.
Temperature strongly influences the biophysical and biochemical

processes in soils, and estimating soil temperature provides useful
information for understanding the energy exchange between atmos-
phere and land (Hillel 1998). In general, soil temperature ismeasured
in situ in correspondence with meteorological stations (Holmes
et al. 2012). At these sites, accurate long-time continuous series of
soil temperature measurements can be gathered at multiple depths
through the soil profile (Hamilton et al. 2007). Permanent nodes and
mobile devices may inform models to provide temporal patterns of
soil surface energy balance in specific forest patches; however, these
measurements are necessarily sparse across forest landscapes, limit-
ing their ability to truly represent the spatial dynamics of soil tem-
perature. To address this issue, statistical models and interpolation
techniques can be used, though heterogeneous terrain, complex to-
pography, and land cover add uncertainty to the estimates of soil
temperatures (Wu et al. 2016). Land surface temperature retrieved
from satellite images (i.e., multispectral imagery in visible NIR) may
provide an alternative to soil temperature estimation in bare soil
(Hassan-Esfahani et al. 2015); however, the use of remotely sensed
data is still challenging under the forest canopy (Shati et al. 2018), as
well as the relationship between soil temperature and vegetation
indices.

2.3. Biodiversity
Biodiverse ecosystems can be more stable and adaptable against

climate-induced stressors and disturbances (Pires et al. 2018). Real-
time biodiversity monitoring will rely on techniques that can help
assess changes in forest composition, including plant and animal
species distributions and abundance (Steenweg et al. 2017). Many
case studies have already demonstrated the feasibility of using stra-
tegically placed digital wildlife cameras that are triggered by the
movement of animals, from insects to reptiles to mammals to
birds. Data frommultiple fixed cameras that cover an extensive area
can be used to quantify relationships between animal distribution
range changes that can be correlated to ecosystem disturbances
caused by change in either climate or silvicultural management
practices or anthropic activities such as tourism (Astaras et al. 2017),
hunting (Bater et al. 2011), or illegal forestry activities, which gener-
ate their own signature acoustic spectra (Burivalova et al. 2019).
The combination of data from phenology cameras, as described

in section 2.2.4, and wildlife cameras can provide empirical evi-
dence for relationships between the behaviour of animal and
insect species and plant phenology and highlight climate change
induced synchronous or asynchronous relationships. High biodi-
versitymay buffer the negative effects of species-specific phenolog-
ical shifts and should thus be monitored. Researchers currently
recommend that future efforts should not focus solely on pheno-
logical synchrony but also monitor the time elapsed between the
abundance peaks of interacting species, as well as the strength of
their interaction, by integrating information throughout the

season, simultaneously accounting for the full pattern of phenol-
ogy and abundance (Cohen et al. 2018). In addition, testing for shifts
in peaks and interactions requires data covering a diversity of spe-
cies fromdiverse climates (Wolkovich et al. 2013). Indeed, there is a
strong need for observational field data outside the temperatemid-
latitudes and a need for the measurement of climatic drivers
beyond temperature (Wolkovich et al. 2013). In the past, this has
been hampered by the need for time-consuming ground-level stud-
ies, but advances in remote photo and video technologies can help
increase worldwide coverage of observational data.
The lack of standardized metadata, field protocols, databases,

and baselines currently limits the extensive use of cameras to
provide effective measurements of global biodiversity change
through a global camera network. Modest investments and col-
laborative efforts carried out to overcome these limitations could
harness the power of remote-camera technology and expand cur-
rent local-camera and crowdsourcing projects (see section 3) into
nationally or internationally coordinated efforts (Steenweg et al.
2017). Forests support a diverse array of sounds produced by
mammals, birds, amphibians, and insects that can be studied
within the soundscape ecology. Microphone networks can provide
an additional layer of data, complementing that obtained with
wildlife camera networks. Acoustical data may help to enable the
understanding of coupled nature–human dynamics across different
spatial and temporal scales (Pijanowski et al. 2011) by describing how
the sounds of a forest change over the season or over the long
term in response to forest management and changes in climate.
For example, relatively inexpensive, open-source field-deployable
microphone recording systems, e.g., the acoustic detector Audio-
Moth (Hill et al. 2018) based on artificial intelligence algorithms,
can be deployed in the environment, and recorded data can be an-
alyzed with a range of open-source software. A very recent pilot
study demonstrated the potential of AudioMoth to detect bat
echolocation by analyzing very large data sets generated from
continuous forest monitoring by low-cost acoustic sensors (Prince
et al. 2019). Machine-learning techniques have been applied to
bird acoustic recordings for automated recognition of bird song
units, identification of the daily activity of individual bird species
in different areas, and assessment of variations in bird songs over
the season and in different forest treemixtures (Ross et al. 2018).
The integration of landscape imaging and soundscapes with

