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dAMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France

Abstract

For about twenty years, the question about the essential factors promoting the long-lasting coex-
istence of trees and grasses in humid savannas is at the center of several mathematical works, by
the construction of deterministic and/or stochastic mathematical models. A closely related topic
is coexistence of open savanna and forest patches at landscape scales, which raises the challenge of
accounting for contrasted spatial patterns under similar climate conditions through fire mediated
tree-grass interaction models. In this work, we propose and study a deterministic spatio-temporal
fire-mediated tree-grass interactions model. The model is based on two nonlocal reaction-diffusion
equations with kernels of intra and inter-specific interactions, corresponding to woody and grassy
biomasses. A novelty in this paper is the consideration of a kernel-based nonlocal facilitation of
trees by other trees to promote growth of seedlings/shrubs and, indirectly, limit fire propagation
and its impact. We also take into account a kernel-based nonlocal competition of trees on grasses
for light availability and nutrients. A qualitative analysis of the model is carried out and it reveals
several ecological thresholds that shape the overall dynamics of the system. Depending on these
thresholds, monostability of the forest, grassland or savanna space-homogeneous stationary state
and multistabilities (i.e. involving more that one space-homogeneous stationary state) are proven
possible. Thanks to the nonlocal biomasses interactions, our model accounts for the occurrence
of space inhomogeneous solutions, including a possibly periodic spatial structuring sometimes ob-
served in the humid savanna zone. Specifically, linear stability analyses, performed in the vicinity
of space-homogeneous stationary states, provides conditions for the appearance of space inhomo-
geneous solutions including spatially periodic or aperiodic ones. Finally, numerical simulations
are presented to illustrate our theoretical results. Notably, we verify that the computed spatial
wavelengths were in good agreement with the predictions from the theoretical analysis.

Keywords: Tree, Grass, Nonlocal interaction, Facilitation, Competition, Reaction-diffusion
equations, Vegetation patterns

1. Introduction

Savannas are complex ecosystems characterized by the co-occurrence of trees and grasses with-
out one lifeforms excluding the other (Higgins and Bond [1]). They are also defined as a biome
that corresponds to warm mean annual temperatures (> 20◦C) and a broad range of intermediate
mean annual rainfall (Yatat Djeumen et al. [2], Sarmiento [3]). Covering ca. 12% of the global land
surface (February and Higgins [4]), savannas occupy in Africa, ca. 50% of the land area.

Within specific stretches of the rainfall gradient, vegetation may sometimes exhibit plausibly
self-organized physiognomies also termed as patchy vegetation or vegetation mosaics. Indeed, as
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pointed out by Yatat Djeumen et al. [5], there are several empirical evidences that highlight the
existence of vegetation mosaics. Patches of vegetation display dense clusters of shrubs, grasses or
trees and can be interpreted as regular spot structures or localized structures (Tlidi et al. [6]).
These mosaics involve either bare soil (“desert”) versus vegetation (herbaceous or woody) in arid,
semi-arid regions (Lefever and Lejeune [7]; Lefever et al. [8]; Lefever and Turner [9]; Couteron and
Lejeune [10]; Couteron et al. [11]; HilleRisLambers et al. [12]; Rietkerk et al. [13]; Gilad et al. [14];
Pueyo et al. [15, 16]; Deblauwe et al. [17] ), or grasslands/savannas versus forests in temperate as
well as humid tropical regions (Youta Happi [18]; Hirota et al. [19]; Jeffery et al. [20]; Xu et al.
[21]; Stall et al. [22] and references therein; see also figure 1). Empirical evidences suggest that
vegetation mosaics in humid regions barely feature periodic patterns. Most often, they are aperiodic
but, with quite sharp boundaries like isolated groves or savanna patches encircled by forests.

Observation of these mosaics further motivated several researches that aimed to study and
understand how these patterns may arise and the modalities of transitions between vegetation states
that could substantiate or not the theory of abrupt shifts or catastrophic transitions in vegetation
ecology (see for instance Scheffer et al. [23, 24]; Scheffer and Carpenter [25]; Staver et al. [26];
Favier et al. [27] for more details). It is well-known that at biome scale, vegetation cover displays
complex interactions with climate. For instance, any shift from savanna to forest vegetation not
only means increase in vegetation biomass and carbon sequestration but also may translate into
changes in the regional patterns of rainfall (Oliveras and Malhi [28]). Therefore, being able to
predict or understand the process that shapes savanna dynamics and possible transitions within
vegetation patterns can help to figure out global distribution of savannas, orient their evolution
in the face of recurring climatic changes in Africa (Dohn et al. [29]) and sustainably manage the
natural resources provided by savanna ecosystems.

To understand such self-organized vegetation formations and associated dynamics along the
rainfall gradient, theoretical approaches are required. Mathematical modelling is a useful tool to
describe dynamics of complex systems and has been used since decades in various fields that include
finance, biology, epidemiology, agronomy, ecology. Despite field observations that point out spatial
patterns of vegetation or vegetation mosaics (see e.g. figure 1), how tree-grass interactions proceed
in space and make vegetation propagate has insufficiently been taken into account in the study of
savanna dynamics, in contrast to the insights provided by modelling regarding bare soil-vegetation
mosaics in drylands. Indeed, tree-grass interactions in savanna ecosystems (fire-prone or not) have
been very often modelled through frameworks that implicitly acknowledge space (see the review of
Yatat Djeumen et al. [5]). According to Borgogno et al. [30], the modelling of spatial mechanisms
of tree-grass interactions includes discrete kernel-based and partial differential equations (PDE)
frameworks. Discrete kernel-based frameworks include cellular automaton (CA) models. CA models
have been use in ecology, to explain formation of patterns in fire-prone savannas (Accatino et al.
[31]), in arid and semi-arid savannas (Borgogno et al. [30], Feagin et al. [32]). Accatino et al. [31]
developed a CA model to investigate how trees can invade the grass stratum in humid savannas
despite repeated fires. Their results show that trees can invade the grass stratum and finally
suppress fire spread because one of the following occurs: (a) trees may frequently resprout and
form a population that persists despite repeated effective fires; (b) trees may be fire-resistant; (c) if
trees are fire-vulnerable they may cluster and grow in density until grass growth is suppressed and
fire prevented. One should note that, only (c) may require spatially-explicit modelling of tree-grass
interactions. However, they also show that fire may be effective in preventing the initiation of
the invasion process in the grass stratum. But once the invasion process has begun, fire alone is
not able to reverse it because of the combinated strategies employed by trees i.e. resprouting, fire
resistance or clumping (see also Yatat Djeumen et al. [5]).

However, since CA models are simulation-based and generally involve a fairly large number
of parameters, it is not easy/possible to assess how model parameter variations may influence
the model outcomes. In many cases, it is not easy to use mathematical analysis to thoroughly
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understand the behavior and properties of CA models (Yatat Djeumen et al. [2]). Therefore, for the
specific case of fire-prone savannas, it is desirable to provide insights into the dynamical properties
of extensive savanna-forest areas for which data are scarce but that however need decisions in
aspects such as fire management, grazing rules, or wood harvest. Spatially-explicit mathematical
models that may allow mathematical tractability are thus desirable and rely on PDE frameworks.

Most of the works done using PDE, were carried out in the arid or semi-arid environmental
context, using a reaction-diffusion-advection system (emphasizing the dynamics of vegetation and
water) or using an integro-differential equation expressing kernel-based modelling of interactions
between plants (see the review of Borgogno et al. [30]). The goal of that type of modelling is
to understand the mechanisms that produce spatial patterns in arid and semi-arid savannas. In
reaction-diffusion-advection systems, authors attribute pattern formation to positive feedback be-
tween vegetation (trees and grasses) and water availability (Klausmeier [33], Gilad et al. [14], Meron
et al. [34], Sherratt [35]). Two main processes are identified as responsible for this positive feed-
back. The first one is the flow and infiltration of surface water into vegetated areas and the second
feedback process is water up-take by the plant roots that is longer for larger plants (Meron et al.
[34]). Such feedback is central to another framework to address vegetation patterns in arid and
semi-arid savannas and that is entirely based on kernels that express nonlocal interactions between
plants. Two types of non-local mechanisms received a particular attention: facilitative interactions
between plants, that promote water infiltration and reduce evapotranspiration, and competitive
interactions among them for water and nutrients. It is now acknowledged that pattern formation
in arid systems can be explained by a combination of long distance competition and short distance
facilitation (Lefever and Lejeune [7], Lejeune et al. [36], Lefever et al. [8], Lefever and Turner [9],
Couteron et al. [11]). A common point of these two classes of studies is the view that the pat-
tern formation phenomenon is a symmetry-breaking process that induces instability in an uniform
vegetation state.

Figure 1: Some vegetation mosaics of trees and grasses in Zambia and in Cameroon.

Only a few mathematically tractable and space-explicit tree-grass interactions models have
been designed for humid environments. For instance, Yatat Djeumen et al. [2] studied a PDE-
based model where dynamics of a forest-grassland pattern were studied by the mean of a bistable
travelling wave. Notably, they showed that depending on the fire frequency, forest could either
invade grassland (i.e. forest encroachment) or recede. Goel et al. [37] examined, using a reaction-
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diffusion model, the contribution of dispersal to determining savanna and forest distributions. Their
reaction-diffusion model considered a one-variable (scalar) equation describing the dynamics of tree
cover and took into account fire and mean annual rainfall. Their 2D reaction-diffusion model was
able to reproduce the spatial aggregation of biomes with a stable savanna-forest boundary.

In the same vein, Wuyts et al. [38] proposed a reaction-diffusion model of Amazonian tree cover.
Their model was able to reproduce some observations of spatial distribution of forest versus savanna.
However, as pointed out in Yatat Djeumen et al. [2], modelling biomasses, instead of covers like
in [37, 38], helps to take into account the fact that plant types are not mutually exclusive at a
given point in space since field studies suggested that grass often develops under scattered tree
crowns (see Yatat Djeumen et al. [2] and references therein). Moreover, [37, 38] emphasized the
effect of precipitation on possible vegetation transitions while Yatat Djeumen et al. [39] suggested
that, interplay between fire and water availability may give more realistic scenarios of vegetation
distribution or transitions. Recently, Patterson et al. [40] proposed to bridge the gap between
ecological models with macroscopic viewpoints (deterministic models) and microscopic descriptions
of stochastic transitions (stochastic models). They studied a spatial extension of the tropical cover
model of Staver and Levin [41], characterized by nonlocal interactions describing the evolution of
the probability for a patch of landscape to be in a given state (to be understood as, small spatial
areas of the typical size of a single tree, allowing growth of new trees). From an ecological stand
point, the analysis of their model enabled a more thorough understanding of the determinant of
forest-savanna boundary, particularly in the presence of precipitation, resources limitation and
climate changes. Notwithstanding notable exceptions, like Patterson et al. [40], a common point of
some of these models is that authors mainly relied on numerical simulations to render some spatial
structures and relate them to processes. However, due to the absence of qualitative analyses, it is
quite difficult to assess how model outcomes respond to model parameter variations.

In the context of humid savannas, patterns approaching regularity are fairly scarce, but not
absent (see Figure 1 pannel (a) and also Lejeune et al. [36] or Tlidi et al. [6]). Another class of
patterns is made of clearly aperiodic groves in the context of a mosaic that often corresponds to
savannas transiting to forests (e.g. see Figure 1 pannel (b)).

Our objective in this paper is therefore to build a mathematically tractable space-explicit PDE-
like model in order to study dynamics of spatial structuring of vegetation in wet savanna zones
(Figure 1, pannel (b)). Tractability is an important property because it allows an efficient explo-
ration of all parts of the parameter space ensuring that interesting situations, notably linked to
multistability, are not missed as it might happen if only relying on computer simulations like in
CA-based models (Yatat Djeumen et al. [39]). Another aim is to identify key mechanisms and
bifurcation parameters that may shape possible transitions of vegetation physiognomy and trigger
spatial pattern emergence in wet savannas. Therefore, based on a mathematical model, we aim to
give new insights for the development of relevant management plans of forest-savanna mosaics. Our
model is based on, and therefore extend, the recent ODE model of Yatat Djeumen et al. [39]. Indeed,
based on a minimalistic (in terms of state variables and parameters) ODE model, Yatat Djeumen
et al. [39] analysed fire-mediated tree-grass interactions and obtained a stability map within the fire
vs. mean annual rainfall parameters space. They delineated regions of monostabilities (i.e. where
desert, forest, grassland or savanna is stable), regions of multistabilities involving forest, grassland
and savanna as well as multistabilities involving several savanna states. In addition, for all levels of
rainfall, decreasing woody biomass with increasing fire frequency was verified contrary to almost all
recent works of the same complexity or less (e.g. Accatino et al. [42]). Our model takes into account
the fire resistance strategy of trees, and the main processes present in Yatat’s model, such as the
grass-fire feed-back and decreasing fire impact with woody biomass. In addition, we incorporate
nonlocal interaction terms of intra and interspecific competition. In fact, intraspecific competition
influences the growth of species (either trees or grasses) and ultimately changes the dynamics of the
entire population (Kothari et al. [43]) and interspecific competition (i.e. asymmetric competition
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of trees on grasses) leads to a reduction in grass cover and therefore a reduction in the spread and
intensity of fires. Though this paper puts emphasis on the conditions for stable, spatially regular
patterns, it opens prospects for studying transient and metastable patterns. The rest of the paper
is organized as follows: section 2 presents the construction of the model, section 3 deals with the
theoretical analyses of the model including the existence and uniqueness of solutions and linear
stability analysis of homogeneous stationary solutions. Section 4 deals with numerical illustrations
of theoretical results.

2. Model construction

Our model is based on Yatat Djeumen et al. [39] where authors considered two state variables,
G(t) and T (t) that stand for the grassy biomass and the woody biomass at time t, respectively (G
in t.ha−1 and T in t.ha−1). In Yatat Djeumen et al. [39], the following hypotheses are done:

• Trees and grasses biomasses have a logistic growth.

• Grass biomass mortality or suppression may result from natural mortality, external factors
(grazing, termites, human actions, etc), interactions with tree biomass and fire.

• Tree biomass mortality may result from natural mortality, external factors (browsers, human
actions, etc) or is fire-induced. In fact, fire momentum is an increasing nonlinear function of
G, while its impact on woody vegetation is a decreasing nonlinear function of woody biomass
T .

Starting from these assumptions, we incorporated a spatial component on state variables. Precisely,
G(x, t) and T (x, t) denote the normalized densities (by grass and tree carrying capacities KG and
KT , in t.ha

−1) of biomass of grass and tree, respectively, at a spatial point x and at a time t. Then,
0 ≤ T (x, t) ≤ 1 and 0 ≤ G(x, t) ≤ 1. We consider the following assumptions:

• Tree and grass biomasses, have a logistic growth but with an intraspecific competition which
takes place in a nonlocal way, through the respective root systems of the two lifeforms. In
fact, a tree (respectively grass) located at a point x, can consume resources (water, nutriment)
at a point y where, another tree (respectively grass) is located or where its roots are present.
Then,

γTT (x, t)

(
1−

∫ +∞

−∞
ϕM2(x− y)T (y, t)dy

)
and γGG(x, t)

(
1−

∫ +∞

−∞
ϕM1(x− y)G(y, t)dy

)

(1)
describe the logistic growth with intraspecific competition where, for i = 1, 2, the kernel
ϕMi(x − y) represents, the level of consumption of resources in the area [−Mi;Mi] of the
space domain, γG (respectively, γT ) denotes the intrinsic growth rate of grasses (respectively,
trees).

• According to Craine and Dybzinski [44], trees facilitate the germination and the recruitment
of new trees by improving the conditions under or around the canopy. In fact, sapling es-
tablishment for example depends on tree cover, not just because of seed production but also
by local facilitation of seedlings and saplings by other trees via hydrological facilitation and
shading (Li. et al. [45]). Then, we assume that there is a factor of cooperation Ω between
trees that promotes regrowth and growth of young trees, helping them to reach a fire and/or
browser non-vulnerability height. Hence the γT coefficient of exponential growth in equation
(1) is substituted by γT (1 + ΩT ).
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• Trees negatively impact the dynamics of grass biomass in a nonlocal way. Indeed, a tree
located at a point y can, either by its root system or by the shade created by its crown,
reduces the density of grasses located at a point x by reducing the resources (light availability,
nutrients) in x. Then, the term

γTGG(x, t)

∫ +∞

−∞
ϕM2(x− y)T (y, t)dy (2)

describes this nonlocal interspecific impact where γTG = KT ηTG and ηTG is the tree-grass
interaction parameter in ha.t−1.yr−1. The consequence here is the reduction of the grass
continuum on the ground, which will reduce the spread of fire. This term will depress grass
biomass growth.

• The function describing the impact of fires, ω(G), on tree biomass depends on G. Indeed, in
savanna ecology it is widely admitted that dried-up grass biomass is the main factor controlling
both fire intensity and spreading capacity. For simplicity, we combined these two properties
of fire in a single (fire momentum), increasing function of grass-biomass, expressing that when
the average herbaceous biomass is in its highest range, fires simultaneously display the highest
intensity and affect all the landscape. Conversely, low grass biomass due to aridity, grazing
or tree competition, will make fires of low intensity and/or unable to reach all locations in a
given year thereby decreasing the actual average frequency (see for instance Yatat Djeumen
et al. [39]). Following Tchuinte et al. [46], Yatat Djeumen et al. [2, 39], we consider a Holling
Type III function

ω(G) =
G2

G2 + g20
, (3)

where g0 =
µ

KG
and µ is the grass biomass at which fires reach its half maximal momentum.

• We consider a function of fire-induced tree mortality that decreases with the cumulated woody
biomass around any space point x. If trees are numerous and/or tall, then their mortality
due to fire will be reduced. Indeed, tree parts above the flame zone are immune to topkills.
This function is therefore, a decreasing function of tree biomass. In analogy with the work of
Martinez-Garcia et al. [47], we consider a function of the form :

VT (x) = exp

(
−p
∫ +∞

−∞
ϕM2(x− y)T (y, t)dy

)
, (4)

where p = KT δ and δ is a parameter proportional to the inverse of biomass destroyed at
intermediate level of mortality, in t−1.ha, see also Yatat Djeumen et al. [39] for a nonspatial
version of VT .

• We also assume, according to Yatat Djeumen et al. [2], that grass biomass and tree biomass,
display local isotropic biomass diffusion in space with the coefficient DG and DT respectively,
that are modelled with Laplace operators. Here, as a first approximation, we consider local
diffusion of biomasses and neglect the long-range seed dispersal.

