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A B S T R A C T   

The aim of this paper is to develop a synthetic model reproducing more realistically the conditions of grape juice 
to study browning caused by laccase from Botrytis cinerea. The laccase browning kinetics were measured by 
monitoring the increase in absorbance at 420 nm over time in the presence of different substrates – one 
monophenol: 4-hydroxybenzoic acid; three orthodiphenols: caftaric acid, (+)-catechin and (− )-epicatechin; and 
one triphenol: gallic acid. The results indicate that orthodiphenols are better substrates than triphenols and that 
monophenols do not appear to be reactive. Of the orthodiphenols, (+)-catechin showed the greatest browning 
intensity, followed in decreasing order by (− )-epicatechin and caftaric acid. These results confirm that sulfur 
dioxide, ascorbic acid and glutathione really do protect grape juice against laccase browning. The effectiveness of 
ascorbic acid and glutathione also confirm that both antioxidants can be useful tools for reducing doses of sulfur 
dioxide in winemaking, especially when grey rot is present.   

1. Introduction 

Enzymatic browning is an oxidation process that occurs in many 
foods. It causes an increase in their brown color (Friedman, 1996), 
which often leads to rejection by consumers. This problem is of partic-
ular concern in the case of winemaking, since grape juice is very sus-
ceptible to developing this process (du Toit et al., 2006; Oliveira et al., 
2011). The enzymes responsible for browning are polyphenol oxidases, 
a broad family of oxidoreductases (EC. 1 class, according to the Inter-
national Union of Biochemistry and Molecular Biology – IUBMB). 
However, in the case of grape juice only two enzymes really play an 
important role in enzymatic browning: tyrosinase (EC 1.14.18.1, 
IUBMB), which is naturally present in grapes (du Toit et al., 2006; Oli-
veira et al., 2011), and laccase (EC 1.10.3.2, IUBMB), which is only 
present when the grapes are infected by grey rot (Oliveira et al., 2011; 
Steel, Blackman & Schmidtke; 2013). 

These enzymes use molecular oxygen to oxidize mainly diphenols, 
through a radical-catalyzed reaction mechanism (Claus, 2004; Li et al., 
2008) to form quinones. These quinones and their derivatives are sub-
sequently polymerized through several reactions, forming brown 

pigments known as melanins (Claus et al., 2014; Oliveira et al., 2011; 
Queiroz et al., 2008). These pigments, which are relatively insoluble 
depending on their degree of polymerization (Moon et al., 2020), are 
responsible for increasing the intensity of the brown color in white wines 
(browning) and for the precipitation of the coloring matter in red wines 
(oxidasic haze) (Ribéreau-Gayon et al., 2006a). Both tyrosinase and 
laccase can oxidize caftaric and cutaric acids, catechin, anthocyanin, 
flavanols and flavanone as substrates, but laccase acts on a far wider 
range of substrates than tyrosinase (Oliveira et al., 2011; Steel, Black-
man & Schmidtke; 2013). Moreover, when the grapes are affected by 
grey rot, laccase activity can be much greater than that of tyrosinase in 
healthy grapes (Steel et al., 2013; Quijada-Morin et al., 2018). In addi-
tion, tyrosinase is so sensitive to sulfur dioxide that a small dose of this 
additive can inactivate it. In contrast, laccase is more resistant to sulfur 
dioxide and, unlike tyrosinase, can be present in wine after alcoholic 
fermentation (Ribéreau-Gayon et al., 2006a). 

Grey rot is produced by the development of Botrytis cinerea in the 
grapes, a necrotrophic pathogenic fungus responsible for huge economic 
losses each year in agriculture, especially in grape and wine production 
(Steel et al., 2013). Hill et al. (2019) have reported that this fungus 
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causes annual crop losses in New Zealand of up to NZ dollars 2578 per 
hectare (around 1509 euros or 1855 US dollars). It is responsible for 
probably the worst blight affecting viticulture because it gives rise to 
several serious problems such as contamination with non-desirable mi-
croorganisms (Barata et al., 2008, 2012; Lleixà et al., 2018), problems of 
settling and filtration (Villettaz et al., 1984; Jadhav & Gupta, 2016), 
presence of ochratoxin A (Ponsone et al., 2012; Valero et al., 2008), 
mouldy odors (La Guerche et al., 2007; Steel et al., 2013) and a wors-
ening of the foaming properties of sparkling wines (Cilindre et al., 
2007), which cause the quality of the wine to deteriorate (Ky et al., 
2012; Lopez-Pinar et al., 2017). Nevertheless, the damage that laccase 
causes to the color of the wine is undoubtedly one of the greatest con-
cerns (La Guerche et al., 2007; Ky et al., 2012; Steel et al., 2013; Vignault 
et al., 2019). 