other in situ data streams from climate sensors will enable scien-
tists and stakeholders to better connect patterns in biodiversity
change with local causes of biodiversity declines and (or) changes
in forest function that inadvertently affect climate or carbon
sequestration potential.

2.4. Data collection and wireless data transmission
Data collected in the forest from different untethered comput-

ing devices equipped with embedded sensors and actuators can
potentially be transferred to remote central servers via a wireless
communications technology for real-time displaying, storing,
processing, and analyzing (Ali et al. 2017). Such an organized
group of sensors is called a wireless sensor network (WSN). Every
sensor considered in the above sections reacts as a sensor node
because it detects and responds to a specific input and generates
an output, i.e., an electrical signal, which is transmitted to a
microcontroller for further processing. By using wireless com-
munications technology, e.g., the Global System for Mobile Com-
munications (GSM), the microcontroller transfers the data to the
Internet so that the end users can access the data via a server
from their office (Fig. 3).
AWSN can use generalist or specialist sensors. The sensors that

we described in the above sections are specialist sensors as they
belong to a new generation of sensors developed with a particu-
lar goal, e.g., measuring tree diameter increment growth (i.e.,
dendrometers) and transpiration (i.e., sap-flow probes). On the
contrary, generalist sensors are commercial off-the-shelf sensors
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that have been used for decades to monitor environmental cues
(e.g., thermistors, rain gauges, pressure transducers, etc.). The de-
velopment of specialist sensors has been increasing in recent
years due to newmicrocontrollers with high programming versa-
tility (electronics programming in integrated development envi-
ronments, IDE), standard compliance, and GSM technologies
used by mobile devices. Despite this, technological challenges
remain that slow the deployment of automated sensors, as illus-
trated in Table 1.
Dead zones and areas with sparse or no reception, e.g., in large

areas of Russia and Canada where communication towers may be
100s or 1000s of kilometres from a monitoring site, are problematic
and pose particular challenges for WSN implementation. Although
such problems may seem intuitive in northern treed peatlands of
Canada, they are significant limitations in much of Canada’s com-
mercial forests as well (for a map of Canadian cellular towers, see,
for example, https://www.ertyu.org/steven_nikkel/cancellsites.html).
Distance sites may therefore require relay nodes, but in practice,
their physical placement is constrained; relay nodes forward trans-
mission back to the base station and the cloud. This problem of node
deployment is NP-hard (Yang et al. 2012), consequently demanding
the exploration of other solutions. Here, the possibilities of har-
nessing satellite communicationsmayneed exploration.
The supply of energy to the instruments deployed in the field is

another issue that has historically hindered WSN development
and deployment. Lithium batteries, which can power individual
sensors for up to 10 years, are a recent improvement, but con-
cerns exist about the sustainability of lithium production and
recharging constraints. These concerns may be solved by green
technologies, designed to be more efficient in energy consump-
tion and conservation and (or) to utilize greener energy sources
than used previously (Deshpande et al. 2014). Solar and nascent
developments in nighttime photovoltaic cells (Deppe and Munday
2020) offer potential options but require a clear view of the sky for
optimum performance. Thermoelectric power generation utilizing
the temperature difference between the soil and the air can power
wireless sensors (Huang et al. 2019). Research in biophotovoltaics
(Tschörtner et al. 2019) is still at an early stage, as is that of harvest-
ing cosmic rays (Vanamala and Nidamarty 2020). Forests, by their
very nature, offer intriguing possibilities for energy harvesting:
experiments aimed at harvesting energy from treemovement have
been conducted in the past, allowing the development and success-
ful application of devices to power a wireless sensor node (McGarry
and Knight 2012). The possibilities of harvesting energy from tree
trunks, particularly in natural forests, has also been demonstrated,
and an energy harvesting based sensor node has been prototyped
(Souza et al. 2016).