6



All this leads to the following model:





∂G

∂t
= DG

∂2G

∂x2
+ γGG

(
1−

∫ +∞

−∞
ϕM1(x− y)G(y, t)dy

)
− δGG

−γTGG

(∫ +∞

−∞
ϕM2(x− y)T (y, t)dy

)
− λfGfG,

∂T

∂t
= DT

∂2T

∂x2
+ γTT (1 + ΩT )

(
1−

∫ +∞

−∞
ϕM2(x− y)T (y, t)dy

)
− δTT

−λfT fω(G) exp
(
−p
∫ +∞

−∞
ϕM2(x− y)T (y, t)dy

)
T,

(5)

where x ∈ K = (−l, l) and t > 0. Parameters are defined in table 1 bellow. The initial data are

0 ≤ T (x, 0) = T0(x) and 0 ≤ G(x, 0) = G0(x), (6)

where G0(x) and T0(x) are bounded and sufficiently smooth functions. In addition, we also consider
homogeneous Neumann boundary condition:

∂T (x, t)

∂x
=
∂G(x, t)

∂x
= 0 at x = −l and x = l, l > 0. (7)

We assume that the kernels ϕMi , (i = 1, 2) are nonnegative even functions with compact support
in the interval [−Mi,Mi]. Then, for 0 ≤Mi ≤ l, we consider the step function kernels:

ϕMi(x) =





1

2Mi
, |x| ≤Mi,

0 , |x| > Mi,
i = 1, 2,

with ϕ0 a Dirac function and

∫ +∞

−∞
ϕMi(y)dy = 1. For the chosen kernel function ϕMi , the strength

of nonlocal interaction is the same with the range [x−Mi, x+Mi]. However, other forms of kernels
have been considered in the literature dedicated to pattern formation, notably Gaussian kernels and
Laplace kernels (see for instance Lefever and Lejeune [7], Lefever et al. [8], Lefever and Turner [9]).
The choice of the step function kernels in this work was mainly motivated by the type of nonlinear-
ities in our model and model’s mathematical analysis. Indeed, we found that Gaussian and Laplace
kernels are not able to induce patterns with our model (see also Remark 4, page 15 or Remark 6,
page 16). Following Yatat Djeumen et al. [39], the f (in yr−1) parameter is taken as constant
multiplier of ω(G) in system (5), and we interpret it as a man-induced ‘targeted’ fire frequency (as
for instance in a fire management plan), which will not automatically translate everywhere into
actual frequency of fires of notable intensity (because of ω(G)). With this interpretation, the actual
fire regime may substantially differ from the targeted one, as frequently observed in the field (see
for instance Diouf et al. [48] in southern Niger). We therefore distinguish fire frequency from fire
intensity because grass biomass controls fire spread (see e.g. Govender et al. [49], McNaughton
[50], Yatat Djeumen et al. [2] and references therein).
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Symbols Description Units
γG Intrinsic growth of grasses yr−1

δG Grass biomass loss due to human activities and herbivory yr−1

λfG Portion of grass biomass loss due to fire
γTG Tree grass interaction parameter yr−1

γT Intrinsic growth of trees yr−1

δT Tree biomass loss due to human activities yr−1

λfT Portion of tree biomass loss due to fire
p proportional to the inverse of biomass destroyed at intermediate level of mortality
Ω Cooperation factor
f fire frequency yr−1

DG Grass biomass diffusion rate ha2.yr−1

DT Tree biomass diffusion rate ha2.yr−1

M1 Range of grass spatial nonlocal interaction m
M2 Range of tree spatial nonlocal interaction m

Table 1: Definition of parameters used in the model.

3. Mathematical analysis

3.1. Existence and uniqueness of solutions of system (5)-(7)

Let K = [−l, l] be the closure of K, and for any τ > 0, we set:

Dτ = K × (0, τ ], Dτ = K × [0, τ ], Sτ = ∂K × (0, τ ]. (8)

Denote by Cα(Dτ ) the set of Hölder continuous functions in Dτ with the exponent α ∈ (0; 1), and
C(Dτ ), the set of continuous functions in Dτ . Denote also by C2,1(Dτ ) the set of functions that
are twice continuously differentiable in x and once continuously differentiable in t. For simplicity,
throughout this paper, we denote:

f1(G,T ) = γGG (1− ϕM1 ∗G)− δGG− γTGG (ϕM2 ∗ T )− λfGfG,
f2(G,T ) = γTT (1 + ΩT ) (1− ϕM2 ∗ T )− δTT − λfT fω(G) exp (−pϕM2 ∗ T )T,

(9)

with

(ϕM1 ∗G) (x) =
∫ +∞

−∞
ϕM1(x− y)G(y, t)dy and (ϕM2 ∗ T ) (x) =

∫ +∞

−∞
ϕM2(x− y)T (y, t)dy (10)

where ϕMi is a spatial kernel function satisfying:

∫ +∞

−∞
ϕMi(y)dy = 1, i = 1, 2. (11)

Definition 1. (Tian et al. [51])
A pair of nonnegative functions Ũ = (G̃, T̃ )′ and Û = (Ĝ, T̂ )′ ∈ C(Dτ ) ∩ C2,1(Dτ ) is called upper

8



and lower solutions of (5) if Ũ ≥ Û and if

∂G̃

∂t
−DG∆G̃ ≥ γGG̃

(
1− ϕM1 ∗ G̃

)
− δGG̃− γTGG̃

(
ϕM2 ∗ T̂

)
− λfGfG̃, in Dτ

∂T̃

∂t
−DT∆T̃ ≥ γT T̃ (1 + ΩT̃ )

(
1− ϕM2 ∗ T̃

)
− δT T̃ − λfT fω(Ĝ) exp

(
−pϕM2 ∗ T̃

)
T̃ , in Dτ

∂Ĝ

∂t
−DG∆Ĝ ≤ γGĜ

(
1− ϕM1 ∗ Ĝ

)
− δGĜ− γTGĜ

(
ϕM2 ∗ T̃

)
− λfGfĜ, in Dτ

∂T̂

∂t
−DT∆T̂ ≤ γT T̂ (1 + ΩT̂ )

(
1− ϕM2 ∗ T̂

)
− δT T̂ − λfT fω(G̃) exp

(
−pϕM2 ∗ T̂

)
T̂ , in Dτ

(12)

∂Ĝ

∂t
,
∂T̂

∂t
≤ 0,

∂G̃

∂t
,
∂T̃

∂t
≥ 0 on Sτ .

G̃(x, 0) ≥ G(x, 0), T̃ (x, 0) ≥ T (x, 0), Ĝ(x, 0) ≤ G(x, 0) T̂ (x, 0) ≤ T (x, 0) x ∈ K.

The ordering relation Ũ ≥ Û means that G̃ ≥ Ĝ and T̃ ≥ T̂ for (x, t) ∈ Dτ .
For a given pair of ordered upper and lower solutions Ũ and Û, we set:

⟨Û, Ũ⟩ =
{
U = (G,T )′ ∈ C(Dτ ) : Û ≤ U ≤ Ũ

}
. (13)

Let us consider the following thresholds:





RG =
γG

δG + fλfG
,

RG,0 =
γG
δG
,

RT,0 =
γT
δT
.

(14)

Our model is designed for humid savannas where we assume that rainfall is sufficient to ensure that

RG,0 > 1, and RT,0 > 1. (15)

Hence, in the rest of the paper, we assume that (15) holds true.

Theorem 1 (Existence and uniqueness of global solution). Assume that the following three condi-
tions are valid.

• RG > 1,

• the initial functions G(x, 0) and T (x, 0) ∈ Cα(Dτ ) ∩ C(Dτ ) and

• 0 ≤ (G0(x), T0(x))
′ ≤ 1.

Then, the nonlocal reaction-diffusion system (5)-(7) admits a unique global solution U∗(x, t) =
(G∗(x, t), T ∗(x, t))′ for (x, t)′ ∈ K × (0,+∞) and

0 ≤ G∗(x, t) ≤W1, 0 ≤ T ∗(x, t) ≤W2, (16)
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where

W1 = max

{
supK G(0, x), 1− 1

RG

}
,

W2 = max

{
supK T (0, x), 1− 1

RT,0

}
, if Ω = 0,

W2 = max




supK T (0, x),

√
(1− Ω)2 + 4Ω

(
1− 1

RT,0

)
− (1− Ω)

2Ω




, if Ω > 0.

Proof. See Appendix A, page 35.

3.2. Space homogeneous steady states and linear stability analysis

Our aim in this section is to derive a condition on spatial convolution such that an equilibrium
or space homogeneous steady state is locally stable in the case M1 =M2 = 0 but unstable for some
Mi > 0, i = 1, 2.

3.2.1. The local case: M1 =M2 = 0

Due to the fact that the local spatio-temporal model (LSTM) associated to the system (5)
is quasi-monotone decreasing (Smith [52]), we have the two following consequences. First, the
LSTM can not lead to pattern formation (see e.g Kishimoto and Weinberger [53], Banerjee and
Volpert [54], [55]) and second, the linear stability analysis of homogeneous steady states associated
to LSTM is the same as for the space-implicit model i.e., the ODE model associated to system (5).
The space-implicit ODE model corresponding to system (5) is:





dG

dt
= γGG(1−G)− δGG− γTGTG− λfGfG,

dT

dt
= γTT (1 + ΩT ) (1− T )− δTT − λfT fω(G) exp(−pT )T,

(17)

with non negative initial data.
In this part, we are interested in the behavior of steady states of system (17), notably in the

characterization of their stability properties. Recall that steady states of system (17) are also space
homogeneous steady states of system (5). Steady states of (17) are solutions of system (18):

{
γGG(1−G)− δGG− γTGTG− λfGfG = 0,
γTT (1 + ΩT )(1− T )− δTT − λfT fω(G) exp(−pT )T = 0.

(18)

Recall that we assumed that (15) is valid meaning that, the desert (the state with absence of
vegetation) can not be stable. The following result is valid.

Proposition 1. (Steady states of system (17))
The system (5) admits three homogeneous steady states.

a) a desert steady state E0 = (0, 0)′.
b) a forest steady state such that:

∗ When Ω = 0, then ET1 =

(
0, 1− 1

RT,0

)′
is the forest steady state. This is the case of

no tree-tree facilitation.
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∗ When Ω > 0, then ET2 = (0, T2)
′ =



0,

√
(1− Ω)2 + 4Ω

(
1− 1

RT,0

)
− (1− Ω)

2Ω




′

is

the forest steady state. This is the case of tree-tree facilitation.

c) a grassland steady state:

EGe = (Ge, 0)
′ =

(
1− 1

RG
, 0

)′
.

Remark 1. It is straightforward to observe that ET2 is an increasing function of Ω.

We are now interested in the coexistence steady state (savanna steady state); set:

a = −λfGf + δG
γTG

,

b =
γG
γTG

,

θ = 2(a+ b)bΩγT + γT (1− Ω)b,
α = ΩγT b

2,
q = (γT − δT ) + γT (Ω− 1)(a+ b)− ΩγT (a+ b)2,
m = λfT f exp (−p(a+ b)) ,

θ∗ =
24α+mpb

(
(pb)2 + 6(pb) + 6

)
exp(pb)

6
,

and

RT =
γT

δT + λfT fω(Ge)
, RF,f =

γG
δG + λfGf + γTGTi

, R1
Ω =

γT (1− Ω)

pλfT fω(Ge)
. (19)

Proposition 2. (Savanna steady state)

• case I: f = 0.
If RF,f=0 > 1, then we have a unique savanna steady state Es = (G∗, T ∗)′ such that

G∗ = 1− 1

RF,f=0
and T ∗ = Ti, i = 1, 2. (20)

• case II: f > 0 and γTG = 0.
The savanna steady state E∗ = (G∗, T ∗)′ verifies:

{
G∗ = Ge

ΩγT (T
∗ − T2)(T

∗ − T2−) + λfT fω(Ge) exp(−pT ∗) = 0
(21)

where T2− = −
(1− Ω) +

√
(1− Ω)2 + 4Ω(1− δT

γT
)

2Ω
. Hence:

∗ if R1
Ω > 1, then there may exist 0 or 1 savanna steady state.

∗ if R1
Ω < 1, then there may exist 0, 1 or 2 savanna steady states.

• case III: f > 0 and γTG ̸= 0.
The savanna steady state Es = (G∗, T ∗)′ must satisfy these two relations:

− α(G∗)4 + θ(G∗)3 −m exp(pbG∗)(G∗)2 + (q − αg20)(G
∗)2 + θg20G

∗ + qg20 = 0, (22)

and
T ∗ = (a+ b)− bG∗. (23)
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Moreover G∗ must satisfy the inequality

max

{
Ge −

γTG

γG
; 0

}
< G∗ < Ge. (24)

We can therefore summarize the maximum number of savanna steady states according to the
following cases:

• Case 1: θ < mpb

Condition q < m+ αg20 q > m+ αg20
Maximal number of savanna steady states 2 3

Table 2: Maximal number of savanna steady states of system (17) with θ < mpb

• Case 2: θ > mpb,

Condition θ < θ∗ θ > θ∗

Maximal number on savanna steady states 4 3

Table 3: Maximal number of savanna steady states of system (17) with θ > mpb

Proof. See Appendix B, page (38).

Remark 2. Let us set

R0
G =

2γG
2λfGf + 2δG + γTG

, RTG =
2γTG

2λfGf + 2δG + γTG
and R∗ =

γT

(
1 + Ω

R0
G

RTG

)

pλfT f exp (−p(a+ b))
.

∗ If R∗ < 1, then θ < mpb and if R∗ > 1, then θ > mpb.

∗ R∗ is the primary production of tree including a portion of tree production due to tree-tree
cooperation and asymmetric tree-grass competition relative to fire induced tree and grass loss.

Now, we want to characterize local stability property of previous steady states. System (17) is
a planar, competitive and dissipative system. Hence, based on Smith [52, Theorem 2.2, page 35],
we deduce that solutions of system (17) will always converge toward an equilibrium point. That is,
no stable limit cycles may exist for system (17).

Proposition 3. (Stability properties of trivial and semi trivial steady states). The fol-
lowing results are valid for system (17).

(a) The desert steady state E0 = (0, 0)′ is always unstable.

(b) If RF < 1 then the forest steady state ETi is locally asymptotically stable (LAS).

(c) If RT < 1 then the grassland steady state EGe = (Ge; 0)
′ is LAS.

Now we deal with conditions of stability of a savanna steady state when its exists. Set:

R∗
1 =

γT [(1− Ω) + 2ΩT ∗]
pλfT fω(G∗) exp(−pT ∗)

,

R∗
2 =

γTGω
′(G∗)

pγGω(G∗)
.

(25)
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Proposition 4. (Stability condition of a savanna steady state). The stability conditions of
a coexistence steady state, of system (17), when it exists are given by the following cases:

• case 1:Assume f = 0, then (G∗, T ∗)′ is LAS.

• case 2: Assume f > 0. If:
R∗

1 −R∗
2 > 1, (26)

then (G∗, T ∗)′ is LAS.

Proof. See Appendix C, page 56.

Remark 3. (i) RT,0 =
γT
δT

denotes the primary production of tree biomass relative to tree

biomass loss due to human activities and herbivory.

(ii) RG,0 =
γG
δG

is the primary production of grass biomass relative to grass biomass loss due to

human activities and herbivory.

(iii) RG =
γG

δG + fλfG
denotes the primary production of grass biomass relative to grass biomass

loss due to grazing or human action and additional fire induced biomass loss.

(iv) RT =
γT

δG + λfT fω(Ge)
is the primary production of tree biomass relative to fire-induced

biomass loss at the grassland equilibrium and the additional loss due to herbivory (grazing)
or human action.

(v) RF,f =
γG

δG + fλfG + γTGTi
represents the primary production of grass biomass, relative to

grass biomass loss induced by fire, herbivory (grazing) or human action and additional grass
suppression due to tree competition, at the closed forest equilibrium.

3.2.2. The nonlocal case (M1 or M2 > 0)

Our aim now is to derive a condition on spatial convolution such that a steady state (Gs, Ts)
′ ∈

{(Ge, 0)
′; (0, T2)′; (G∗, T ∗)′} is locally asymptotically stable in the case M1 =M2 = 0, but unstable

for some Mi > 0, i = 1, 2.
In fact, the spatial patterns appearing in the nonlocal savanna model (5) can be studied by per-
forming a linear stability analysis of the stationary homogeneous solution of (5) given by the system
(18). Linearizing the integro-differential system (5) around (Gs;Ts)

′, leads to the following results:

Proposition 5. (linearized system)
Set: g(x, t) = G(x, t) − Gs and h(x, t) = T (x, t) − Ts two perturbations around a non trivial
homogeneous steady state. The system obtained after linearization is:





∂g

∂t
= DG

∂2g

∂x2
+ [γG(1−Gs)− δG − γTGTs − λfGf ] g − γGGs

∫ +∞

−∞
ϕM1(x− y)g(y, t)dy

−γTGGs

∫ +∞

−∞
ϕM2(x− y)h(y, t)dy,

∂h

∂t
= DT

∂2h

∂x2
+ [(γT (1 + ΩTs)(1− Ts)− δT − λfT fω(Gs) exp(−pTs)) + γTΩTs(1− Ts)]h

+(pλfT fω(Gs) exp(−pTs)Ts − γTTs(1 + ΩTs))

∫ +∞

−∞
ϕM2(x− y)h(y, t)dy

−λfT fω′(Gs) exp(−pTs)Tsg.
(27)

Proof. See Appendix D, page 57.

Now we are in position to study linear stability around all non trivial homogeneous steady state.
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Linear stability analysis around the grassland homogeneous steady state EG = (Ge, 0)
′.

Set :
b11 = γGGe,
b12 = γTGGe,
b22 = γT − δT − λfT fω(Ge).

(28)

The following results hold:

Proposition 6. (Linearized system around the grassland homogeneous steady state)
Let g(x, t) = G(x, t)−Ge and h(x, t) = T (x, t) be two perturbations around the grassland homo-
geneous steady state. The system obtained after linearization is:





∂g

∂t
= DG

∂2g

∂x2
− b11

∫ +∞

−∞
ϕM1(x− y)g(y, t)dy − b12

∫ +∞

−∞
ϕM2(x− y)h(y, t)dy,

∂h

∂t
= DT

∂2h

∂x2
+ b22h.

(29)

By considering the eigenvalue problem of the system (29) where λ is the eigenvalue and taking
the Fourier transform of this eigenvalue problem, we obtain the following system:

{
λg(k) = −DGk

2g(k)− b11ϕM1(k)g(k)− b12ϕM2(k)h(k),

λh(k) = −DTk
2h(k) + b22h(k),

(30)

where k is the wavenumber (k ∈ R) with ϕMi(k) =
sin kMi

kMi
, where, g(k), h(k) and ϕMi(k) are

the Fourier transforms of the functions g(x, t), p(x, t) and ϕMi(x), respectively.
Therefore, the system in (30) can be written in the matrix form:

λ




g(k)

h(k)


 =




−DGk
2 − b11ϕM1(k) −b12ϕM2(k)

0 −DTk
2 + b22






g(k)

h(k)


 . (31)

Let us consider:

M =




−DGk
2 − b11ϕM1(k) −b12ϕM2(k)

0 −DTk
2 + b22


 , (32)

Tr(M) = − (DG +DT ) k
2 − b11ϕM1(k) + b22, (33)

and
Det(M) = DGDTk

4 +
[
b11DTϕM1(k)− b22DG

]
k2 − b11b22ϕM1(k). (34)

Therefore, the grassland homogeneous steady state is locally asymptotic stable if:

Tr(M) < 0, (35)

and
Det(M) > 0. (36)

If (36) is not satisfied then we have an inhomogeneous solution call pattern (deriving from a Turing
bifurcation).
We are now in position to find Turing bifurcation threshold around the grassland homogeneous
steady state. Because of the form of ϕM1(k), we set z = kM1 and denote, for simplicity, ϕM1(k) by
ϕ1(z).

Theorem 2. (Stability of the Grassland homogeneous steady state)
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If RT < 1 and ϕ1(z) > 0 for all z, then the grassland homogeneous steady state is locally asymp-
totically stable for system (5).

Proof. Assume that RT < 1. Then, b22 < 0 thanks to the stability conditions of the grassland
steady state in the space-implicit model (see for instance proposition 3, page 12). Therefore, if
ϕ1(z) > 0, then Tr(M) < 0 and Det(M) > 0.

Remark 4. The previous theorem ensures that for this model, the choice of Gaussian kernels can
not lead to pattern formation around the grassland homogeneous steady state. More generally, due
to the type of nonlinearities involved in our model, the class of kernel-functions called “positive-
definite functions” and characterized by a positive Fourier transform (see also Bochner [56] and
Tzanakis [57]) are such that the empirically evidenced vegetation patterns are not reachable with the
model. Then, ϕ1(z) < 0 is a necessary condition for spatial Turing instability around the grassland
homogeneous steady state and this could happen if ϕ1 has discontinuities.

Theorem 3. (Grassland homogeneous steady state instability)
Assume that RT < 1 and we have a range of positive values of z such that:

ϕ1(z) < 0 (37)

holds ; If there exists a critical point MT
1 such that :

M1 > MT
1 ⇒ 1

(M1)2
≤ S1(z1), (38)

where

S1(z) =
−ϕ1(z)
z2

(
b11
DG

)
, (39)

and z1 is the value of z such that S1(z) takes it global maximum, then the homogeneous grassland
steady state is unstable. Furthermore, system (5) undergoes Turing bifurcation at M1 =MT

1 .

Proof. See Appendix E page 58.

Remark 5. The space period σG of the spatial structure is given by: σG =
2πM1

z1
(see also Genieys

et al. [58, page 71]) where z1 is given in the previous theorem.

Linear stability analysis around the forest homogeneous steady state ET = (0, Ti)
′,i =

1, 2.. Set:
m11 = −γG + (δG + λfGf) + γTGTi,
m∗

22 = γTΩTi(1− Ti),
m∗∗

22 = γTTi(1 + ΩTi).

Proposition 7. (linearized system around the forest homogeneous steady state)
Set: g(x, t) = G(x, t) and h(x, t) = T (x, t)− Ti two perturbations around the forest homogeneous
steady state. The system obtained after linearization is:





∂g

∂t
= DG

∂2g

∂x2
−m11g,

∂h

∂t
= DT

∂2h

∂x2
+m∗

22h−m∗∗
22

∫ +∞

−∞
ϕM2(x− y)h(y, t)dy.

(40)

By considering the eigenvalue problem of the system (40) and in the same way like in proposition
6, we obtain the following theorem:
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Theorem 4. (Forest homogeneous steady state stability)

If RF < 1 and ϕ2(z) >
m∗

22

m∗∗
22

for all z, then the forest homogeneous steady state is locally asymptot-

ically stable for system (5), where ϕ2(z) denotes the Fourier transform of ϕM2.

Proof. The proof is done like for theorem 2, page 14. Hence, we omitted it.

Remark 6. In the case of no tree-tree facilitation, by the previous theorem, the use of Gaussian
kernels can not lead to inhomogeneous patterned solution in the vicinity of forest homogeneous
steady state because with Ω = 0, m∗

22 = 0 and then, the condition (with Gaussian kernels) of local
stability of the forest homogeneous steady state is always verified.

Theorem 5. (Forest homogeneous steady state instability)
Assume that RF,f < 1 and we have a range of positive values of z such that:

ϕ2(z) <
m∗

22

m∗∗
22

(41)

holds. If there exist a critical value MT
2 > 0 such that:

M2 > MT
2 ⇒ 1

(M2)2
≤ S2(z2), (42)

where

S2(z) = −ϕ2(z)
z2

(
m∗∗

22

DT

)
+

1

z2

(
m∗

22

DT

)
, (43)

and z2 is the value of z such that S2(z) takes a global maximum. Then, the forest homogeneous
steady state is unstable and system (5) undergoes a Turing bifurcation at M2 =MT

2 .

Proof. The proof is similar to the proof of the theorem 3 in Appendix E, page 58. Therefore, it is
omitted.

Remark 7. The space period of the spatial structures σT observed in this case is given by σT =
2πM2

z2
(see also Genieys et al. [58]), where z2 is given in the previous theorem.

Linear stability analysis around the savanna homogeneous steady state E∗ = (G∗, T ∗).
Set:

a11 = −γGG∗,
a12 = −γTGG

∗,
a21 = −λfT fω′(G∗) exp(−pT ∗)T ∗,
a22 = −γT

[
(1− Ω)T ∗ + 2Ω(T ∗)2

]
+ pλfT fω(G

∗) exp(−pT ∗)T ∗,
c = γTΩT

∗(1− T ∗).

Proposition 8. (Linearized system around the savanna coexistence state)
Let g(x, t) = G(x, t) − G∗ and h(x, t) = T (x, t) − T ∗ be two perturbations around the savanna
homogeneous steady state. The system obtained after linearization is:





∂g

∂t
= DG

∂2g

∂x2
+ a11

∫ +∞

−∞
ϕM1(x− y)g(y, t)dy + a12

∫ +∞

−∞
ϕM2(x− y)h(y, t)dy,

∂h

∂t
= DT

∂2h

∂x2
+ (a22 − c)

∫ +∞

−∞
ϕM2(x− y)h(y, t)dy + ch+ a21g.

(44)
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Then, by considering the eigenvalue problem of the system (44) where λ is the eigenvalue and
taking the Fourier transform of this eigenvalue problem, we obtain the following system:

{
λg(k) = −DGk

2g(k) + a11ϕM1(k)g(k) + a12ϕM2(k)h(k),

λh(k) = −DTk
2h(k) + ch(k) + (a22 − c)ϕM2(k)h(k) + a21g(k),

(45)

where k is the wavenumber (k ∈ R) with ϕMi(k) =
sin kMi

kMi
, i = 1, 2 where, g(k), h(k) and ϕMi(k)

are the Fourier transforms of the functions g(x, t), p(x, t) and ϕMi(x).

Proposition 9. (Characteristic equation)
The Characteristic equation of system (45) is:

λ2 − Tr(k,M1,M2)λ+Det(k,M1,M2) = 0, (46)

where:
Tr(k,M1,M2) = −(DG +DT )k

2 + a11ϕM1(k) + a22ϕM2(k) + (1− ϕM2(k))c, (47)

and

Det(k,M1,M2) = DGDTk
4 −

[
a22DGϕM2(k) + a11DTϕM1(k) + cDG(1− ϕM2(k))

]
k2+

a11(a22 − c)ϕM1(k)ϕM2(k) + ca11ϕM1(k)− a12a21ϕM2(k).
(48)

From the characteristic equation (46), we can write the stability conditions of the savanna
homogeneous steady state (G∗, T ∗) as follows:

Tr(k,M1,M2) < 0, (49)

and
Det(k,M1,M2) > 0. (50)

To determine the stability boundary, we need to determine the thresholds for k, M1, and M2 such
that only one of the eigenvalue of the characteristic equation (46) crosses the origin from the left to
the right and other eigenvalues have negative real parts. If (49) holds and (50) is not satisfied, then
there is a real eigenvalue crossing the origin. Initially (k = M1 = M2 = 0), (49) and (50) hold. So
we find the thresholds kT , MT

1 and MT
2 so that (50) is not satisfied (it is call Turing Bifurcation).

Therefore, we find the value of parameters for which Det(k,M1,M2) is non-negative for all values
of k, M1 and M2 and equals to zero at the points of its minima. Then, these thresholds correspond
to the minima of the stability boundary region and satisfy:

Det(k,M1,M2) = 0,
∂Det(k,M1,M2)

∂M1
= 0,

∂Det(k,M1,M2)

∂M2
= 0,

∂Det(k,M1,M2)

∂k
= 0. (51)

With the given conditions in (51) we deduce the following result:

Theorem 6. (Stationary pattern condition around the savanna homogeneous steady
state)
Consider z1 and z2 two positive solutions of the equation tan(z) = z (z1 < z2) such that: µj =
sin zj
zj

< 0, j = 1, 2. Then, suppose that:

R∗
1 −R∗

2 > 1 and
a11(c− a22)µ1µ2
ca11µ1 − a12a21µ2

< 1. (52)
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Assume also that:

Mj > MT
j := zj

(
DGDT

(a11a22 − ca11)µ1µ2 + ca11µ1 − a12a21µ2

)1/4

, j = 1, 2, (53)

and

k > kT :=

(
(a11a22 − ca11)µ1µ2 + ca11µ1 − a12a21µ2

DGDT

)1/4

. (54)

Then we have the appearance of periodic solutions in space in the neighborhood of savanna homo-
geneous steady state.

Proof. See Appendix F, page 58.

Because of the difficulty of interpretation of the second condition in (52), we find a sufficient
condition to the previous one. Set:

R∗
3 =

γT (1 + ΩT ∗)
pλfT fω(G∗) exp(−pT ∗)

.

It is straightforward to observe that R1 − R2 < R3 and that R3 > 1 implies that the second
condition of (52) is valid. Therefore, the following result holds true:

Theorem 7. (Sufficient condition)
If R∗

1 −R∗
2 > 1, then the conclusion of Theorem 6 is valid.

Remark 8. 1. R∗
3 is the primary production of tree biomass and additional production of tree

biomass due to tree-tree facilitation relative to fire induced tree biomass loss.

2. Condition (53) gives the range beyond which the nonlocal interactions are sufficient for the
coexistence of both tree and grass inhomogeneous solutions in the same space domain.

3. Due to the implicit nature of the equation (48), it is difficult to provide explicit expression
of Turing bifurcation threshold analytically and hence we have describe one way in previous
theorem to determine a triplet (kT ,MT

1 ,M
T
2 ) as a suitable choice of M1 and M2 to obtain

stationary Turing Pattern (see also Banerjee and Volpert [59]). However the space period of

spatial structure is σ =
2π

kmax
where kmax is the most unstable mode, that could be computed

numerically.

4. Numerical illustration

Our model is designed for humid savannas. Then, carrying capacities considered, before the nor-
malization of biomasses are KG = 17t.ha−1 and KT = 340t.ha−1. These values were obtained from
Yatat Djeumen et al. [39] considering that the mean annual rainfall W is equal to 1500 mm.yr−1.
We also assume that DG = 0.1 and DT = 1 (see e.g. Yatat Djeumen et al. [2]). The finite differ-
ence method was used to discretize the spatial part and on the other hand, the non standard finite
difference method (Anguelov et al. [60]) was used to discretize the temporal part of the problem
given by the system (5) (see for instance Appendix G). Our numerical illustrations in this paper
are suitable for a 9 hectare (ha) savanna square domain (for instance, Martinez-Garcia et al. [47]
considered for example a square patch of savanna of 1 ha). Due to the fact that we have restricted
the mathematical analysis to a domain of dimension 1, numerical illustrations are carried out in
the space interval [0; 300]. The unit of space considered is meter (m) and unit of time is year (yr).

Parameters DG DT γG δG γT δT λfG λfT p g0 Ω
Values 0.1 1 2.7 0.1 1 0.3 0.7 0.8 3.4 0.14 5

Table 4: Parameter values for simulation.
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Parameter values (see Table 4, page 18) used for model (5) are based on (Yatat Djeumen et al.
[5, 39], Accatino et al. [42]). Only Ω, DG and DT are assumed.
We first illustrate a bifurcation diagram, for the space-implicit model related to system (5), with
respect to variations of the fire frequency f and γTG, the parameter that shapes the competition
of tree on grass.
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Figure 2: Bifurcation diagram according to variations of γTG and f . The blue triangle corresponds to the savanna
monostability, the red square stands for the forest-grassland bistability, the green star denotes the forest monostability
and the yellow circle represents the grassland-savanna bistability.

From figure 2, one deduces that, at least for parameters considered in table 4, stable forest
state is easily found, but, for low values of tree-grass competition, savannas are present. We also
notice that when we approach the annual fire regime and proceed beyond we manage to recover
the grassland state as part of a bistability situation. Then, the increase of the tree-grass com-
petition parameter γTG, leads to the transition from savanna to forest or grassland-savanna to
forest-grassland. In fact, in humid zone, the vegetation is intrinsically dominated by trees, that
exert competition pressure on grass biomass, such that grass may be easily suppressed.
The increase of fire frequency leads to the reduction of tree biomass but thanks to tree-tree coop-
eration, trees can perpetuate. Therefore depending on the tree-grass competition parameter, the
system switches are either savanna to grassland-savanna or forest to forest-grassland.
Now we want to illustrate the spatial structuring of trees and grasses in the various cases displayed
on the previous bifurcation diagram (see figure 2 in page 19).

4.1. Case of forest monostability (f = 0.9 and γTG = 5.1)

With the choice of parameters in table 4, the homogeneous forest steady state ET2 = (0, 0.9477)′

is locally asymptotic stable in absence of nonlocal interactions. Based on theorem 5, figure 3
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Figure 3: Graph of S2 as a function of z. The parameter values are given in table 4. The red dashed line stands for
1

(M2)2
.
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depicts that the forest homogeneous steady state is unstable for those M2 such that the curve of

S2(z) intersects with the line
1

(M2)2
. For those values, we see that the minimum M2 required for

the emergence of the Turing instability verified approximately
1

(MT
2 )

2
= 0.0798 (see the red dashed

line in figure 3), then MT
2 = 3.54m. Therefore, we choose M1 = 0.5m and M2 = 20m and we

consider the initial data as a random perturbation of the forest homogeneous steady state (0, T2)
′:

G(x, 0) = 0 + ϵ1, T (x, 0) = T2 + ϵ2 with 0 ≤ ϵi ≤ 10−3
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(a) Grass distribution in space at t = 8000.
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(b) Tree distribution in space at t = 8000.

Figure 4: Illustration of Grass and Tree profiles in space.

We observe from Figure 4 that the solution of system (5) converges toward a space inhomoge-
neous forest solution, thanks to a Turing bifurcation.

The key thresholds in that situation are RF (the primary production of grass biomass, relative
to grass biomass loss induced by fire, herbivory (grazing) or human action and additional grass
suppression due to tree competition, at the closed forest equilibrium) and M2 the range of nonlocal
competition of trees on grasses. Using a periodogram, we can numerically determine the number
of patches in our inhomogeneous solution and we can therefore compute the associated spatial
wavelength.

0 10 20 30 40 50 100 200 300

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 5: Graph of a periodogram of forest inhomogeneous solution

From figure 5, we have 10 patches in the spatial profile of forest distribution (see also panel (d)
in figure 4). Therefore, the numerical wavelength is σT = 300

10 = 30m. However, from the linear
stability analysis and the parameter values considered in this case, the theoretical wavelength is
σT = 31.4m which is quite close of the numerical space period. We also found that for increasing
values of M2, the space period (wavelength) σT increases.
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(a) Trees distribution at t = 8000 with M2 = 30m.
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(b) Periodogram of trees distribution with M2 = 30m
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(c) Trees distribution at t = 8000 with M2 = 40m.
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(d) Periodogram of trees distribution with M2 = 40m

Figure 6: Illustration of Trees distribution profiles in final time and the corresponding periodogram.

Figure 6 shows that the numerical wavelength of tree distribution is σT = 300
7 = 42.8m with

M2 = 30m and σT = 300
5 = 60m with M2 = 40m. By linear stability analysis, the space period is

σT = 47.1m for M2 = 30m, σT = 62.8m for M2 = 40m

4.2. Case of savanna monostability (f = 0.9 and γTG = 1.7)

We find that the savanna steady state E∗ = (0.1345, 0.9453)′ is locally asymptotically stable
in the absence of nonlocal interactions. Moreover, the minimal positive solution of the equation
tan(z) = z is z1 = 4.49. We take z2 = 10.9 which is also solution of tan(z) = z.
From these two values, we find µ1 = −0.22, µ2 = −0.09 and we get the Turing bifurcation
condition: M1 > 5.07m and M2 > 12.32m. For illustration we choose M1 = 5.5m, M2 = 15m and
we consider the initial data as a random perturbation of the savanna equilibrium (G∗, T ∗).
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(a) grass distribution at t = 8000.
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(b) Tree distribution at t = 8000.

Figure 7: Illustration of Grass and Tree profiles in space at final times.

We observe from figure 7 that, solutions of system (5) converge toward a space inhomogeneous
tree-grass coexistence solution thanks, to a Turing bifurcation. In the same way as before, we are
interested in the wavelength resulting from this inhomogeneous solution.
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Figure 8: Periodogram of savana inhomogeneous solution

Figure 8 depicts that the savanna inhomogenous solution illustrated in figure 7 has 14 cells.
Then, the numerical wavelength in this case is σ = 300

14 = 21.43m. Theoretically, it is necessary to
determine the most growing mode kmax for wich Det(kmax,M1,M2) < 0 and the wavelength will

be σ =
2π

kmax
.
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Figure 9: Graph of Det(k,M1,M2) with M1 = 5.5m and M2 = 15m

From figure 9, kmax = 0.28 and then σ = 22.43m.
The value of M1 used previously could be questioned and seen too large. However, note that

the Turing condition that we obtained is only a sufficient condition. Therefore, it may be possible
that outside of these values, we can have a change of sign of Det(k,M1,M2) which leads to a
Turing bifurcation. To illustrate that point, we consider M1 = 0.5m and M2 = 25m and we draw
Det(k,M1,M2).

22



0 0.172 0.344 0.516 0.688 0.86 1

k

-1

-0.5

0

0.5

1

1.5

2

D
e

t(
k

,M
1
,M

2
)

k
max

Figure 10: Graph of Det(k,M1;M2) with M1 = 0.5m and M2 = 25m.