Although powering the sensing component is feasible with
current and evolving technologies, data transmission is more
problematic as it is a power-intensive process. Thus, the degree to
which low-power, long-range protocols, e.g., LoRaWAN, may be
available over extended periods is problematic. At the same time,
the amount of data transmittable through such technologies is
limited. Additionally, conditions typical of many forests are chal-
lenging for data transmission due to their remoteness, rough ter-
rain, and the presence of obstacles. Nevertheless, it worth noting
that recent advances in network technologies are towards faster
speeds, with an undesirable side effect of reducing the distance
of transmission.
Sensors identified by a unique address can dynamically join

the worldwide network and collaborate and cooperate effi-
ciently to achieve different tasks (Christin et al. 2009). In this
way, a WSN can be part of the Internet of Things (IoT), a world-
wide network of interconnected uniquely addressable objects,
based on standard communication protocols (Khan and Abbasi
2016). The rapid emergence of IoT-based devices and communi-
cation techniques associated with wireless sensors open new
opportunities for collecting massive data and unravelling func-
tional processes. Wireless sensors connected to the Internet can
contribute to creating smart-forest early warning systems and
detect ecological thresholds beyond which forests will be at
risk. Indeed, real-time data from IoT may be used to detect early
EWSs of hazardous and extreme climatic events, disease out-
break, forest mortality, etc., allowing managers and scientists to
react rapidly. In all cases, difficulties in deploying sensor instal-
lations should not be underestimated; planning, designing, and
deploying WSNs in forest environments are challenging and
time-consuming.

3. Monitoring with remote sensing

3.1. Overview of remote-sensing platforms
Techniques and instruments to remotely sense ecosystem

properties and function have advanced considerably in the last
decade (Pettorelli et al. 2018). Data from remote-sensing plat-
forms, including satellites, airborne sensors, and UAVs, can be
integrated with data from tree- and stand-level sensors to scale
up in situ information across large regions to better understand
forest processes and threats, as well as to make possible studies
in remote locations with difficult access (Marvin et al. 2016).
Satellite imagery represents an essential tool for detecting

potential EWSs before sudden regime shifts in forest ecosystems.
Satellites are typically multisensor platforms. The speed of data
acquisition and its subsequent availability to users are currently
increasing due to a conflation of automated processing chains, big
data technologies, and cloud computing. A continued increase in

Fig. 3. Field data collection from sensors that acquire data in microcontrollers (1) connected to, e.g., autonomous supply of energy (2) and
send the data through GSM/Ethernet technologies (3) to a local server (4).

Torresan et al. 1757

Published by Canadian Science Publishing

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

IN
R

A
E

 o
n 

01
/0

5/
22

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 

https://www.ertyu.org/steven_nikkel/cancellsites.html


temporal, spatial, and spectral resolution is expected, depending
on the size of the satellite constellation, i.e., the set of similar types
of satellites with an identical function designed to operate in simi-
lar, complementary orbits for a shared purpose under shared con-
trol (Wood 2003). Commercial operators claim that hourly revisit
times are possible, with submetric spatial resolution. The constella-
tion’s observation capabilities, combined with the short revisiting
intervals, will be a formidable asset for early detection of forest dis-
turbances. The limited swath, i.e., the area imaged on the Earth’s
surface as the satellite revolves around the Earth, of remote-sensing
programs such as AVHRR, LANDSAT, and SPOT has been overcome
by the features of the Sentinel-2 constellation, which has a swath of
290 km, in comparison with the swath width of LANDSAT 5 TM,
LANDSAT 7, and ETM+, which is 185 km, and that of SPOT-5, which
is 120 km (Li and Roy 2017).
UAVs may be regarded as lightweight, agile, remote-sensing plat-