From figure 10, we observe that it is possible to have a Turing bifurcation with M1 = 0.5m and
M2 = 25m due to the change of sign of Det(k,M1,M2). For these values of M1 and M2 we can
thus illustrate the inhomogeneous solution obtained (see figure 11).
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(a) Grass distribution at t = 12000.
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(b) Tree distribution at t = 12000.

Figure 11: Illustration of Grass and Tree profiles in space at final times.

The graph of periodogram is illustrated in figure 12.
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Figure 12: Periodogram of savana inhomogeneous solution

From figure 12, the numerical space period is σT = 37.5m and the theoretical wavelength is

σT =
2π

0.172
= 36.5m.

4.3. Case of bistability forest-grassland (f = 0.98 and γTG = 5.1)

In this case, in absence of nonlocal interactions we have a bistability situation with two ho-
mogeneous steady states: a grassland steady state EG and a forest steady state ET2 . We may
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observe the spatial structuring of the two state variables in two cases: first around the grassland
homogeneous steady state and second around the forest homogeneous steady state.

4.3.1. Around the grassland homogeneous steady state

In this section we will consider DG = 0.01 and, for an easy display of figures, we reduce the size
of the domain to 100m, with EG = (0.7089; 0)′.
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Figure 13: Graph of S1 as a function of z with the parameter values given in table 4. The red dashed line stands for
1

(M1)2
.

Based on theorem 3, figure 13 illustrates that grassland homogeneous steady state is unstable

for values of M1 such that the curve of S1(z) intersects with the line
1

(M1)2
. The minimal value of

M1 such that the grassland equilibrium is unstable verified
1

(MT
1 )

2
= 2.26 (then MT

1 = 0.6647m)

and we choose for illustration around the grassland equilibrium M1 = 1.5m and M2 = 20m.
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(a) Tree-grass distribution at t = 1000.
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(b) Tree-grass distribution at t = 1200.
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(c) Tree-grass distribution at t = 1500.
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(d) Tree-grass distribution at t = 5000.

Figure 14: Illustration of Grass and Tree distributions.

Figure 14 suggests the existence of a metastable tree-grass pattern. In fact, from panel (a) one
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could believe that we have an inhomogeneous solution of coexistence of the two species; but when
we increase the simulation time, we observe that we are moving rather towards the inhomogeneous
forest solution. So in this case we have the coexistence of unstable grassland inhomogenous solution
and stable tree inhomogeneous solution. This type of solution is called a metastable state (see also
Eigentler and Sheratt [61]). However, if we stop at a final time equal to 1000, we observe that the
grassy biomass benefits from the space freed by the trees. We can further illustrate it with figure
15 for M1 = 3m and M2 = 20m.
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Figure 15: Tree-grass distribution at t = 1000

4.3.2. Around the forest homogeneous steady state

The forest homogeneous steady state is ET2 = (0, 0.9477)′. As previously, to find the Turing
bifurcation threshold MT

2 , we need to draw the curve of S2(z).
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Figure 16: Graph of S2 as a function of z with the parameter values given in table (4)

Figure 16 shows that the minimal value of M2 such that the forest homogeneous steady state

is unstable verified
1

(MT
2 )

2
= 0.0798 (then MT

2 = 3.54m). Hence, for illustration, we choose

M1 = 0.5m and M2 = 20m.
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(a) Tree-grass distribution at t = 1000.
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(b) Tree-grass distribution at t = 2000.
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(c) Tree-grass distribution at t = 3000.
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(d) Tree-grass distribution at t = 5000.

Figure 17: Illustration of Grass and Tree distributions.

Then by figure 17 the nonlocal system (5) converges toward a forest inhomogeneous stable
solution, and numerical space period is σT = 33.33m while theoretically, the space period is σT =
31.42m.

4.4. Case of bistability savanna-grassland (f = 0.98 and γTG = 1.7)

Considering parameter values in table 4, the savanna homogeneous steady state E∗ and the
grassland homogeneous steady state EG are both locally asymptotically stable for the space implicit
model related to system (5). In this section, the space domain is [0, 100] and DG = 0.01

4.4.1. Around the savanna homogeneous steady state

Around the savanna homogeneous steady state E∗ = (0.1136, 0.9455)′ the Turing bifurcation
condition are M1 > 2.97m and M2 > 7.21m. To illustrate the appearance of inhomogeneous
solution, we choose M1 = 3m and M2 = 20m. Therefore, we have figure 18.
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Figure 18: Tree-grass distribution at t = 10000.
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The system converges toward a space inhomogeneous tree-grass coexistence solution (savanna)
thanks, to a Turing bifurcation. We also observe that in figure 18, we have grass localized solution
in space and regular tree spots.

4.4.2. Around the grassland homogeneous steady state

The grassland homogeneous steady state is EG = (0.7089, 0)′ and is the same as before (see
section 4.3.1). The Turing bifurcation threshold is the same as before. We choose M1 = 1.5m,
M2 = 20m for illustration. Figure 19 illustrates the spatial distribution of the inhomogeneous
tree-grass (i.e. savanna) solution.
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Figure 19: Tree-grass distributions at t = 10000.

Figure 19 shows a high density under the trees which is due to the range of interactions between
the grasses which is quite low. However, if we push this range to M1 = 3m, we obtain the following
figure 20 which is similar to the structure obtained around the savanna homogeneous steady state.
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(a) Tree-grass distribution at t = 10000.
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(b) zooming of grass distribution at t = 10000.

Figure 20: Illustration of Grass and Tree profiles in space at final times.

5. Discussion

We analyzed an integro-differential reaction-diffusion fire-mediated tree-grass interactions model,
allowing to reach spatial patterns (namely, regular spotted pattern ) sometimes observed in hu-
mid savannas. Starting from the parsimonious 2-dimensional ODE-based model of grassy and
woody biomasses fire-mediated interactions studied in Yatat Djeumen et al. [39], we introduced
local biomass propagation through Laplace operators, like in Yatat Djeumen et al. [2], as well as
nonlocal interaction terms. Hence, our model improves and extends previous ODE models (e.g.
Yatat Djeumen et al. [2, 39]) by explicitly taking into account spatial components and nonlocal
terms of tree-grass interactions. We showed that the combination of the nonlocal tree-tree facilita-
tion and the nonlocal tree-tree, grass-grass and tree-grass competition, may induce spatial patterns.
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In fact, nonlocal interactions break up the homogeneous distribution of tree and grass biomass re-
sulting in the emergence of a regular spotted pattern (see for instance Tian et al. [51]). Then,
novelties in this paper include the consideration of nonlocal interaction terms (both facilitation and
competition) on both trees and grasses dynamics. Indeed, in the absence of nonlocal terms, our
model is unable to produce spatial patterns since the associated reaction-diffusion model is mono-
tone decreasing (see also Yatat Djeumen et al. [2]). A key technical point is the requirement on
kernels that must be constant functions with compact supports. Indeed, we show that Gaussian or
Laplace-like kernels are not able to produce patterns in our model. According to Martinez-Garcia
et al. [47], kernels whose Fourier transforms take negative values for some wavenumber values, will
lead to clustering in some specific models with short range facilitation.

On the other hand, it is now acknowledged that fire is one of the key factors that shape the
physiognomy of savanna vegetation, in general, and particularly, in humid savannas where rainfall
is sufficient to promote very high grass biomass production which in turn constitutes the principal
fuel for fires. However, as a response to the negative impact of fires, trees have developed ‘defence’
or resilience mechanisms in order to limit or to reduce the fire-induced tree mortality. Indeed,
tree-tree facilitation or cooperation promotes germination of tree’s seeds, the recruitment of new
trees by improving the conditions under canopy (shading, litter and nutriments, enhanced water
infiltration). We modelled this effect thanks to the Ω parameter that was added to the reference
ODE model of Yatat Djeumen et al. [39] to make the unsaturated logistic growth a non linear
function of trees biomass (T ). By enhancing woody biomass growth, tree-tree facilitation indirectly
reduces the grass layer or favours an heterogeneous spatial distribution of the grass layer which
reduces fire intensity along with the potential of fire to spread all over the landscape.

Based on parameter values used for the bifurcation diagram (see figure 2, page 19), we explore
and illustrate in the different regions of the bifurcation diagram, the spatial structuring of trees and
grasses resulting from nonlocal interaction terms. We obtained broadly four types of inhomogeneous
solutions: first, what we call forest inhomogeneous solution (obtained around the monostable forest
space-homogeneous equilibrium) which are characterized by an absence of grass biomass and regular
tree spots in the space domain. Second, the savanna inhomogeneous solutions which featured both
tree and grass spots. Third, the coexistence of “localized” grass pattern and regular tree spots
and, finally, the presence of metastable patterns obtained in the conditions of the forest-grassland
bistable state. In each of these cases we were able to characterize a minimal range of nonlocal
interactions for the appearance of spatial structures. In the case of the forest inhomogeneous state,
we note that the grass biomass does not take advantage of the space between the ligneous plants,
where it is absent. This may result from the fact that grassland space-homogeneous equilibrium is
unstable and also from the strong pressure (competition) led by trees on grasses. We also observe
the presence of extinction zones were none of the two life forms establish (see for example figure 4,
page 20). In the case of the savanna inhomogeneous solution, we consider an initial distribution of
the vegetation around the monostable savanna equilibrium. We find that the ligneous plants are
in phase with the grass biomass. Likewise in this case, grasses do not take advantage of the space
between the trees and exclusion zones are also created (see figure 7, page 21). On the other hand,
we notice that the savanna inhomogeneous state is favored by the high level of woody biomass due
to the fact that R∗

1−R∗
2 is an increasing function of T ∗. In fact, one of the necessary conditions for

the existence of savanna inhomogeneous solution is R∗
1 − R∗

2 > 1. We also notice the appearance
of metastable structures when the initial setting is the forest-grassland bistability. Precisely, we
considered vegetation initial distribution around the stable grassland homogeneous steady state
while parameter values ensured that the forest homogeneous state is also stable. Therefore, for a
substantial time of simulation up to an order of 103 years, we can see that the grass biomass takes
advantage of the space between the trees (see figure 15, page 25).

Here, nonlocal competition between the grass tuft is responsible for this configuration. However,
when the final simulation time is high (> 103 years), the previous tree and grass spots configuration
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is no longer observed. Instead, we find a regular structure of tree spots (see panel (d) figure 14,
page 24). In this case, coexistence of tree and grass spots appears as a long transient phase to a tree
spots pattern, which seems qualitatively compatible with the type of pattern illustrated in Fig.1-
a). According to Eigentler and Sheratt [61], metatastable pattern is an unstable pattern whose
instability is caused by a very small unstable eigenvalue. In case of savanna-grassland bistability,
we numerically observe another type of structure that we assimilate to a coexistence of localized
grass inhomogeneous solution and regular tree spots (see figure 20, page 27). In fact, Vanag and
Epstein [62] suggested that if the system is in the spatial bistability domain, then we must apply
a perturbation of appropriate shape and sufficient amplitude in order to cause a transition to
possibly localized inhomogeneous patterns. The necessary and sufficient condition for localized
patches is the coexistence of homogeneous cover and periodic pattern (Tlidi et al. [6], Koga and
Kuramoto [63]). In this case, localized inhomogeneous solutions can be interpreted as a nonlinear
front between spatially periodic tree distribution and aperiodic grass distribution.

Another line of discussion relies on the size of tree patches observed numerically (i.e. σT ) and its
comparison with the size (width) of the tree nonlocal interaction kernel (M2) and the value of the
cooperation factor Ω. Our illustration around, the forest and savanna homogeneous steady states
showed that σT ≈ 1.5M2. Note that, M2 is to be related to the lateral extend of tree roots or tree
canopy. In all cases, where we obtained regular spots, we find that the size of vegetation patches
goes above 20m. In Lejeune et al. [36] for example, the size of vegetation patches in Marahoué
National Park in Ivory Coast, ranges from 10m to 20m. The value of Ω used in our work was chosen
for illustrative purposes. Nevertheless, within the framework of this paper, we noticed that Ω plays
a role on the kinetics of our structures. In fact, for low values of Ω (Ω < 1), the structures take
longer time to set up, while the reverse occurs with Ω at large values. Lefever et al. [8] gave a range
of value for Ω in the case of arid vegetation. Finally in this paper, first, we choose to work in first
approximation with local operator for spatial propagation (Laplace operators). This choice allows
us, from a mathematical point of view, to find a good characterization of the ranges of nonlocal
interactions enabling the appearance of structures. Without these local operators it would become
difficult to find a mathematical characterization of spatial ranges of nonlocal interactions that can
be easily manipulated numerically. Secondly and as a perspective of this work, it is necessary to
improve our numerical schemes, where for which during the simulations the densities sometimes
exceed the carrying capacities. This ambiguity has also been observed in other models with similar
structures of equations, notably in Banerjee and Volpert [59] and Genieys et al. [58]. It is also
necessary to emphasize on the mathematical conditions allowing this model to exhibit localized
structures and metastable patterns, that we observed numerically, and that may be of substantial
relevance to account for field observations.

6. Conclusion

In this work, we developed and studied a spatio-temporal tree-grass fire-mediated interactions
model allowing to illustrate the spatial structuring of vegetation in the wet savanna zone, where
regular spotted patterns (tree groves) have been casually reported in presence of high grass pro-
duction and frequent fires. To achieve this aim, we extended previous temporal models studied
in Yatat Djeumen et al. [2, 39] into integro-differential reaction-diffusion systems. We explore in
this model, the combination of nonlocal facilitation and nonlocal competition for the emergence
of inhomogeneous solutions. In this context, we integrated kernel functions describing the area of
influence of tree and grass roots and the extent of tree canopy-induced shadow effect. Both are
modeled like in Martinez-Garcia et al. [47], Banerjee and Volpert [54, 59], Banerjee and Zhang
[64] by a constant function of finite range. Accordingly, one of the major key in this paper is the
simultaneous presence of nonlocal tree-tree facilitation along with nonlocal tree-tree, tree-grass and
grass-grass competition. In fact, the associated model that results from the present contribution,
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takes into account the tree-tree cooperation mechanisms modelled by the parameter Ω which is
not considered in most of the works dedicated to tree-grass interactions in fire-prone savannas,
specifically in Yatat Djeumen et al. [2, 39]. Thanks to the stability analysis, we found conditions
of existence of patterned inhomogeneous solutions around space-homogeneous steady states of our
system. From a mathematical point of view, our work summarizes all the methods generally used
to capture inhomogeneous solutions in nonlocal reaction-diffusion systems, and it appeared nec-
essary to include nonlocal terms as to induce the symmetry breaking instability leading to the
patterns. The sequences of patterns observed in this paper consist of regular spot vegetation (tree
and grass spots noticed around the forest and grassland homogeneous steady state), “localized”
grass structures and metastable pattern. In all cases where we obtained regular spotted patterns,
wavelength is an increasing function of the range of tree competitive or tree canopy influence, M2.
As a first approximation, we assumed that both grass and tree biomasses have local propagation
through Laplace operators which is in line with rendering clonal propagation. But in reality, wind
or even animals may also favor plant propagation through propagule dipersion. Thus Pueyo et al.
[15] suggested that it is more reasonable to use nonlocal terms to describe plant dispersal, than
diffusion terms. Hence, a line of improvement of the current work could rely on the consideration
of nonlocal dispersion terms. Another important objective is to consider the same problem in a
two-dimensional spatial domain as to reach more realistic prospects on the patterning processes
addressed in the present paper. In so doing, we may expect to obtain very interesting multi-scale
vegetation patterns.
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Appendix A. Proof of Theorem 1.

Before we give the proof of Theorem 1, we first recall some results:

Definition 2. A function fi is called Lipschitz continuous with respect to ⟨Û, Ũ⟩ if there exist a
constant ki > 0 for any U = (G1, T1)

′ V = (G2, T2)
′ ∈ ⟨Û, Ũ⟩ such that:

|fi(G1, T1, ϕM1 ∗G1, ϕM2 ∗ T1)− fi(G2, T2, ϕM1 ∗G2, ϕM2 ∗ T2)| ≤ ki

(
|G1 −G2|+ |T1 − T2|

+ϕM1 ∗ |G1 −G2|+ ϕM2 ∗ |T1 − T2|
)
.

(A.1)

Furthermore, if f1 and f2 are Lipschitz continuous with respect to ⟨Û, Ũ⟩, then we call f =
(f1; f2)

′ is Lipschitz continuous with respect to ⟨Û, Ũ⟩.

Proposition 10. (Lipschitz condition)
If Ûand Ũ are bounded, direct calculations show that there exists constants k1 and k2 such that:

k1 = (γG + δG + λfGf) + (γG + γTG)∥G1∥0 + γG∥G2∥0 + γTG∥T2∥0,
k2 = (γT + δT ) + γT (1 + Ω)(∥T1∥0 + ∥T2∥0) + ΩγT

[
∥T1∥20 + ∥T2∥20 (∥T1∥0 + ∥T2∥0)

]

+λfT (1 + (θ1 + θ2)∥T2∥0)

where θ1 and θ2 are respectively the Lipschitz constants of the function ω(G) and exp(−pT ) and
∥G1∥0 = supDτ

|G1|, ∥T1∥0 = supDτ
|T1| then, f = (f1; f2) defined in (9) is Lipschitz continuous

with respect to ⟨Û, Ũ⟩.

In addition, we define the following operators:

L1G =
∂G

∂t
−DG∆G+ k1G,

L2T =
∂T

∂t
−DT∆G+ k2T,

F1(G,T ) = k1G+ f1(G,T ),

F2(G,T ) = k2T + f2(G,T ).

(A.2)

Then the system (5) can be reformulated as follows:





L1G = F1(G,T ) in Dτ ,

L2G = F2(G,T ) in Dτ ,

∂G

∂x
=
∂T

∂x
= 0 on Sτ ,

G(x, 0) = G10(x), T (x, 0) = T20(x) in K.

(A.3)

Now we are in position to show that the system (A.3) has a unique global solution. To this aim,
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we construct a sequence
{
U(m)

}
≡
{
G(m), T (m)

}
according to the following iteration process:





L1G
(m) = F1(G

(m−1), T (m−1)) in Dτ ,

L2T
(m) = F2(G

(m−1), T (m−1)) in Dτ ,

∂G(m)

∂x
=
∂T (m)

∂x
= 0 on Sτ ,

G(m)(x, 0) = G10(x), T (m)(x, 0) = T20(x) in K

(A.4)

with U(0) ∈ Cα(Dτ ) ∩ C(Dτ ).
To show the convergence of the sequence

{
U(m)

}
, set:

{
w1 = e−γtG,
w2 = e−γtT,

(A.5)

where γ is a positive constant. The system (A.3) is equivalent to the following system:





Liwi + γwi = Hi(w1, w2) for i = 1, 2 in Dτ ,

∂w1

∂x
=
∂w2

∂x
= 0 on Sτ

w1(x, 0) = w10(x), w2(x, 0) = w20(x) in K

(A.6)

where,

w10(x) = e−γtG10(x), w20(x) = e−γtT20(x),

H1(w1, w2) = k1w1 + γGw1(1− eγtϕM1 ∗ w1)− δGw1 − γTGw1e
γtϕM2 ∗ w2 − λfGfw1,

H2(w1, w2) = k2w2 + γTw2(1 + Ωeγtw2)(1− eγtϕM2 ∗ w2)− δTw2 − λfT fω(w1) exp(−peγtϕM2 ∗ w2)w2

(A.7)

with ω(w1) =
w2
1

w2
1 + (g0e−γt)2

.

According to (A.6), we can construct sequences w(m) via the following iteration process:





Liw
(m)
i + γw

(m)
i = Hi(w

(m−1)
1 , w

(m−1)
2 ) for i = 1, 2 in Dτ ,

∂w
(m)
1

∂x
=
∂w

(m)
2

∂x
= 0 on Sτ ,

w
(m)
1 (x, 0) = w10(x), w

(m)
2 (x, 0) = w20(x) in K.

(A.8)

In term of the integral representation theory for linear parabolic boundary-value problems, the
sequence w(m) can be expressed as:

w
(m)
i (x, t) =

∫ t

0
dτ

∫

K
Γi(x, t, ξ, τ)(Hi(w

(m−1)))(ξ, τ)dξ

+

∫ t

0
dτ

∫

∂K
Γi(x, t, ξ, τ)(ψi(w

(m−1)))(ξ, τ)dξ +

∫

K
Γi(x, t, ξ, τ)wi0(ξ)dξ

(A.9)
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where Γi is the fundamental solution of the Linear parabolic operator Li + γi and ψi is the single-
layer potential.
We now show that the sequence {w(m)} converges in C(Dτ ) to a unique solution of the associated
integral in (A.9). Set X = X1 ×X2, where :

Xi =
{
wi ∈ Cα(Dτ ) ∩ C(Dτ ) : wi(0, x) = wi0(x) ∈ K

}
for i = 1, 2. (A.10)

Lemma 1. If w and w′ ∈ X , then Hi(w) ∈ Cα(Dτ ) ∩ C(Dτ ) and:

|Hi(w)−Hi(w
′)| ≤ 3ki

(
|w1 − w′

1|+ |w2 − w′
2|+ ϕM1 ∗ |w1 − w′

1|+ ϕM2 ∗ |w2 − w′
2|
)
. (A.11)

Proof. First Hi(w) ∈ Cα(Dτ ) ∩ C(Dτ ), because the plus, multiplication, spatial convolution and
composition do not change the Hölder continuous property of the functions.
Secondly,

|Hi(w)−Hi(w
′)| =

∣∣∣∣ki(wi − w′
i) + e−γt

(
fi(e

γtw1, e
γtw2, e

γtϕM1 ∗ w1, e
γtϕM2 ∗ w2)

−fi(eγtw1, e
γtw2, e

γtϕM1 ∗ w1, e
γtϕM2 ∗ w2)

)∣∣∣∣,

≤ ki|wi − w′i|+ ki

[
|w1 − w′

1|+ |w2 − w′
2|
]
+ ki

[
ϕM1 ∗ |w1 − w′

1|+ ϕM2 ∗ |w2 − w′
2|
]
,

≤ 3ki

(
|w1 − w′

1|+ |w2 − w′
2|+ ϕM1 ∗ |w1 − w′

1|+ ϕM2 ∗ |w2 − w′
2|
)
.

Theorem 8. Let (Ũ, Û) be a pair of coupled upper and lower solutions of system (5). Then the
system (5) has a unique solution U∗(x, t) and U∗ ∈ ⟨Ũ, Û⟩. Moreover, for any U(0) ∈ Cα(Dτ ) ∩
C(Dτ ) with U(0) = (G10(x), T20(x)) in K, the sequence obtained from (A.4) converges to U∗ as
m→ ∞.

Proof. The proof is based on the contraction mapping theorem in the Banach space C(Dτ ). For
each i = 1, 2, we define the operators Ai : D(Ai) → R(Ai) and Hi : X → Cα(Dτ ) ∩ C(Dτ ) by:

Aiwi = Liwi + γwi (wi ∈ D(Ai)),
Hi(w) = Hi(w1, w2) (w ∈ X )

(A.12)

where D(Ai) is the domain of Ai given by:

D(Ai) =

{
wi ∈ C2,1(Dτ ) ∩ C(Dτ ) :

∂wi

∂x
= 0 on Sτ , wi(0, x) = wi0(x) in K

}
. (A.13)

R(Ai) is the range of Ai, and Hi(w1, w2) is given by (A.7). In terms of the operators Ai and Hi,
the iteration process in (A.8) can be written as:

Aiw
(m)
i = Hi(w

(m−1)
1 , w

(m−1)
2 ) (w

(m−1)
i ∈ D(Ai)) for i = 1, 2, (A.14)

and in vector form it becomes:

Aw(m) = H(w(m−1)) (w(m) ∈ D(A)). (A.15)

From the standard parabolic theorem the inverse operator A−1 exists and possesses the property:

∥A−1w −A−1w′∥0 ≤ (γ + k3)
−1∥w −w′∥0, for w,w′ ∈ Cα(Dτ ) ∩ C(Dτ ) (A.16)
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where k3 = min {k1, k2}. This implies that (A.15) is equivalent to:

w(m) = A−1H(w(m−1)), (w(m−1) ∈ D(A)), (A.17)

which can be considered as a compact form for the integral representation (A.9) in the space
Cα(Dτ ) ∩ C(Dτ ). In term of lemma (1), there exists a constant k, independent of γ, such that:

∥H(w)−H(w′)∥0 ≤ k∥w −w′∥0, for w,w′ ∈ X . (A.18)

Combining (A.16) and (A.18), we have:

∥A−1H(w)−A−1H(w′)∥0 ≤ k(γ + k3)
−1∥w −w′∥0, for w,w′ ∈ X . (A.19)

By choosing γ > k, we have ∥A−1H(w) − A−1H(w′)∥0 ≤ k(γ + k3)
−1∥w −w′∥0 for w,w′ ∈ X .

Thus, the operator A−1H possesses a contraction property in X . This ensures that the sequence{
w(m)

}
converges in C(Dτ ). By the equivalence between (A.17) and (A.9) the sequence

{
w

(m)
i

}

given by (A.9) converges in C(Dτ ) to w
∗
i for i = 1, 2.

To show thatw∗ is the unique solution of (A.4). SinceU(m) = eγtw(m), the sequenceU(m) governed
by (A.4) converges to a unique solution U∗ = eγtw∗ to the equation (A.3). By the equivalence
between (A.3) and (5), U∗ is the unique solution of the system (5).

In theorem (8) we prove that to show the existence and the uniqueness of the solution to the
system (5), we only need to find a pair of coupled upper and lower solution Ũ and Û which satisfy
the Lipschitz condition. If we choose Ũ and Û to be constant vectors c̃ and ĉ, these constant need
to satisfy:

0 ≥ γGc̃1(1− c̃1)− δGc̃1 − γTGc̃1ĉ2 − λfGf c̃1,
0 ≥ γT c̃2(1 + Ωc̃2)(1− c̃2)− δT c̃2 − λfT fω(c̃1) exp(−pĉ2)c̃2,
0 ≤ γGĉ1(1− ĉ1)− δGĉ1 − γTGĉ1c̃2 − λfGf ĉ1,
0 ≤ γT ĉ2(1 + Ωĉ2)(1− ĉ2)− δT ĉ2 − λfT fω(c̃1) exp(−pĉ2)ĉ2

(A.20)

and
c̃1 ≥ supK G(x, 0),
c̃2 ≥ supK T (x, 0),
ĉ1 ≤ infK G(x, 0),
ĉ2 ≤ infK T (x, 0).

(A.21)

We choose ĉ1 = ĉ2 = 0. Then c̃1 = max

{
supK G(0, x), 1− δG + λfGf

γG

}
and

c̃2 = max

{
supK T (0, x),

γT − δT
γT

}
, if Ω = 0,

c̃2 = max




supK T (0, x),

√
(1− Ω)2 + 4Ω

(
1− δT

γT

)
− (1− Ω)

2Ω




, if Ω > 0.

Appendix B. Proof of Proposition 2

If f = 0, savanna steady state (G∗, T ∗)′ is a solution of

{
γG(1−G)− δG − γTGT = 0,
γT (1 + ΩT )(1− T )− δT = 0.

(B.1)
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The second equation of system (B.1) give :

T ∗ = Ti, i = 1, 2 (depending on the values of Ω).

The first system of (B.1) leads to

G∗ = 1− δG + γTGTi
γG

,

= 1− 1

RF,f=0
.

If f > 0 and γTG = 0, then the savanna equilibrium (G∗;T ∗)′, satisfies:

{
G∗ = Ge,
ΩγT (T

∗ − T2)(T
∗ − T2−) + λfT fω(Ge) exp(−pT ∗) = 0.

(B.2)

Let us set J(T ) = ΩγT (T − T2)(T − T2−) + λfT fω(Ge) exp(−pT ), then:

lim
T→0

J(T ) = δT + λfT fω(Ge)(1−RT ). (B.3)

We have also the first derivative of J :

J ′(T ) = ΩγT [2T − T2 − T2−]− pλfT fω(Ge) exp(−pT ),
limT→0 J

′(T ) = pλfT fω(Ge)[R1
Ω − 1],

limT→1 J
′(T ) = pλfT fω(Ge) exp(−p)[R2

Ω − 1],
(B.4)

where R2
Ω =

γT (1 + Ω)

pλfT fω(Ge) exp(−p)
.

The second derivative:

J”(T ) = 2ΩγT + p2λfT fω(Ge) exp(−pT ) > 0. (B.5)

Therefore, J ′ is increasing on [0; 1].

(I) if R1
Ω > 1, then J ′(T ) > 0 on [0; 1], and J is increasing on [0; 1];

(a) if RT < 1, then J(T ) > 0 on [0; 1].

(b) if RT > 1, then there exists at most one savanna steady state.

(II) if R1
Ω < 1, then limT→0 J

′(T ) < 0 and due to J ′ increasing, we have:

(a) if R2
Ω < 1, then J ′(T ) < 0 on [0; 1] and J is decreasing on that interval. Then

(a1) if RT > 1, then J(T ) < 0 on [0; 1].

(a2) if RT < 1, we have at most one savanna steady state.

(b) if R2
Ω > 1, then by the intermediate value theorem, there exist T0 ∈ [0; 1] such that

J ′(T0) = 0. Then:

(b1) if J(T0) > 0, then J(T ) > 0 on [0; 1].

(b2) if J(T0) < 0, we have at most two savanna steady states (Ge, T
∗
i )

′,i = 1, 2 where
T ∗
1 ∈ [0;T0] and T

∗
2 ∈ [T0; 1]

If f > 0 and γTG ̸= 0, savanna equilibrium is a solution of the system:

{
γG(1−G)− δG − γTGT − λfGf = 0,
γT (1 + ΩT )(1− T )− δT − λfT fω(G) exp(−pT ) = 0,

(B.6)
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the first equation of system (B.6) gives:

T = −δG + λfGf

γTG
+

γG
γTG

(1−G)

set:

a = −δG + λfGf

γTG
and b =

γG
γTG

then
T = (a+ b)− bG. (B.7)

Using the fact that G,T ∈]0; 1], (B.7) gives that:

a− 1

b
+ 1 < G <

a

b
+ 1.

Note that
a− 1

b
+ 1 = (1− 1

RG
)− γTG

γG
and

a

b
+ 1 = 1− 1

RG
. Therefore, because RG > 1 then

Ge −
γTG

γG
< G < Ge. (B.8)

The second equation of system (B.6) gives :

λfT fω(G) exp(−pT ) = (γT − δT ) + γT (Ω− 1)T − γTΩT
2. (B.9)

Substituting (B.7) in (B.9) we obtain first:

(γT − δT ) + γT (Ω− 1)T − γTΩT
2 = (γT − δT ) + γT (Ω− 1)(a+ b)− γTΩ(a+ b)2+

(2(a+ b)bγTΩ− bγT (Ω− 1))G− γTΩb
2G2

then,

λfT fω(G) exp(−pT ) = (γT − δT ) + γT (Ω− 1)(a+ b)− γTΩ(a+ b)2+
(2(a+ b)bγTΩ− bγT (Ω− 1))G− γTΩb

2G2.
(B.10)

Set:
q = (γT − δT ) + γT (Ω− 1)(a+ b)− γTΩ(a+ b)2,
θ = 2(a+ b)bγTΩ− bγT (Ω− 1),
α = γTΩb

2.

Then, we obtain in (B.10)

λfT fω(G) exp(−pT ) = q + θG− αG2. (B.11)

Substituting (B.7) in (B.11), we obtain:

λfT f exp (−p(a+ b)) exp(pbG)G2 = qg20 + θg20G+ (q − αg20)G
2 + θG3 − αG4. (B.12)

Set
m = λfT f exp (−p(a+ b)) .

Hence,
− αG4 + θG3 −m exp(pbG)G2 + (q − αg20)G

2 + θg20G+ qg20 = 0. (B.13)
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Define the function f by:

f(G) = −αG4 + θG3 −m exp(pbG)G2 + (q − αg20)G
2 + θg20G+ qg20 (B.14)

and fine the roots of f in the interval [0; 1].





limG→0 f(G) = qg20,
limG→+∞ f(G) = −∞,
limG→1 f(G) = (θ − α+ q)(g20 + 1)−m exp(pb).

(B.15)

The first derivative of f is :

f ′(G) = −4αG3 + 3θG2 −mpb exp(pbG)G2 − 2m exp(pbG)G+ 2(q − αg20)G+ θg20 (B.16)

and




limG→0 f
′(G) = θg20,

limG→+∞ f ′(G) = −∞,
limG→1 f

′(G) = −4α+ 3θ + 2(q − αg20) + θg20 −m exp(pb)[pb+ 2].
(B.17)

The second derivative of f is given by:

f ′′(G) = −12αG2+6θG−m(pb)2 exp(pbG)G2−4mpb exp(pbG)G−2m exp(pbG)+2(q−αg20) (B.18)

and:




limG→0 f
′′(G) = 2

[
q − (m+ αg20)

]
,

limG→+∞ f ′′(G) = −∞,
limG→1 f

′′(G) = 6θ + 2(q − αg20)− 12α−m exp(pb)
[
(pb)2 + 4pb+ 2

]
.

(B.19)

The third derivative of f is given by:

f ′′′(G) = −24αG+ 6θ −m(pb)3 exp(pbG)G2 − 6m(pb)2 exp(pbG)G− 6m(pb) exp(pbG) (B.20)

and: 



limG→0 f
′′′(G) = 6(θ −mpb),

limG→+∞ f ′′′(G) = −∞,
limG→1 f

′′′(G) = 6θ −
[
mpb

(
(pb)2 + 6pb+ 6

)
exp(pb) + 24α

]
.

(B.21)

The fourth derivative of f is given by:

f ′′′′(G) = −m(pb)4 exp(pbG)G2 − 8m(pb)3 exp(pbG)G− 6m(pb)2 exp(pbG)− 24α. (B.22)

f ′′′′(G) < 0 on [0,+∞[, therefore on [0; 1]. Then f ′′′ decreases on [0; 1].

(I) if θ < mpb, then f ′′′(G) < 0 in [0;+∞[ and then f ′′ strictly decreases on [0;+∞[. According
to (B.19) we have:

(I.1) if q < m + αg20 then f ′′(G) < 0 on [0;+∞[. Therefore f ′ strictly decreases on [0;+∞[.
According to (B.17) we have:

(I.1.1) if θ < 0 then f ′(G) < 0 on [0;+∞[ and then f strictly decreases on [0;+∞[.
According to (B.15)

(I.1.1.1) If q < 0 then f(G) < 0 on [0;+∞[.
(I.1.1.2) If q > 0 then,

A. if q >
m exp(pb)

g20 + 1
+ α− θ, then f(G) > 0 on [0; 1].
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B. if q <
m exp(pb)

g20 + 1
+ α− θ, then ∃G∗

1 ∈ [0; 1] such that f(G∗
1) = 0.

(I.1.2) If θ > 0 then f ′(G) has a positive root on [0;+∞[.

(I.1.2.1) If q >
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
,

then f ′(G) > 0 on [0; 1] and f strictly increases on [0; 1].

(I.1.2.1.1) If q > 0 , then f(G) > 0 on [0; 1].
(I.1.2.1.2) If q < 0, then:

(a) if q <
m exp(pb)

g20 + 1
+ α− θ, then f(G) < 0 on [0; 1].

(b) If q >
m exp(pb)

g20 + 1
+ α− θ, then ∃G∗

2 ∈ [0; 1] such that f(G∗
2) = 0.

(I.1.2.2) If q <
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
,

then ∃G(0) ∈ [0; 1] such that f ′(G(0)) = 0 on and f ′(G) > 0 on [0;G(0)] and
f ′(G) < 0 on [G(0); 1].

(I.1.2.2.1) If f(G(0)) < 0, then f(G) < 0 on [0; 1].
(I.1.2.2.2) If f(G(0)) > 0, then:

(a) If q > 0 and q >
m exp(pb)

g20 + 1
+ α− θ, then f(G) > 0 on [0; 1].

(b) If q < 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

3 ∈ [0;G(0)] is the unique

root of f .

(c) If q > 0 and q <
m exp(pb)

g20 + 1
+α− θ, then G∗

4 ∈ [G(0); 1] is the unique root

of f on [0; 1].

(d) If q < 0 and q <
m exp(pb)

g20 + 1
+α−θ, then ∃G∗

3 ∈ [0;G(0)] and G∗
4 ∈ [G(0); 1]

such that f(G∗
3) = f(G∗

4) = 0.

(I.2) If q > m+ αg20 then f ′′(G) has a unique positive root on [0;+∞[.

(I.2.1) If q > 6α−3θ+αg20+
1

2
m
[
(pb)2 + 4(pb) + 2

]
exp(pb) then f ′′(G) > 0 on [0; 1] , then

f ′ strictly increases on [0; 1].

(I.2.1.1) If θ > 0 then f ′(G) > 0 on [0; 1]. So, f strictly increases on [0; 1].

(I.2.1.1.1) If q > 0, then f(G) > 0 on [0; 1].
(I.2.1.1.1) If q < 0 , then:

(a) If q <
m exp(pb)

g20 + 1
+ α− θ, then f(G) < 0 on [0; 1].

(b) If q >
m exp(pb)

g20 + 1
+ α− θ, then ∃G∗

5 ∈ [0; 1] such that f(G∗
5) = 0.