forms capturing high-resolution data that complement thewide-area
sensing capabilities of satellites and the point-based sensing provided
by in situ networks. Indeed, the exceptionally high resolution of
UAV-borne observations is comparable with those collected by sin-
gle-point sensors (Liang et al. 2019). The applicability of UAV-borne
sensing in forestry is extensive (Torresan et al. 2017), but several
issues affect the performance of UAVs, including power consumption
and regulation (Coops et al. 2019). Nevertheless, many efforts are put
in the fundamental future research agenda necessary for the deploy-
ment of fleets (also called swarms) of UAVs, i.e., a set of drones. Fleets
equipped with identical sensors may collaborate for acquiring eco-
logical data over large areas. Alternatively, fleets may be equipped
with different sensors when acquiring synchronously ecological in-
formation (Tahir et al. 2019).

3.2. Forest productivity
In past decades, changing climate has been identified as a major

driver of shifts in forest productivity (Beer et al. 2010). Such observa-
tions have been made throughout the world by combining dendro-
chronological, observational, flux, and satellite data (Babst et al.
2019). Forest growth and productivity can also be characterized
using remotely sensed data via physiological measurements, dimen-
sion analysis, and relationships of growth to foliage, concentrations,
and light (Coops 2015).
Top-of-atmosphere measurements of solar radiance from satel-

lite observations are used to estimate the photosynthetically active
radiation (PAR), which, successively, following light use efficiency
modelling approaches, is used to estimate gross primary produc-
tion (GPP) and net primary productivity (NPP) as indicators of forest
productivity. The characterization of forest growth and productiv-
ity via physiological measurements allows researchers to obtain
near real-time data products available for the final users in fewer
than 3 h from data acquisition from a number of online instru-
ments, e.g., through NASA’s LANCE (Land, Atmosphere Near real-
time Capability for Earth Observations) system. Nevertheless, the

sensitivity of near real-time satellite GPP products, here also
included MODIS products, is directly constrained by uncertainties
in the modelling process, especially in complex forest ecosystems
(Tang et al. 2015; Xie et al. 2019).
In assessing forest productivity by dimension analysis, Light

Detection and Ranging (LiDAR) and Radio Detection and Ranging
(RADAR) permit the direct detection of the 3D distribution of veg-
etation canopy components as well as subcanopy topography,
providing highly accurate estimates of vegetation height (Fig. 4).
The added value of LiDAR over satellite images derives from its

ability tomap a vertical structure of ecosystems that is used to de-
velop relationships between direct field measurements of tree
sizes (i.e., biomass and volume) and the metrics extracted from
LiDAR data. Airborne laser scanning (ALS) is the consolidated
technique to retrieve tree or stand parameters and to detect for-
est changes using multitemporal laser surveys, whether single-
or multi-spectral single-photon LiDAR (White et al. 2016; Yu et al.
2017; Wästlund et al. 2018). In general, ALS in forestry is only con-
venient for large-scale continuous forest cover (e.g., Canada, USA,
and Scandinavian countries) and is less affordable where the forest
cover is fragmented, as in most European countries. Such fragmen-
tation means that the vector will be much of the time over a land
cover different from forested areas and consequently the cost per
surface unit of forest is not advantageous. In addition, the agree-
ment between customer and vendor, the planification of the flight
campaign, and the acquisition and rendering of the data are opera-
tions within a chain that often takes considerable time (Gatziolis
and Andersen 2008). Spaceborne LiDAR has already provided im-
portant results in retrieving forest biometric parameters, con-
tributing to the long-term vegetation monitoring over large
spatial contexts (Chen et al. 2019). The footprint size (e.g., 25 m
in Global Ecosystem Dynamics Investigation, GEDI, mission) and
the space that separates the footprints in the long-track direc-
tion (e.g., 60 m in GEDI mission) make the spaceborne LiDAR
appropriate for applications in forest management.
Productivity via light and foliar concentration, i.e., the third