(I.2.1.2) If θ < 0, then because f ′ is strictly increasing on [0; 1] we have:

(I.2.1.2.1) If q <
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
, then f ′(G) < 0 on [0; 1].

Then, f strictly decreases on [0; 1].

(a) If q < 0 then, f(G) < 0 on [0; 1].
(b) If q > 0 then,

(b.1) If q >
m exp(pb)

g20 + 1
+ α− θ, then f(G) > 0 on [0; 1].

(b.2) If q <
m exp(pb)

g20 + 1
+ α− θ, then ∃G∗

6 ∈ [0; 1] such that f(G∗
6) = 0.

(I.2.1.2.2) If q >
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
, then ∃G(00) ∈ [0; 1] such

that f ′(G(00)) = 0 and then f ′(G) < 0 on [0;G(00)] and f ′(G) > 0 on [G(00); 1].
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(a) If f(G(00)) > 0 then f(G) > 0 on [0; 1].
(b) If f(G(00)) < 0 then,

(b.1) If q < 0 and q <
m exp(pb)

g20 + 1
+ α− θ, then f(G) < 0 on [0; 1].

(b.2) If q > 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

7 ∈ [0;G(00)] such that

f(G∗
7) = 0.

(b.3) If q < 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

8 ∈ [G(00); 1] such that

f(G∗
8) = 0.

(b.4) If q > 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then G∗

7 ∈ [0;G(00)] and G∗
8 ∈

[G(00); 1] are the two roots of f .

(I.2.2) If q < 6α − 3θ + αg20 +
1

2
m
[
(pb)2 + 4(pb) + 2

]
exp(pb), then ∃ G(000) ∈ [0; 1] such

that f ′′(G(000)) = 0. Then, f ′′(G) > 0 on [0;G(000)] and f ′′(G) < 0 on [G(000); 1].

(I.2.2.1) If f ′(G(000)) < 0, then f ′(G) < 0 on [0; 1] and f strictly decreases on that
interval.

(a) If q < 0 then f(G) < 0 on [0; 1].
(b) If q > 0, then:

(b.1) If q >
m exp(pb)

g20 + 1
+ α− θ, then f(G) > 0 on [0; 1].

(b.2) If q <
m exp(pb)

g20 + 1
+ α− θ, then, ∃G∗

9 ∈ [0; 1] such that f(G∗
9) = 0.

(I.2.2.2) If f ′(G(000)) > 0, then:

(I.2.2.2.1) If θ > 0 and q >
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
, then f ′(G) >

0 on [0; 1] and f is increasing on [0; 1].

(a) If q > 0 then f(G) > 0 on [0; 1].
(b) If q < 0, then :

(b.1) If q <
m exp(pb)

g20 + 1
+ α− θ, then f(G) < 0 on [0; 1].

(b.2) If q >
m exp(pb)

g20 + 1
+ α− θ, then ∃G∗

10 ∈ [0; 1] such that f(G∗
10) = 0.

(I.2.2.2.2) If θ < 0 and q >
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
, then ∃G(0000) ∈

[0;G(000)] such that f ′(G(0000)) = 0. Therefore f ′(G) < 0 on [0;G(0000)] and
f ′(G) > 0 on [G(0000); 1].

(a) If f(G(0000)) > 0, then f(G) > 0 on [0; 1].
(b) If f(G(0000)) < 0, then:

(b.1) If q < 0 and q <
m exp(pb)

g20 + 1
+ α− θ, then f(G) < 0 on [0; 1].

(b.2) If q > 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

11 ∈ [0;G(0000)] such

that f(G∗
11) = 0.

(b.3) If q < 0 and q >
m exp(pb)

g20 + 1
+ α − θ then ∃G∗

12 ∈ [G(0000); 1] such

that f(G∗
12) = 0.

(b.4) If q > 0 and q >
m exp(pb)

g20 + 1
+α−θ then G∗

11 ∈ [0;G(0000)] and G∗
12 ∈

[G(0000); 1] are the two roots of f .
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(I.2.2.2.3) If θ > 0 and q <
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
, then ∃G(00000) ∈

[G(000); 1] such that f ′(G(00000)) = 0. Therefore, f ′(G) > 0 on [0;G(00000)]
and f ′(G) < 0 on [G(00000); 1].

(a) If f(G(00000) < 0, then f(G) < 0 on [0; 1].
(b) If f(G(00000) > 0, then:

(b.1) If q > 0 and q >
m exp(pb)

g20 + 1
+ α− θ then f(G) > 0 on [0; 1].

(b.2) If q < 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

13 ∈ [0;G(00000)] such

that f(G∗
13) = 0.

(b.3) If q > 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

14 ∈ [G(00000); 1] such

that f(G∗
14) = 0.

(b.4) If q < 0 and q <
m exp(pb)

g20 + 1
+α−θ, thenG∗

13 ∈ [0;G(00000)] and G∗
14 ∈

[G(00000); 1] are the two roots of f .

(I.2.2.2.4) If θ < 0 and q <
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
, then ∃G(0000) ∈

[0;G(000)] and G(00000) ∈ [G(000); 1] such that f ′(G(0000)) = f ′(G(00000)) =
0. Therefore f ′(G) < 0 on [0;G(0000)] ∪ [G(00000); 1] and f ′(G) > 0 on
[G(0000);G(00000)].

(a) If f(G(0000)) > 0, then

(a.1) If q >
m exp(pb)

g20 + 1
+ α− θ, then f(G) > 0 on [0; 1].

(a.2) If q <
m exp(pb)

g20 + 1
+α− θ, G∗

14 ∈ [G(00000); 1] is the unique root of f .

(b) If f(G(0000)) < 0 and f(G(00000)) < 0 then

(b.1) q < 0 on then f(G) < 0 on [0; 1].
(b.2) q > 0 then ∃G∗

11 ∈ [0;G(0000)] is the unique root of f .

(c) If f(G(0000)) < 0 and f(G(00000)) > 0 then ∃G∗
15 ∈ [G(0000);G(00000)] such

that f(G∗
13) = 0.

(c.1) If q < 0 and q >
m exp(pb)

g20 + 1
+ α − θ then G∗

15 is the unique root of

f in the interval [0; 1].

(c.2) If q < 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then with G∗

15 we have also

G∗
14 ∈ [G(00000); 1] roots of f . Therefore,f(G∗

15) = f(G∗
14) = 0.

(c.3) If q > 0 and q >
m exp(pb)

g20 + 1
+ α − θ,then with G∗

15 we have also

G∗
11 ∈ [0;G(0000)] roots of f . Therefore,f(G∗

15) = f(G∗
11) = 0.

(c.4) If q > 0 and q <
m exp(pb)

g20 + 1
+ α − θ,then with G∗

15 we have also

G∗
11 ∈ [0;G(0000)] and G∗

14 ∈ [G(00000); 1] roots of f . Therefore,f(G∗
15) =

f(G∗
11) = f(G∗

14) = 0.

(II) we suppose that θ > mpb, because f ′′′ is decreasing on [0; 1], by the intermediate value
theorem f ′′′ has a unique positive root on [0;+∞[.

(II.1) If θ >
1

6

[
24α+mpb

(
(pb)2 + 6(pb) + 6

)
exp(pb)

]
, then f ′′′(G) > 0 on [0; 1] and there-

fore, f ′′ is increasing on [0; 1].

(II.1.1) If q > m+ αg20, then f
′′(G) > 0 on [0; 1] therefore, f ′ strictly increases on [0; 1].
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(II.1.1.1) If θ > 0, then f ′(G) > 0 on [0; 1] and therefore f strictly increases on [0; 1].

(a) If q > 0, then f(G) > 0 on [0; 1].
(b) If q < 0, then:

(b.1) If q <
m exp(pb)

g20 + 1
+ α− θ, then f(G) < 0, on [0; 1].

(b.2) If q >
m exp(pb)

g20 + 1
+ α− θ, then ∃G∗

17 ∈ [0; 1] such that f(G∗
17) = 0.

(II.1.1.2) If θ < 0, then :

(II.1.1.2.1) If q <
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
, then f ′(G) < 0 on

[0; 1] and then f decrease strictly on [0; 1].

(a) If q < 0 then f(G) < 0 on [0; 1].
(b) If q > 0 then:

(b.1) If q >
m exp(pb)

g20 + 1
+ α− θ, then f(G) > 0 on [0; 1].

(b.2) If q <
m exp(pb)

g20 + 1
+α− θ, then ∃G∗

18 ∈ [0; 1] such that f(G∗
18) = 0.

(II.1.1.2.2) If q >
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
, then ∃G(0) ∈ [0; 1]

such that f ′(G(0)) = 0. Therefore, f ′(G) < 0 on [0;G(0)] and f ′(G) > 0
on [G(0); 1].

(a) If f(G(0)) > 0 then f(G) > 0 on [0; 1].
(b) If f(G(0)) < 0, then:

(b.1) If q < 0 and q <
m exp(pb)

g20 + 1
+ α− θ then f(G) < 0 on [0; 1].

(b.2) If q > 0 and q <
m exp(pb)

g20 + 1
+α− θ, then G∗

19 ∈ [0;G(0)] such that

f(G∗
19) = 0.

(b.3) If q < 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

20 ∈ [G(0); 1] such

that f(G∗
20) = 0.

(b.4) If q > 0 and q >
m exp(pb)

g20 + 1
+α−θ, then G∗

19 ∈ [0;G(0)] and G∗
20 ∈

[G(0); 1] are the two roots of f .

(II.1.2) If q < m+ αg20, then we have the following situations:

(II.1.2.1) If q < 6α − 3θ + αg20 +
1

2
m exp(pb)

[
(pb)2 + pb+ 2

]
, then f ′′(G) < 0 on [0; 1].

Then f ′ decrease strictly on [0; 1].

(II.1.2.1.1) If θ < 0, then f ′(G) < 0 on [0; 1] and f is therefore decreasing on [0; 1].

(a) If q < 0, then f(G) < 0 on [0; 1].
(b) If q > 0, then:

(b.1) If q >
m exp(pb)

g20 + 1
+ α− θ,then f(G) < 0 on [0; 1].

(b.2) If q <
m exp(pb)

g20 + 1
+α− θ, then ∃G∗

21 ∈ [0; 1] such that f(G∗
21) = 0.

(II.1.2.1.2) If θ > 0, then, we have the following situations:

(a) If q >
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
,then f ′(G) > 0 on

[0; 1] and f increase strictly on [0; 1].

(a.1) If q > 0, then f(G) > 0 on [0; 1].
(a.2) If q < 0, then:
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(a.2.1) If q <
m exp(pb)

g20 + 1
+ α− θ,then f(G) < 0 on [0; 1].

(a.2.2) If q >
m exp(pb)

g20 + 1
+ α− θ, then ∃G∗

22 ∈ [0; 1] such that f(G∗
22) = 0.

(b) If q <
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
. We use the fact

that f ′ is decreasing (strictly) on [0; 1]. By the intermediate values
theorem: ∃G(00) ∈ [0; 1] such that f ′(G(00)) = 0. Therefore, f ′(G) > 0
on [0;G(00)] and f

′(G) < 0 on [G(00); 1].

(b.1) If f(G(00)) < 0, then f(G) < 0 on [0; 1].
(b.2) If f(G(00)) > 0, then:

(b.2.1) If q > 0 and q >
m exp(pb)

g20 + 1
+ α− θ then f(G) > 0 on [0; 1].

(b.2.2) If q < 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

23 ∈ [0;G(00)]

such that f(G∗
23) = 0.

(b.2.3) If q > 0 and q <
m exp(pb)

g20 + 1
+α− θ, then G∗

24 ∈ [G(00); 1] such

that f(G∗
24) = 0.

(b.2.4) If q < 0 and q <
m exp(pb)

g20 + 1
+α−θ, thenG∗

23 ∈ [0;G(00)] and G∗
24 ∈

[G(00); 1] are the two roots of f .

(II.1.2.2) If q > 6α − 3θ + αg20 +
1

2
m exp(pb)

[
(pb)2 + pb+ 2

]
, because f ′′ increase

strictly on [0; 1], by the intermediate values theorem ∃G(000) ∈ [0; 1] such
that f ′′(G(000)) = 0. So, f ′′(G) < 0 on [0;G(000)] and there f ′′(G) > 0 on
[G(000); 1].

(II.1.2.2.1) If f ′(G(000)) > 0, then f ′(G) > 0 on [0; 1], therefore f is increasing on that
interval.

(a) If q > 0, then f(G) > 0 on [0; 1].
(b) If q < 0, then

(b.1) If q <
m exp(pb)

g20 + 1
+ α− θ, then f(G) < 0 on [0; 1].

(b.2) If q >
m exp(pb)

g20 + 1
+α−θ, then ∃G∗

25 ∈ [0; 1] such that f(G∗
25) = 0.

(II.1.2.2.2) If f ′(G(000)) < 0, then:

(a) If θ < 0 and q <
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
, then

f ′(G) < 0 on [0; 1]. Therefore f strictly decreases on [0; 1].

(a.1) If q < 0, then f(G) < 0 on [0; 1].
(a.2) If q > 0, then:

(a.2.1) If q >
m exp(pb)

g20 + 1
+ α− θ, then f(G) > 0 on [0; 1].

(a.2.2) If q <
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

26 ∈ [0; 1] such that

f(G∗
26) = 0.

(b) If θ > 0 and q <
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
, then

∃G(0000) ∈ [0;G(000)] such that f ′(G(0000)) = 0. Therefore f ′(G) > 0
on [0;G(0000)] and f

′(G) < 0 on [G(0000); 1].

(b.1) If f(G(0000)) < 0, then f(G) < 0 on [0; 1].
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(b.2) If f(G(0000)) > 0, then:

(b.2.1) If q > 0, and q >
m exp(pb)

g20 + 1
+α−θ, then f(G) > 0 on [0; 1].

(b.2.2) If q < 0, and q >
m exp(pb)

g20 + 1
+α−θ, then ∃G∗

27 ∈ [0;G(0000)]

such that f(G∗
27) = 0.

(b.2.3) If q > 0, and q <
m exp(pb)

g20 + 1
+α−θ, then ∃G∗

28 ∈ [G(0000); 1]

such that f(G∗
28) = 0.

(b.2.4) If q < 0, and q <
m exp(pb)

g20 + 1
+ α − θ, then ∗

27 ∈ [0;G(0000)]

and G∗
28 ∈ [G(0000); 1] are the two roots of f .

(c) If θ < 0 and q >
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
, then

∃G(00000) ∈ [G(000); 1] such that f ′(G(00000)) = 0. Therefore f ′(G) < 0
on [0;G(00000)] and f

′(G) > 0 on [G(00000); 1].

(c.1) If f(G(00000)) > 0, then f(G) > 0 on [0; 1].
(c.2) If f(G(00000)) < 0:

(c.2.1) If q < 0, and q <
m exp(pb)

g20 + 1
+α−θ, then f(G) < 0 on [0; 1].

(c.2.2) If q > 0, and q <
m exp(pb)

g20 + 1
+α−θ, then ∃G∗

29 ∈ [0;G(00000)]

such that f(G∗
29) = 0.

(c.2.3) If q < 0, and q >
m exp(pb)

g20 + 1
+α−θ, then ∃G∗

30 ∈ [0;G(00000)]

such that f(G∗
30) = 0.

(c.2.4) If q > 0, and q >
m exp(pb)

g20 + 1
+α− θ, then G∗

29 ∈ [0;G(00000)]

and G∗
30 ∈ [0;G(00000)] are the two roots of f .

(d) If θ > 0 and q >
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
, then:

∃G(0000) ∈ [0;G(000)] and G(00000) ∈ [G(000); 1] such that f ′(G(0000)) =
f ′(G(00000)) = 0. Therefore f ′(G) > 0 on [0;G(0000)]∪ [G(00000); 1] and
f ′(G) > 0 on [G(0000);G(0000)].

(d.1) If f(G(0000)) < 0,then

(d.1.1) if q <
m exp(pb)

g20 + 1
+ α− θ then f(G) < 0 on [0; 1].

(d.1.2) if q >
m exp(pb)

g20 + 1
+ α− θ, then G∗

30 is the unique root of f .

(d.2) If f(G(0000)) > 0 and f(G(00000)) > 0, then:

(d.2.1) If q > 0, then f(G) > 0 on [0; 1].
(d.2.2) If q < 0, then G∗

27 ∈ [0;G(0000)] is the unique root of f .

(d.3) If f(G(0000)) > 0 and f(G(00000)) < 0, then: ∃G∗
31 ∈ [G(0000);G(00000)]

such that f(G∗
31) = 0.

(d.3.1) If q > 0 and q >
m exp(pb)

g20 + 1
+α− θ, then with G∗

31, we have

also G∗
30 ∈ [G(00000); 1] such that f(G∗

31) = f(G∗
30) = 0.

(d.3.2) If q > 0 and q <
m exp(pb)

g20 + 1
+ α− θ, then G∗

31 is the unique

root of f . Therefore f(G∗
31) = 0.
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(d.3.3) If q < 0 and q <
m exp(pb)

g20 + 1
+α− θ, then with G∗

31, we have

also G∗
27 ∈ [0;G(0000)] such that f(G∗

31) = f(G∗
27) = 0.

(d.3.4) If q < 0 and q >
m exp(pb)

g20 + 1
+α−θ, then with G∗

31 and G
∗
30 ∈

[G(00000); 1], we have also G∗
27 ∈ [0;G(0000)] such that f(G∗

29) =
f(G∗

30) = f(G∗
32) = 0

(II.2) If θ <
1

6

[
24α+mpb

(
(pb)2 + 6(pb) + 6

)
exp(pb)

]
, then because of the decreasing of

f ′′′ on [0; 1] and by using the intermediate values theorem, ∃G̃(0) ∈ [0; 1] such that
f ′′′(G̃(0)) = 0. Then f ′′′(G) > 0 on [0; G̃(0)] and f ′′′(G) < 0 on [G̃(0); 1].

(II.2.1) If f ′′(G̃(0)) < 0, then f ′′(G) < 0 on [0; 1]. Therefore f is decreasing on that
interval.

(II.2.1.1) If θ < 0, then f ′(G) < 0 on [0; 1] and f is decreasing on [0; 1].

(II.2.1.1.1) If q < 0, then f(G) < 0 on [0; 1].
(II.2.1.1.2) If q > 0, then:

(a) If q >
m exp(pb)

g20 + 1
+ α− θ, then f(G) > 0 on [0; 1].

(b) If q <
m exp(pb)

g20 + 1
+ α− θ, then ∃G∗

33 ∈ [0; 1] such that f(G∗
33) = 0.

(II.2.1.2) If θ > 0, then we have the following cases:

(II.2.1.2.1) If q >
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
, then f ′(G) > 0 on

[0; 1]. Therefore f is increasing on [0; 1].