approach, uses the amount of foliage in stands, measured by LAI, as
a key indicator of forest growth principally due to its importance for
photosynthesis, transpiration, evapotranspiration, and, in turn,
GPP. It isworthmentioning that a proper determination of the bidir-
ectional reflectance distribution function (BRDF) is of relevance
when retrieving vegetation parameters by defining optimal geome-
tries (Verger et al. 2004). Efforts, e.g., the Compact High Resolution
Imaging Spectrometer (CHRIS) PRoject for On Board Autonomy
(PROBA), go in the direction of improving the current understand-
ing of directional properties of reflection from natural surfaces
such as forests (Barducci et al. 2004).

3.3. Forest health
Remote sensing is a key resource for up scaling in situ forest

measurements related to forest health (Masek et al. 2015). Besides,

Table 1. Advantages and challenges of the new generation of specialist sensors used for forest monitoring over time.

Step (see
Fig. 1) Advantages Challenges

1 Can cover large areas
Many measurements: radiation, cloudiness, sounds

The distance among sensor nodes in large ecosystems (radio
systems)

2 Autonomous monitoring with solar panels or lithium batteries Efficient use of energy
Supply of energy over long period Lithium-ion batteries and
solar panels (for these, large openings are required which
in closed-canopy forests is a problem)

3 Good GSM/Ethernet coverage
Easy implementation

Distance to communication towers

4 HTML–PHP–MySQL free software Data storage

Note:HTML, HyperText Markup Language; PHP, Hypertext Preprocessor; MySQL, Open Source Structured Query Language.
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in situ sampled data are required to add value to physical imaging
remote-sensing observations and to interlink the forest health
assessmentwith biotic and abiotic factors (Pause et al. 2016).
Early warning metrics for drought-induced tree physiological

stress and mortality from LANDSAT multispectral imageries can
provide a critical foundation for elucidating the physiological
mechanisms underpinning tree mortality in mature forests and
guiding management responses to these climate-induced distur-
bances (Anderegg et al. 2019). Later stages of drought stress are
detectable with more common red and IR bands of multispec-
tral sensors (e.g., normalized difference vegetation index,
NDVI; Lewi�nska et al. 2016). Shortwave IR combined with NIR
imaging can also be used to capture a fast reduction of tree foliage
and the consequent reductions in tree carbon capture and evapo-
transpiration (Otsu et al. 2018).
Hyperspectral sensors have demonstrated their potential in

the detection of early stages of forest stress with repeated meas-
ures (Tian et al. 2020). Hyperspectral imagery is promising and is
expected to improve on vegetation indices such as photochemi-
cal reflectance index (PRI), which is currently broadly used to
detect changes in leaf and thus tree health (Norman et al. 2016).
Radiative transfer models of the leaf, tree, and canopy stand re-
flectance are also being utilized to better leverage the reflectance
as measured bymultispectral and hyperspectral satellite sensors.
This approach also shows promise in understanding how the
remotely acquired observation relates to forest architecture and
biophysical characteristics related to stress. The potential of sim-
ulating broadleaf forest canopy spectral reflectance of models
such as ProSAIL (Jacquemoud et al. 2009), KUUSK (Kuusk 1995),
and ProFLAIR (Omari et al. 2013) has been proved.
The remote sensing of solar-induced fluorescence (SIF) is another

approach to assess photosynthetic capacity at the canopy level
(Frankenberg and Berry 2018). The increased interest in this
approach is motivated by the link of fluorescence to photosyn-
thetic efficiency, which could be exploited for large-scale monitor-
ing of trees status and functioning (Meroni et al. 2009). Potential
exists to combine SIF, reflectance, and chlorophyll content (or can-
opy chlorophyll content indices, CCCIs) to extract more informa-
tion from these data, which provide diagnostic information about
biotic and abiotic stressors affecting canopy photosynthesis
(Peteinatos et al. 2016). New hybrid indices that combine remotely
sensed data with climatic data and forest characteristics are also
being developed (Tadesse et al. 2020) and show promise to provid-
ing reliable, large-scale indicators of forest drought stress.
Multiple concurrent disturbances often affect the same forest

area and simultaneously impact forest health, i.e., insect and dis-
ease, wildfire andwind, and anthropogenic activities (e.g., logging).
In addition, one disturbance regime (e.g., wildfire) may influence
forest responses to other disturbances (e.g., disease) or vice versa,

causing interactions between disturbances. Differentiating between
insect- or disease-caused damage and other types of damage is not
possible using single sensors. For this, the development of a multi-
sensory and multiplatform approach of analysis and data process-
ing, taking advantage of the strengths of individual sensors, is
desirable (Chen et al. 2017). For example, LANDSAT time series can
be chosen for temporal analysis of diseases and insect progression,
while hyperspectral imaging could be used for tracking the early
signs of forest damage. The integration of multiple platforms and
multiple sensors shapes and adapts the user’s abilities to estimate
changes in biophysical and biochemical parameters in forests (Chen
et al. 2017), increasing accurate assessments of forest damage offer-
ing forest managers an opportunity to perform efficient disease and
insect control for a CSF.

3.4. Biodiversity
Remote sensing can provide information on species and struc-

tural diversity parameters and their changes over time (Innes
and Koch 1998). Automated forest interpretation at the tree level
using different sources of remotely sensed data allows the assess-
ment of tree species composition. ALS data alone represent an
effective source of data for detecting and delineating tree crowns
in conifer-dominated forests (Hastings et al. 2020) by processing
the raw point cloud to compute a wide range of vegetation met-
rics from the height probability distributions and from the relative
frequency distributions of vegetation heights. In mixed temperate
forests, successful crown delineation using ALS data are lower than
in coniferous forests due to the physical canopy traits that in turn
influence tree height, crown architecture (crown spreading and
leaf display), and how crowns interact with neighbouring crowns
(Hastings et al. 2020; Torresan et al. 2020); however, the integration
of ALS data with aerial high-resolutionmultispectral or hyperspec-
tral images (e.g., Dalponte et al. 2019), as well as with high resolu-
tion aerial NIR images (Persson et al. 2004), allow for tree species
classification. Also, satellite imagery, e.g., high spatial resolution
8-band WorldView-2 and 5-band RapidEye (Immitzer et al. 2012)
andWorldView-3 (Fang et al. 2020), has proven to be valid in species
classification. Dense high spatial resolution multispectral satellite
image time series (SITS) have been used to discriminate tree species
in temperate forests based on phenological differences (Sheeren
et al. 2016). In addition, multitemporal synthetic aperture radar
(SAR) has the potential for monitoring phenology and classifying
forests (R€uetschi et al. 2018; Proietti et al. 2020). An exciting recent
advance in remote sensing is the increasing ability to monitor the
amount and variability of deadwood in forest stands. The presence
of deadwood in forest ecosystems provides critical habitat for thou-
sands of species in forests (Parisi et al. 2018; Sandström et al. 2019),
thereby serving as an indicator of biodiversity (Oettel et al. 2020).
Standing dead trees can be identified and characterized within

Fig. 4. Slice of a point cloud acquired by a LiDAR system, with points coloured by return number (red, first return; green, second return;
blue, third return), evidencing the two-layered structure of a forest.
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managed stands using high-density ALS data (Marchi et al. 2018),
which can also be used to estimate the number of standing dead
trees within diameter classes (Bater et al. 2009). High spatial resolu-
tion aerial photographs taken from UAV with different angles is a
tested solution to increase the detection rate of fallen trees in de-
ciduous broadleaved forests (Inoue et al. 2014).