(a) If q > 0, then f(G) > 0 on [0; 1].
(b) If q < 0, then:

(b.1) If q <
m exp(pb)

g20 + 1
+ α− θ, then f(G) < 0 on [0; 1].

(b.2) If q >
m exp(pb)

g20 + 1
+α−θ, then ∃G∗

34 ∈ [0; 1] such that f(G∗
34) =

0.

(II.2.1.2.2) If q <
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
, then ∃G̃(1) ∈ [0; 1]

such that f ′(G̃(1)) = 0.Therefore f ′(G) > 0 on [0; G̃(1)] and f ′(G) > 0
on [G̃(1); 1].

(a) If f(G̃(1)) < 0, then f(G) < 0 on [0; 1].
(b) If f(G̃(1)) > 0, then:

(b.1) If q > 0 and q >
m exp(pb)

g20 + 1
+ α− θ, then f(G) > 0 on [0; 1].

(b.2) If q < 0 and q >
m exp(pb)

g20 + 1
+ α− θ, then ∃G∗

35 ∈ [0; G̃(1)] such

that f(G∗
35) = 0.

(b.3) If q > 0 and q <
m exp(pb)

g20 + 1
+ α− θ, then ∃G∗

36 ∈ [G̃(1); 1] such

that f(G∗
36) = 0.

(b.3) If q < 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then G∗

35 and G∗
36 are

the two roots on [0; 1] of f .

(II.2.2) If f ′′(G̃(0)) > 0, then:

(II.2.2.1) If q > m+ αg20 and q > 6α− 3θ + αg20 +
1

2
m exp(pb)

[
(pb)2 + pb+ 2

]
, then

f ′′(G) > 0 on [0; 1].Therefore f ′ is increasing on [0; 1].
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(II.2.2.1.1) If θ > 0, then f ′(G) > 0 on [0; 1]. Therefore f is increasing on [0; 1].

(a) If q > 0, then f(G) > 0 on [0; 1].
(b) If q < 0, then:

(b.1) If q <
m exp(pb)

g20 + 1
+ α− θ, then f(G) < 0 on [0; 1].

(b.2) If q >
m exp(pb)

g20 + 1
+α−θ, then ∃G∗

37 ∈ [0; 1] such that f(G∗
37) =

0.

(II.2.2.1.2) If θ < 0, then:

(a) If q <
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
, then f ′(G) < 0

on [0; 1]. Therefore f is decreasing on [0; 1].

(a.1) If q < 0, then f(G) < 0 on [0; 1].
(a.2) If q > 0, then:

(a.2.1) If q >
m exp(pb)

g20 + 1
+ α− θ, then f(G) > 0 on [0; 1].

(a.2.2) If q <
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

38 ∈ [0; 1] such that

f(G∗
38) = 0.

(b) If q >
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
, then ∃G̃(2) ∈

[0; 1] such that f ′(G̃(2)) = 0. Therefore f ′(G) < 0 on [0; G̃(2)] and
f ′(G) > 0 on [G̃(2); 1].

(b.1) If f(G̃(2)) > 0, then f(G) > 0 on [0; 1].
(b.2) If f(G̃(2)) < 0, then we have the following cases:

(b.2.1) If q < 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then f(G) < 0 on

[0; 1].

(b.2.2) If q > 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

39 ∈ [0; G̃(2)]

such that f(G∗
39) = 0.

(b.2.3) If q < 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

40 ∈ [G̃(2); 1]

such that f(G∗
40) = 0.

(b.2.4) If q > 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then G∗

39 and G∗
40

are the two roots on [0; 1] of f .

(II.2.2.2) If q < m+ αg20 and q > 6α− 3θ+ αg20 +
1

2
m exp(pb)

[
(pb)2 + pb+ 2

]
, then:

∃G̃(3) ∈ [0; G̃(0)] such that f ′′(G̃(3)) = 0. Therefore f ′′(G) < 0 on [0; G̃(3)]
and f ′′(G) > 0 on [G̃(3); 1].

(II.2.2.2.1) If f ′(G̃(3)) > 0, then f ′(G) > 0 on [0; 1]. Therefore f is increasing on
[0; 1].

(a) If q > 0, then f(G) > 0 on [0; 1].
(b) If q < 0, then:

(b.1) If q <
m exp(pb)

g20 + 1
+ α− θ, then f(G) < 0 on [0; 1].

(b.2) If q >
m exp(pb)

g20 + 1
+α−θ, then ∃G∗

41 ∈ [0; 1] such that f(G∗
41) =

0.

(II.2.2.2.2) If f ′(G̃(3)) < 0, then we have the following cases:
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(a) If θ < 0 and q <
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
, then

f ′(G) < 0 on [0; 1]. Therefore f is decreasing on [0; 1].

(a.1) If q < 0, then f(G) < 0 on [0; 1].
(a.2) If q > 0, then:

(a.2.1) If q >
m exp(pb)

g20 + 1
+ α− θ, then f(G) > 0 on [0; 1].

(a.2.2) If q <
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

42 ∈ [0; 1] such that

f(G∗
42) = 0.

(b) If θ > 0 and q <
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
, then

∃G̃(4) ∈ [0; G̃3] such that f ′(G̃(4)) = 0. Therefore f ′(G) > 0 on
[0; G̃(4)] and f ′(G) < 0 on [G̃(4); 1].

(b.1) If f(G̃(4)) < 0, then f(G) < 0 on [0; 1].
(b.2) If f(G̃(4)) > 0, then:

(b.2.1) If q > 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then f(G) > 0 on

[0; 1].

(b.2.2) If q < 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

43 ∈ [0; G̃(4)]

such that f(G∗
43) = 0.

(b.2.3) If q > 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

44 ∈ [G̃(4); 1]

such that f(G∗
44) = 0.

(b.2.4) If q < 0 and q <
m exp(pb)

g20 + 1
+ α− θ, then G∗

44 and G∗
43 are

the two roots on [0; 1] of f .

(c) If θ < 0 and q >
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
, then

∃G̃(5) ∈ [G̃3; 1] such that f ′(G̃(5)) = 0. Therefore f ′(G) < 0 on
[0; G̃(5)] and f ′(G) > 0 on [G̃(5); 1].

(c.1) If f(G̃(5)) > 0, then f(G) > 0 on [0; 1].
(c.2) If f(G̃(5)) < 0, then:

(c.2.1) If q < 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then f(G) < 0 on

[0; 1].

(c.2.2) If q > 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

45 ∈ [0; G̃(5)]

such that f(G∗
45) = 0.

(c.2.3) If q < 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

46 ∈ [G̃(5); 1]

such that f(G∗
46) = 0.

(c.2.4) If q > 0 and q >
m exp(pb)

g20 + 1
+ α− θ, then G∗

45 and G∗
46 are

the two roots of f on [0; 1].

(d) If θ > 0 and q >
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
, then

G̃(4) and G̃(5) are the two roots of f ′. Therefore f ′(G) > 0 on
[0; G̃(4)] ∪ [G̃(5); 1] and f ′(G) < 0 on [G̃(4); G̃(5)].

(d.1) If f(G̃(4)) < 0, then we have the following cases:

(d.1.1) If q <
m exp(pb)

g20 + 1
+ α− θ, then f(G) < 0 on [0; 1].
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(d.1.2) If q >
m exp(pb)

g20 + 1
+ α − θ, then G∗

46 is the unique roots of

f .

(d.2) If f(G̃(4)) > 0 and f(G̃(5)) > 0, then:

(d.2.1) If q > 0, then f(G) > 0 on [0; 1].
(d.2.2) If q < 0, then G∗

43 is the unique roots of f .

(d.3) If f(G̃(4)) > 0 and f(G̃(5)) < 0, then: ∃G∗
47 ∈ [G̃(4); G̃(5)] such

that f(G∗
47) = 0.

(d.3.1) If q > 0 and q >
m exp(pb)

g20 + 1
+α− θ, then G∗

47 and G∗
46 are

the two roots of f .

(d.3.2) If q > 0 and q <
m exp(pb)

g20 + 1
+α−θ, then G∗

47 is the unique

root of f .

(d.3.3) If q < 0 and q <
m exp(pb)

g20 + 1
+α− θ, then G∗

47 and G∗
43 are

the two roots of f .

(d.3.4) If q < 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then G∗

47 ,G∗
46 and

G∗
43 are the three roots of f .

(II.2.2.3) If q > m+ αg20 and q < 6α− 3θ+ αg20 +
1

2
m exp(pb)

[
(pb)2 + pb+ 2

]
, then:

∃G̃(6) ∈ [G̃(0); 1] such that f ′′(G̃(6)) = 0. Therefore, f ′′(G) > 0 on [0; G̃(6)]
and f ′′(G) < 0 on [G̃(6); 1].

(II.2.2.3.1) If f ′(G̃(6)) < 0, then f ′(G) < 0 on [0; 1]. Therefore f is decreasing on
[0; 1].

(a) If q < 0, then f(G) < 0 on [0; 1].
(b) If q > 0, then:

(b.1) If q >
m exp(pb)

g20 + 1
+ α− θ, then f(G) > 0 on [0; 1].

(b.2) If q <
m exp(pb)

g20 + 1
+α−θ, then ∃G∗

48 ∈ [0; 1] such that f(G∗
48) =

0.

(II.2.2.3.2) If f ′(G̃(6)) > 0, then

(a) If θ > 0 and q >
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
, then

f ′(G) > 0 on [0; 1] and therefore f is increasing on [0; 1].

(a.1) If q > 0, then f(G) > 0 on [0; 1].
(a.2) If q < 0, then:

(a.2.1) If q <
m exp(pb)

g20 + 1
+ α− θ, then f(G) < 0 on [0; 1].

(a.2.2) If q >
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

49 ∈ [0; 1] such that

f(G∗
49) = 0.

(b) If θ < 0 and q >
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
, then

∃G̃(7) ∈ [0; G̃(6)] such that f ′(G̃(7)) = 0. Therefore f ′(G) < 0 on
[0; G̃(7)] and f ′(G) > 0 on [G̃(7); 1]

(b.1) If f(G̃(7)) > 0, then f(G) > 0 on [0; 1].
(b.2) If f(G̃(7)) < 0, then:

(b.2.1) If q < 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then f(G) < 0 on

[0; 1].
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(b.2.2) If q > 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

50 ∈ [0; G̃(7)]

such that f(G∗
50) = 0.

(b.2.3) If q < 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

51 ∈ [G̃(7); 1]

such that f(G∗
51) = 0.

(b.2.4) If q > 0 and q >
m exp(pb)

g20 + 1
+ α− θ, then G∗

50 and G∗
51 are

the two roots on [0; 1] of f .

(c) If θ > 0 and q <
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
, then

∃G̃(8) ∈ [G̃(6); 1] such that f ′(G̃(8)) = 0. Therefore f ′(G) > 0 on
[0; G̃(8)] and f ′(G) < 0 on [G̃(8); 1]

(c.1) If f(G̃(8)) < 0, then f(G) < 0 on [0; 1].
(c.2) If f(G̃(8)) > 0, then:

(c.2.1) If q > 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then f(G) > 0 on

[0; 1].

(c.2.2) If q < 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

52 ∈ [0; G̃(8)]

such that f(G∗
52) = 0.

(c.2.3) If q > 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

53 ∈ [G̃(8); 1]

such that f(G∗
53) = 0.

(c.2.4) If q < 0 and q <
m exp(pb)

g20 + 1
+ α− θ, then G∗

52 and G∗
53 are

the two roots on [0; 1] of f .

(d) If θ < 0 and q <
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
, then

G̃(8) and G̃(7) are the two positive roots of f ′. Therefore f ′(G) > 0
on [G̃(7); G̃(8)] and f ′(G) < 0 on [0; G̃(7)] ∪ [G̃(8); 1].

(d.1) If f(G̃(7)) > 0, then:

(d.1.1) If q >
m exp(pb)

g20 + 1
+ α− θ, then f(G) > 0 on [0; 1].

(d.1.2) If q <
m exp(pb)

g20 + 1
+α− θ, then G∗

53 is the unique root of f .

(d.2) If f(G̃(7)) < 0 and f(G̃(8)) < 0, then :

(d.2.1) If q < 0, then f(G) < 0 on [0; 1].
(d.2.2) If q > 0, then G∗

50 is the unique root of f .

(d.3) If f(G̃(7)) < 0 and f(G̃(8)) > 0, then :∃G∗
54 ∈ [G̃(7); G̃(8)] such

that f(G∗
54) = 0.

(d.3.1) If q < 0 and q <
m exp(pb)

g20 + 1
+α−θ, then with G∗

54 we have

also G∗
53 as a root of f .

(d.3.2) If q < 0 and q >
m exp(pb)

g20 + 1
+α−θ, then G∗

54 is the unique

root of f . .

(d.3.3) If q > 0 and q >
m exp(pb)

g20 + 1
+α−θ, then with G∗

54 we have

also G∗
50 as a root of f .

(d.3.4) If q > 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then G∗

50, G
∗
54 and

G∗
53 are the three roots on [0; 1] of f .
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(II.2.2.4) If q < m+αg20 and q < 6α−3θ+αg20+
1

2
m exp(pb)

[
(pb)2 + pb+ 2

]
, then:G̃(3)

and G̃(6) are the two roots of f ′′. Therefore, f ′′(G) > 0 on [G̃(3); G̃(6)] and
f ′′(G) < 0 on [0; G̃(3)] ∪ [G̃(6); 1].

(II.2.2.4.1) If f ′(G̃(3)) > 0, then:

(a) If q >
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
, then f ′(G) > 0

on [0; 1], therefore f is increasing on that interval.

(a.1) If q > 0, then f(G) > 0 on [0; 1].
(a.2) If q < 0, then:

(a.2.1) If q <
m exp(pb)

g20 + 1
+ α− θ, then f(G) < 0 on [0; 1].

(a.2.2) If q >
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

41 ∈ [G̃(6); 1] such that

f(G∗
41) = 0.

(b) If q <
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
, then G̃(8) is the

unique root of f ′. Therefore
(b.1) If f(G̃(8)) < 0, then f(G) < 0 on [0; 1].
(b.2) If f(G̃(8)) > 0, then:

(b.2.1) If q > 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then f(G) > 0 on

[0; 1].

(b.2.2) If q < 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

52 ∈ [0; G̃(8)]

such that f(G∗
52) = 0.

(b.2.3) If q > 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

53 ∈ [G̃(8); 1]

such that f(G∗
53) = 0.

(b.2.4) If q < 0 and q <
m exp(pb)

g20 + 1
+ α− θ, then G∗

52 and G∗
53 are

the two roots on [0; 1] of f .

(II.2.2.4.2) If f ′(G̃(3)) < 0 and f ′(G̃(6)) < 0, then we have the following cases:

(a) If θ < 0, then f ′(G) < 0 on [0; 1]. Therefore f is decreasing on [0; 1].

(a.1) If q < 0, then f(G) < 0 on [0; 1].
(a.2) If q > 0, then :

(a.2.1) If q >
m exp(pb)

g20 + 1
+ α− θ, then f(G) > 0 on [0; 1].

(a.2.2) If q <
m exp(pb)

g20 + 1
+α− θ, then G∗

42 is the unique root of f .

(b) If θ > 0, then G̃(4) is the unique root of f ′. Therefore:
(b.1) If f(G̃(4)) < 0, then f(G) < 0 on [0; 1].
(b.2) If f(G̃(4)) > 0, then:

(b.2.1) If q > 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then f(G) > 0 on

[0; 1].

(b.2.2) If q < 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

43 ∈ [0; G̃(4)]

such that f(G∗
43) = 0.

(b.2.3) If q > 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then ∃G∗

44 ∈ [G̃(4); 1]

such that f(G∗
44) = 0.
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(b.2.4) If q < 0 and q <
m exp(pb)

g20 + 1
+ α− θ, then G∗

44 and G∗
43 are

the two roots on [0; 1] of f .

(II.2.2.4.3) If f ′(G̃(3)) < 0 and f ′(G̃(6)) > 0, then ∃G̃9 ∈ [G̃3; G̃6] such that f ′(G̃(9)) =
0.

(a) If θ < 0 and q >
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
, then

G̃9 is the unique roots of f ′.
(a.1) If f(G̃9) > 0, then f(G) > 0 on [0; 1].
(a.2) If f(G̃9) < 0, then:

(a.2.1) If q < 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then f(G) < 0 on

[0; 1].

(a.2.2) If q > 0 and q <
m exp(pb)

g20 + 1
+ α− θ, then ∃G∗

55 ∈ [0; G̃(9)]

such that f(G∗
55) = 0.

(a.2.3) If q < 0 and q >
m exp(pb)

g20 + 1
+ α− θ, then ∃G∗

56 ∈ [G̃(9); 1]

such that f(G∗
56) = 0.

(a.2.4) If q > 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then G∗

55 and G∗
56

are the roots of f .

(b) If θ > 0 and q >
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
, then

with G̃9 we have also G̃4 root of f ′. Therefore f ′(G) < 0 on [G̃4; G̃9]
and f ′(G) > 0 on [0; G̃4] ∪ [G̃9; 1].

(b.1) If f(G̃4) < 0, then:

(b.1.1) If q <
m exp(pb)

g20 + 1
+ α− θ, then f(G) < 0 on [0; 1].

(b.1.2) If q >
m exp(pb)

g20 + 1
+α− θ, then G∗

56 ∈ [G̃(9); 1] is the unique

root of f .

(b.2) If f(G̃4) > 0 and f(G̃9) > 0, then:

(b.2.1) If q > 0, then f(G) > 0 on [0; 1].
(b.2.1) If q < 0, then G∗

43 is the unique root of f .

(b.3) If f(G̃4) > 0 and f(G̃9) < 0, then ∃G∗
57 ∈ [G̃4; G̃9] such that

f(G∗
57) = 0.

(b.3.1) If q > 0 and q <
m exp(pb)

g20 + 1
+α− θ,then G∗

57 is the unique

root of f .

(b.3.2) If q < 0 and q <
m exp(pb)

g20 + 1
+α−θ, then with G∗

57 we have

also G∗
43 roots of f .

(b.3.3) If q > 0 and q >
m exp(pb)

g20 + 1
+α−θ, then with G∗

57 we have

also G∗
56 roots of f .

(b.3.4) If q < 0 and q >
m exp(pb)

g20 + 1
+α−θ, then with G∗

57 we have

also G∗
56 and G∗

43 roots of f .

(c) If θ < 0 and q <
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
, then

with G̃9 we have also G̃8 roots of f ′. Therefore f ′(G) > 0 on [G̃9; G̃8]
and f ′(G) < 0 on [0; G̃9] ∪ [G̃8; 1].
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(c.1) If f(G̃9) > 0, then:

(c.1.1) If q >
m exp(pb)

g20 + 1
+ α− θ, then f(G) > 0 on [0; 1].