4. Monitoring with citizen science
Participatory sensing, crowdsourcing, and volunteered geographic

information (VGI), which refer to the general public’s involvement in
scientific activities, are novel approaches that have yet to be fully
exploited in research (Fritz et al. 2017). Citizen scientists may be
involved in all stages of scientific research, including hypothesis gen-
eration, data collection and analyses (Bonney et al. 2009), and active
participation in or co-creation of the scientific data product such as
in the case of Earth observation imagery (Grainger 2017). In particu-
lar, engaged citizenswithout professional status canprovide valuable
data on forest monitoring, supporting and complementing data col-
lected from sensors deployed in the field and remotely sensed data,
i.e., citizen science (Heigl et al. 2019). Research in this area has
increased rapidly in the last two decades, and there are now many
examples of citizen science projects covering a diverse set of fields
such as forest biodiversity, phenology, tree and forest cover, defores-
tation, biomass (Molinier et al. 2016), soil moisture (Fritz et al. 2017),
and land cover and land-use classification (Laso Bayas et al. 2016; Salk
et al. 2016). Initial case studies involving the use of sensors and UAVs
in citizen science are documented (Kim et al. 2016; O’Grady et al.
2016; Paul et al. 2018). Synergistic use of data fromdifferent platforms
such as satellites and UAVs will drive future collaborations with citi-
zen scientists.
The added value of citizen observations includes cost savings,mak-

ing data available at a higher frequency than achieved with research-
ers and technician field surveys (Fritz et al. 2017). Besides, citizen
science benefits research by making science open and transparent.
Instead of hiding behind academic walls and difficult-to-access scien-
tific journals than can perpetuate distrust of science (Cooper 2016), it
creates stronger public engagement and greater interest and knowl-
edge transfer (Carleton et al. 2020). Challenges regarding citizen sci-
ence include quality, equity, inclusion, and governance (Brovelli et al.
2020) and, increasingly, legal issues relating to privacy, ethics, and
licensing (Mooney et al. 2019); however, how professional scientists
perceive the value of participatory science represents a reliable indi-
cator of their likelihood to engage and collaborate. Working with in-
digenous communities and traditional knowledge gathering has
revealed that professional scientists also benefit when trained in the
citizen science perspective. Integrating traditional and scientific
knowledge can be successful and give good results; however, careful
planning and preparation, supported by strong personal relation-
ships, are prerequisites (Huntington et al. 2011).
Crucial elements in successful citizen science programs include

sufficient training and the type, scale, and location of the study
area under investigation. For the first aspect, studies suggest that
with adequate training and supervision, volunteers can undertake
tasks such as themonitoring of pheromone traps andmail samples
(Carleton et al. 2020) or collecting and recording treemeasurement
data for carbon stock estimation (Harrison et al. 2020) to ensure
reliable results. Aswell as training, needs for calibration and instru-
mentation must also be considered. Some scientific objectives can
bemetwith relatively little additional training or instrumentation;
however, others will require substantial capacity building. For the
moment, it may be sufficient to accept that some objectives are
beyond the current reach of citizen science, while recognizing that
in the future, it may be possible to facilitate training and enhance
instrument availability. For the second aspect, i.e., the scale of the
planned project, unevenness of coverage in participatory projects is
an acknowledged problem: the number of volunteers is invariably
higher in urban areas than in remote areas (Carleton et al. 2020). For

this reason, for mountain or boreal forests, the availability of a local
citizen science community may prove problematic and demand cre-
ative solutions.
Technology has transformed citizen science in the last decade

from an approach that was paper-based to one in which mobile
apps and web-based platforms are central (Sturm et al. 2017).
Technology also offers the opportunity for communities to de-
velop and possess their own apps and tools. In addition, open-
source software exists but often comes with many caveats: such
software is rarely up to date, and it is difficult to tailor to the
needs of individual projects. Initiating independent projects pro-
vides many challenges, some of which are insurmountable at
present. Citizen scientists who wish to design and launch their
initiatives usually lack the tools to do so, and on the other hand,
professional scientists who wish to engage with citizen scientists
are limited by suitable toolkits and infrastructure. The lack of
best-practice principles for mobile app and platform develop-
ment in citizen science is being filled by some initiatives that
collect recommendations that provide support and advice for
planning, design, and data management of mobile apps and plat-
forms (Sturm et al. 2017; Luna et al. 2018).