(c.1.2) If q <
m exp(pb)

g20 + 1
+α− θ, then G∗

53 is the unique root of f .

(c.2) If f(G̃9) < 0 and f(G̃8) < 0 then

(c.2.1) If q < 0, then f(G) < 0 on [0; 1].
(c.2.2) If q > 0, then G∗

55 is the unique root of f .

(c.3) If f(G̃9) < 0 and f(G̃8) > 0, then ∃G∗
58 ∈ [G̃9; G̃8] such that

f(G∗
58) = 0.

(c.3.1) If q < 0 and q >
m exp(pb)

g20 + 1
+α− θ, then G∗

58 is the unique

root of f .

(c.3.2) If q > 0 and q >
m exp(pb)

g20 + 1
+α− θ,then with G∗

58 we have

also G∗
55 root of f .

(c.3.3) If q < 0 and q <
m exp(pb)

g20 + 1
+α−θ, then with G∗

58 we have

also G∗
53 root of f .

(c.3.3) If q > 0 and q <
m exp(pb)

g20 + 1
+α−θ, then with G∗

58 we have

also G∗
53 and G∗

55 root of f .

(d) If θ > 0 and q <
1

2

[
4α− 3θ + (2α− θ)g20 +m exp(pb) [pb+ 2]

]
, then

with G̃9 we have also G̃4 and G̃8 roots of f ′. Therefore f ′(G) > 0
on [0; G̃4] ∪ [G̃9; G̃8] and f ′(G) < 0 on [G̃4; G̃9] ∪ [G̃8; 1].

(d.1) If f(G̃4) < 0 and f(G̃8) < 0, then f(G) < 0 on [0; 1].
(d.2) If f(G̃4) > 0 and f(G̃8) < 0, then f(G̃9) < 0 and therefore

∃G∗
59 ∈ [G̃4; G̃9] such that f(G∗

59) = 0. Then:

(d.2.1) If q > 0, then G∗
59 is the unique root of f .

(d.2.2) If q < 0, then with G∗
59, we have also G∗

43 roots of f .

(d.3) If f(G̃4) < 0 and f(G̃8) > 0, then f(G̃9) < 0 and therefore
∃G∗

60 ∈ [G̃9; G̃8] such that f(G∗
60) = 0. Then:

(d.3.1) If q >
m exp(pb)

g20 + 1
+α− θ, then G∗

60 is the unique root of f .

(d.3.2) If q <
m exp(pb)

g20 + 1
+α− θ, with G∗

60 we have also G∗
53 roots

of f .

(d.4) If f(G̃4) > 0 and f(G̃8) > 0, then:

(d.4.1) If f(G̃9) > 0, then:

(d.4.1.1) If q > 0 and q >
m exp(pb)

g20 + 1
+ α− θ, then f(G) > 0 on [0; 1].

(d.4.1.2) If q > 0 and q <
m exp(pb)

g20 + 1
+ α − θ, then f has an unique

root G∗
53.

(d.4.1.3) If q < 0 and q >
m exp(pb)

g20 + 1
+ α − θ, then f has an unique

root G∗
43.

(d.4.1.4) If q < 0 and q <
m exp(pb)

g20 + 1
+ α− θ, G∗

43 and G∗
53 are the two

roots of f .
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(d.4.2) If f(G̃9) < 0, then with G∗
59 and G∗

58, we have also:

(d.4.2.1) If q > 0 and q >
m exp(pb)

g20 + 1
+α−θ, G∗

59 and G∗
58 roots

of f .

(d.4.2.2) If q < 0 and q >
m exp(pb)

g20 + 1
+ α − θ,G∗

43. Therefore

G∗
59,G

∗
58,G

∗
43 are the three roots of f .

(d.4.2.3) If q > 0 and q <
m exp(pb)

g20 + 1
+ α − θ, G∗

53. Therefore

G∗
59,G

∗
58,G

∗
53 are the three roots of f .

(d.4.2.4) If q < 0 and q <
m exp(pb)

g20 + 1
+ α − θ, G∗

43 and G∗
53.

Therefore G∗
59,G

∗
58, G

∗
53 and G∗

43 are the fourth roots of f

Appendix C. Proof of Proposition 4

Set:
a11 = −γGG∗,
a12 = −γTGG

∗,
a21 = −λfT fω′(G∗) exp(−pT ∗)T ∗,
a22 = −γT

[
(1− Ω)T ∗ + 2Ω(T ∗)2

]
+ pλfT fω(G

∗) exp(−pT ∗)T ∗.

For the savanna steady state, we have the Jacobian Matrix:

M(G∗;T ∗) =

(
a11 a12
a21 a22

)
. (C.1)

If f = 0, then:

a11 = −γGG∗,
a12 = −γTGG

∗,
a21 = 0,
a22 = −γT

[
(1− Ω)T ∗ + 2Ω(T ∗)2

]
= −γTT ∗ [(1− Ω) + 2ΩT ∗] .

Therefore:

(a) If Ω = 0, then a22 < 0. Consequently a11 < 0 and a22 < 0. So because a21 = 0, (G∗;T ∗) is
LAS.

(b) If Ω > 0, then

a22 = −γTT ∗
√

(1− Ω)2 + 4Ω
(
1− δT

γT

)
< 0,

then a11 < 0 and a22 < 0. So, (G∗;T ∗) is LAS.

If f ̸= 0,
Tr(M(G∗;T ∗)) = a11 + a22,

Det((G∗;T ∗)) = a11a22 − a12a21.
(C.2)

Det(M) > 0 ⇔ a11a22 − a12a21 > 0

a11a22 − a21a12 > 0 ⇔ γGγTG
∗T ∗ [(1− Ω) + 2ΩT ∗]− pγGλfT fω(G

∗) exp(−pT ∗)G∗T ∗

−γTGλfT fω
′(G∗) exp(−pT ∗)G∗T ∗ > 0,

⇔ γT [(1− Ω) + 2ΩT ∗]
pλfT fω(G∗) exp(−pT ∗)

− γTGω
′(G∗)

pγGω(G∗)
> 1.
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Second Tr(M(G∗, T ∗)) < 0 ⇔ γGG
∗

pλfT fω(G∗ exp(−pT ∗)T ∗ +
γT [(1− Ω) + 2ΩT ∗]
pλfT fω(G∗ exp(−pT ∗)

> 1.

But,

γT [(1− Ω) + 2ΩT ∗]
pλfT fω(G∗) exp(−pT ∗)

−γTGω
′(G∗)

pγGω(G∗)
> 1 ⇒ γGG

∗

pλfT fω(G∗ exp(−pT ∗)T ∗+
γT [(1− Ω) + 2ΩT ∗]
pλfT fω(G∗ exp(−pT ∗)

> 1.

Consequently, if
γT [(1− Ω) + 2ΩT ∗]

pλfT fω(G∗) exp(−pT ∗)
− γTGω

′(G∗)
pγGω(G∗)

> 1, then (G∗;T ∗) is stable.

Appendix D. Proof of Proposition 5

We have h = T − Ts and g = G−Gs, then
∂h

∂t
=
∂T

∂t
and

∂2h

∂x2
=
∂T 2

∂x2

In the same way
∂g

∂t
=
∂G

∂t
and

∂2g

∂x2
=
∂G2

∂x2
, So:

∂h

∂t
= DT

∂2h

∂x2
+ γT (h+ Ts) (1 + Ω (h+ Ts))

(
1−

∫ +∞

−∞
ϕM2(x− y)(h(t, y) + Ts)dy

)

−δT (h+ Ts)− λfT fω(g +Gs) exp

(
−p
∫ +∞

−∞
ϕM2(x− y)(h(t, y) + Ts)dy

)
(h+ Ts)

(D.1)
Developing the right-hand side of equation (D.1) and neglecting the nonlinear expressions in h we
get:

∂h

∂t
= DT

∂2h

∂x2
+ (γT (1 + ΩTs) + γTΩTs) (1− Ts)h− δTh− λfT fω(Gs) exp(−pTs)h

−λfT fω′(Gs) exp(−pTs)Tsg − γTTs(1 + ΩTs)

∫ +∞

−∞
ϕM2(x− y)h(y, t)dy

+λfT fpω(Gs) exp(−pTs)Ts
∫ +∞

−∞
ϕM2(x− y)h(y, t)dy.

= DT
∂2h

∂x2
+ [(γT (1 + ΩTs)(1− Ts)− δT − λfT fω(Gs) exp(−pTs)) + γTΩTs(1− Ts)]h

+(pλfT fω(Gs) exp(−pTs)Ts − γTTs(1 + ΩTs))

∫ +∞

−∞
ϕM2(x− y)h(y, t)dy

−λfT fω′(Gs) exp(−pTs)Tsg.

In the same way we have :

∂g

∂t
= DG

∂2g

∂x2
+ γG(g +G∗)

(
1−

∫ +∞

−∞
ϕM1(x− y)(g(y, t) +G∗)dy

)
− δG(g +G∗)− λfGf(g +G∗)

−γTG

(∫ +∞

−∞
ϕM2(x− y)(h(y, t) + T ∗)dy

)
(g +G∗).

(D.2)
Developing the right-hand side of equation (D.2) and neglecting the nonlinear expressions in g we
get:

∂g

∂t
= DG

∂2g

∂x2
+ [γG(1−Gs)− δG − γTGTs − λfGf ] g − γGGs

∫ +∞

−∞
ϕM1(x− y)g(y, t)dy

−γTGGs

∫ +∞

−∞
ϕM2(x− y)h(y, t)dy.
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Appendix E. Proof of Theorem 3

Assume that RT < 1 (then b22 < 0) and we have a range of positive values of z such that:

ϕ1(z) < 0. Writing Det(M) as a binomial expression of
z2

M2
1

implies:

Det(M) = DGDT
z4

M4
1

+
[
b11DTϕ1(z)− b22DG

] z2
M2

1

− b11b22ϕ1(z),

= DGDT

[(
z2

M2
1

+
b11DTϕ1(z)− b22DG

2DGDT

)2

−
(
b11DTϕ1(z)− b22DG

)2

4(DGDT )2
− b11b22ϕ1(z)

DGDT

]

=
1

DGDT

[
DGDT

z2

M2
1

+
b11DTϕ1(z)− b22DG

2

]2
− 1

4DGDT

[ (
b11DTϕ1(z)− b22DG

)2

+4DGDT b11b22ϕ1(z)

]

=
1

DGDT

[
DGDT

z2

M2
1

+
b11DTϕ1(z)− b22DG

2

]2
− 1

4DGDT

[
b11DTϕ1(z) + b22DG

]2

=
1

DGDT

[
DGDT

z2

M2
1

− b22DG

]
×
[
DGDT

z2

M2
1

+ b11DTϕ1(z)

]
.

(E.1)

DGDT
z2

M2
1

− b22DG > 0 because b22 < 0 and therefore Det(M) ≤ 0 gives:

1

(M1)2
≤ −ϕ1(z)

z2

(
b11
DG

)
.

Therefore, (Ge, 0) is unstable. To show that system (5) undergoes spatial Turing bifurcation at
MT

1 , we need to verify that spatial Turing bifurcation occurs prior to the temporal Hopf bifurcation
(case where Tr(M) = 0 and Det(M) > 0) as M1 increases to MT

1 . From the above argument, we
only need to show that if (35) fails then (36) must have already failed as M1 increases. When (35)
fails, we have:

ϕ1(z) =
−(DG +DT )

z2

M2
1
+ b22

b11
. (E.2)

Plugging (E.2) into E.1), we see that

Det(M) = −
(
DT

z2

(M1)2
+ b22

)2

≤ 0. (E.3)

Thus, (36) does not hold and this ends the proof.

Appendix F. Proof of Theorem 6

Suppose that R∗
1 −R∗

2 > 1 and
a11(c− a22)µ1µ2
ca11µ1 − a12a21µ2

< 1, we have:

Det(k,M1,M2) = DGDTk
4 −

[
a22DGϕM2(k) + a11DTϕM1(k) + cDG(1− ϕM2(k))

]
k2+

a11(a22 − c)ϕM1(k)ϕM2(k) + ca11ϕM1(k)− a12a21ϕM2(k)
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and

ϕMi(k) =
sin(kMi)

kMi
, i = 1, 2.

We are interested by the determination of thresholds kT , MT
1 and MT

2 so that:

Det(kT ,MT
1 ,M

T
2 ) = 0.

These thresholds are solutions of the equations:

Det(k,M1,M2) = 0,
∂Det(k,M1,M2)

∂M1
= 0,

∂Det(k,M1,M2)

∂M2
= 0

∂Det(k,M1,M2)

∂k
= 0. (F.1)

Differentiating Det(k,M1,M2) with respect to M1 and M2 and using the fact that:
∂Det(k,M1,M2)

∂M1
= 0 and

∂Det(k,M1,M2)

∂M2
= 0 we obtain:

(a11a22 − ca11)

(
ϕM2(k) +

ca11 − a11DTk
2

a11a22 − ca11

)
∂ϕM1

∂M1
= 0,

and

(a11a22 − ca11)

(
ϕM1(k)−

DG(a22 − c)k2 + a12a21
a11a22 − ca11

)
∂ϕM2

∂M2
= 0.

Then we have:




ϕM2(k) =
a11DTk

2 − ca11
a11a22 − ca11

=
DTk

2 − c

a22 − c
or

∂ϕM1

∂M1
= 0,

ϕM1(k) =
DG(a22 − c)k2 + a12a21

a11a22 − ca11
or

∂ϕM2

∂M2
= 0.

(F.2)

First, if:

ϕM2(k) =
DTk

2 − c

a22 − c
and ϕM1(k) =

DG(a22 − c)k2 + a12a21
a11a22 − ca11

then, Det(k,M1,M2) =
a12a21
c− a22

DTk
2 + c

a12a21
a22 − c

. Using the fact that
∂Det(k,M1,M2)

∂k
= 0, we

obtain k = 0 and then we return to the temporal case.
Second, if:

ϕM2(k) =
DTk

2 − c

a22 − c
and

∂ϕM2

∂M2
= 0

then as previously: Det(k,M1,M2) =
a12a21
c− a22

DTk
2 + c

a12a21
a22 − c

and we can not have Turing bifur-

cation there.
Third, if:

ϕM1(k) =
DG(a22 − c)k2 + a12a21

a11a22 − ca11
and

∂ϕM2

∂M2
= 0

then we have the same results as before. Finally, if:

∂ϕM1

∂M1
= 0 and

∂ϕM2

∂M2
= 0,

we obtain
tan(kM1) = kM1 and tan(kM2) = kM2.
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Set z1 = kM1 and z2 = kM2, then z1 and z2 are solutions of :

tan(z) = z. (F.3)

Set:

µ1 =
sin(z1)

z1
and µ2 =

sin(z2)

z2
.

Det(k,M1,M2) = 0 gives that:

(kT )2 =
DGa22µ2 + a11DTµ1 + cDG(1− µ2) +

√
Σ

2DGDT
(F.4)

with

Σ = (DGa22µ2 + a11DTµ1 + cDG(1− µ2))
2 − 4DGDT ((a11a22 − ca11)µ1µ2 − a12a21µ2 + ca11µ1)

and using the fact that
∂Det(k,M1,M2)

∂k
= 0, we obtain:

(DGa22µ2 + a11DTµ1 + cDG(1− µ2))
2 = 4DGDT ((a11a22 − ca11)µ1µ2 − a12a21µ2 + ca11µ1) .

(F.5)
Note that (a11a22 − ca11)µ1µ2 − a12a21µ2 + ca11µ1 > 0 thanks to the second assumption in (52).
Thus, the relation in (F.5) is well defined and therefore:

(kT )2 =

√
(a11a22 − ca11)µ1µ2 − a12a21µ2 + ca11µ1

DGDT
. (F.6)

The associated values of M1 and M2 are

MT
1 = z1

(
DGDT

(a11a22 − ca11)µ1µ2 + ca11µ1 − a12a21µ2

)1/4

, (F.7)

and

MT
2 = z2

(
DGDT

(a11a22 − ca11)µ1µ2 + ca11µ1 − a12a21µ2

)1/4

. (F.8)

Appendix G. Numerical scheme

The numerical scheme for the problem given by system (5) is obtained by using non standard
finite method for the discretization of the temporal part of the system and difference finite method
for the spatial part. We subdivided the space domain (0, l) in n+ 1 intervals such that:

x0 = 0 < x1 < x2 < ... < xn < xn+1 = l,

where

∀ j = 1, ..., n ∆x = xj+1 − xj =
l

n+ 1
and xj = j∆x.

In the same way, we subdivided the time interval such that:

t0 < t1 < t2 < ... < ti < tj+1 < ... and ti = i∆t.

We denote by Gi
j and T i

j respectively the value of G and T at the time ti and at the space point
xj . Remark first that in non standard method, non linear terms are substituted by a non local
approximation. Second, the standard denominator ∆t in each discrete derivative is replaced by a
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time-step function 0 < φ(∆t) < 1 such that φ(∆t) = ∆t+O(∆t). The non-standard approximation
for the system (5) are given by:





Gi+1
j −Gi

j

φ1(∆t)
= DG

Gi
j+1 +Gi

j−1 − 2Gi
j

∆x2
+ (γG − δG − λfGf)G

i
j −

(
γGϕM1 ∗Gi

j + γTGϕM2 ∗ T i
j

)
Gi+1

j ,

T i+1
j − T i

j

φ2(∆t)
= DT

T i
j+1 + T i

j−1 − 2T i
j

∆x2
+
(
γT − δT +ΩγTT

i
j

)
T i
j −

(
γTϕM2 ∗ T i

j +ΩγTT
i
jϕM2 ∗ T i

j

)
T i+1
j

−λfT fω(Gi
j) exp (−pϕM2 ∗ T i

j )T
i+1
j ,

(G.1)
with 




φ1(∆t) =
e(γG−δG−λfGf)∆t − 1

γG − δG − λfGf
,

φ2(∆t) =
e(γT−δT )∆t − 1

γT − δT
,

(G.2)

and




∆x ≤ min

(√
2DG

γG − δG − λfGf
;

√
2DT

γT − δT

)

∆t ≤ min




ln

[
1 +

γG − δG − λfGf
2DG
∆x2 − (γG − δG − λfGf)

]

γG − δG − λfGf
;

ln

[
1 +

γT − δT
2DT
∆x2 − γT − δT

]

γT − δT


 .

(G.3)

Recall that RG > 1 implies that γG − δG − λfGf > 0 and RT,0 > 1 implies that γT − δT > 0.

Second, in system (G.1) ϕM2 ∗ T i
j is an approximation of the convolution term

∫ +∞

−∞
ϕM2(x −

y)T (y, t)dy, done by the Matlab function “trapz”. It is the same for ϕM1 ∗Gi
j .
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