5. Data management
All preceding sections present a new generation of sensors and

monitoring tools that will generate massive amounts of data. Big
data analytics offer intriguing possibilities for the radical trans-
formation of how forests are managed (Liu et al. 2018, 2020). Such
analytics seek to deliver information fromwhich all actors in the
forestry chain can derive actionable insights. Data sources are
diverse, including in situ sensors, forestmachinery sensors, satel-
lites, citizen scientists, legacy information systems, and even
social media. Such diversity represents the complexity of forests
in three dimensions — ecological, economic, and social. When
considered in its totality, such data will likely continue to grow
exponentially over time. What constitutes big data is not its size
per se; instead, the construct relates to the degree to which the
data can be processed to meet business requirements on time.
Thus, attributes such as volume, variety, velocity, and veracity are
core to big data. No specific big data toolkit is necessary for forestry.
Instead, the immediate datamanagement problems are quitemun-
dane and archetypical of heterogeneous data sources such as from
intensive tree-level monitoring to citizen science to remotely
sensed data. These include diverse data structures, from differ-
ent collecting organizations in forests around a nation or around
the world, and complex data organization (Zou et al. 2019). Addi-
tional problems follow from these, including a chronic lack of
metadata, use of proprietary formats, and lack of support for
new standards or refining and improving existing standards.
As awareness of the value of data increases, the ownership of

data becomes a pertinent question. Consider, for example, when
hiring a contractor to undertake a thinning operation: who owns
the data collected by the contractor’s machinery, the contractor
or the plantation owner? Ownership rules will influence both
returns and the development of technologies (Coble et al. 2018).
Big data necessary for forest management is characterized by its
heterogeneity, as it must be obtained from a variety of public and
private sources, each with its own licensing conditions. Thus, it is
vital that the Findable, Accessible, Interoperable, and Reusable
(FAIR) data principles (Wilkinson et al. 2016) be applied where
possible. Where data are being made open, the correct licensing
schememust be specified; otherwise, such data cannot be used.

6. Conclusions
Effective CSF consists of balancing short- and long-term goals

of adaptation to and mitigation of climate-induced changes, to-
gether with the need for wood production, the protection of for-
est health and biodiversity, and the provision of important
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ecosystem services (Bowditch et al. 2020) such as reliable flows of
clean water and reducing soil erosion (Verkerk et al. 2020). Analy-
sis of these criteria, i.e., adaptation and mitigation, requires
more data than has previously been possible to collate, but a new
generation of increasingly reliable sensors and data transmission
and processing tools makes these analyses steadily more feasible.
In addition, the mounting of sensors on forest machinery and
the recruitment of citizen scientists provide new avenues for col-
lecting monitoring data. These ground-based measurements pro-
vide mutual support for remote sensing by satellite, airborne,
and UAV sensors, which have until now been limited by ground-
truthing, while simultaneously providing elaborate and power-
ful measures of forest condition. In principle, technology is suffi-
ciently mature to monitor a forest in real time and across large
temporal and spatial scales; in practice, the costs are still prohibi-
tive. The solution tomeeting real-timemonitoring requirements,
however, may not necessarily demand the development of radi-
cal new technologies. Instead, a complementary approach may
suffice that includes repurposing of existing technologies for
operation in harsh forest environments, innovative combina-
tions of existing technology suites, identification of alternative
data sources, and the novel conflation of existing data. Although
we have focused primarily on commercial forest zones, the prac-
tices that we describe could also be applied to other forested
regions such as the vast treed peatland areas in northern Canada,
United States, Fennoscandia, and Russia. Combining all sources
of data here considered with their potentialities will permit dif-
ferent actors to develop integrated platforms to monitor and
respond to climate change at local to continental scales. The
moment is ripe for the convergence of new ideas about what
should be measured and how. The possibility of data-rich cli-
mate-smart forestry appears to be on the verge of realization —

and just in time. The responsibility of forest management to
implement climate-change adaptation and mitigation practices
requires the synthesis of knowledge that cannot be achieved in a
data vacuum. This review synthesizes examples of how this vac-
uum can be filled.
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