The most common solutions that winemakers use to protect the 
grape juice from the browning generated by polyphenol oxidases are 
basically to increase the dose of sulfur dioxide (Ribéreau-Gayon et al., 
2006a), add ascorbic acid (Ribéreau-Gayon et al., 2006b), use inert at-
mosphere (Martinez & Whitaker, 1995), add oenological tannins 
(Vignault et al., 2019, 2020) and, more recently, to use reduced gluta-
thione (Kritzinger et al., 2013; Zimdars, 2020) or inactivated dry yeasts 
rich in glutathione (Bahut et al., 2020; Gabrielli et al., 2017). Sulfur 
dioxide acts to inhibit both polyphenol oxidases, although laccase is 
more resistant to inhibition by this additive than tyrosinase (du Toit 
et al., 2006; Ribéreau-Gayon et al., 2006a). Ascorbic acid acts by 
competing with polyphenol oxidases for oxygen, since its direct oxygen 
consumption rate is several times faster than that of sulfur dioxide 
(Pascual et al., 2017; Vignault et al., 2020). Nevertheless, it must be 
taken into account that ascorbic acid generates hydrogen peroxide after 
consuming oxygen and its use in wine may therefore cause subsequent 
oxidations (Oliveira et al., 2011), which can affect the sensory quality of 
the wine. For that reason, the use of ascorbic acid requires the presence 
of sulfur dioxide to prevent wine oxidation (Barril et al., 2016). Inert 
gases make it possible to minimize the presence of oxygen and thus 
avoid the action of polyphenol oxidases (du Toit et al., 2006; 
Ribéreau-Gayon et al., 2006b). Oenological tannins, especially 
grape-seed tannins and gallotannins, have been shown to be effective 
inhibitors of laccase activity (Vignault et al., 2020), exhibiting a pro-
tective effect on the color of white and red wines (Vignault et al., 2019). 
Finally, glutathione can limit browning because it reacts with the 
orthoquinones produced by the enzymatic oxidation of orthodiphenols 
to form 2-S-glutathionylcaftaric acid, commonly known as grape reac-
tion product (GRP) (Nikolantonaki et al., 2014; Webber et al., 2017). 
GRP is not a substrate for tyrosinase, but it can be oxidized by laccase to 
form 2,5-di-S-glutathionylcaftaric acid (GRP2). However, it seems that 
GRP2 cannot be further oxidized by laccase under winemaking condi-
tions (Kritzinger et al., 2013). Thus GSH traps the orthoquinones in a 
colorless form and as a result the formation of brown polymers is limited 
(Singleton, Salgues, Zaya, & Trousdale, 1985a, 1985b; Kritzinger et al., 
2013). 

Given the consequences that the presence of laccase in grapes im-
plies, there is no doubt that the study of laccase activity and how it can 
be inhibited is of great interest to the wine sector. 

Numerous methods have been proposed to determine laccase activity 
using various substrates such as 2,6-dimethoxyphenol (DMP) (Slomc-
zynski et al., 1995), L-3,4-dihydroxyphenylalanine (DOPA) (Saiya-Cork 
et al., 2002; Eichlerová et al., 2012), 3,30-dimethylaminobenzoic acid 
(DMAB) (Matsumura et al., 1987), 1,1-diphenyl-2-picrylhydrazyl 
(DPPH) (Prasetyo et al., 2009), pirocatecol (Perucci et al., 2000), 
o-dianisidine (Li et al., 2007), o-tolidina (Leatham & Stahmann, 1981), 
amplex red (Wang et al., 2017), 2,20-azinobis-3-ethylbenzothiazoli-
ne-6-sulfonic acid (ABTS) (Ruijssenaars & Hartmans, 2004; Eichlerová 
et al., 2012) and syringaldazine (Harkin & Obst, 1973; Grassin & 
Dubourdieu, 1986), but ABTS and syringaldazine are probably the most 
frequently used. However, all these procedures work with substrates 
that are not present in grape berries and are usually performed under 

conditions far removed from those of real grape juice. Moreover, none of 
these methods really measure enzymatic browning, since they have not 
taken into account what happens after the oxidation of orthodiphenols 
in orthodiquinones and their subsequent polymerization to form 
melanins. 

The aim of this paper is therefore to develop a model to measure the 
browning caused by laccase activity arising from Botrytis cinerea under 
conditions much closer to those of grape juice and using the substrates 
naturally present in it. The study also focuses on the inhibitory effect of 
sulfur dioxide, ascorbic acid and glutathione on the enzymatic browning 
caused by laccase. 

2. Materials and methods 

Chemicals and equipment. All samples and standards were 
handled without any exposure to light. Polyvinylpolypyrrolidone 
(PVPP), gallic acid (purity ≥97.5%), L-histidine (purity ≥99.5%), glyc-
erol (purity ≥99.5%), FeSO4⋅7H2O (purity ≥99%), NaNO3 (purity 
≥99%), CaCl2⋅2H2O (purity ≥99%), MgSO4⋅7H2O (purity ≥99%), 
ascorbic acid (purity ≥99%), reduced L-glutathione (purity ≥98%) and 
syringaldazine (purity ≥98%) were purchased from Sigma-Aldrich 
(Madrid, Spain). L-(+)-tartaric acid (purity ≥99.5%), sodium hydrox-
ide (purity ≥98%), sodium acetate (purity ≥99%), KH2PO4 (purity 
≥99%), CuSO4 (purity ≥99%), glycerol (purity ≥99.5%), KCl (purity 
≥99.5%), NaCl (purity ≥99.5%), D-glucose, D-fructose, Na2S2O5 (purity 
≥99.5%), peptone, agar and yeast extract were purchased from Panreac 
(Barcelona, Spain). Ethanol (96% vol.) and hydrochloric acid (purity 
≥36.5%) were supplied by Fisher Scientific (Madrid, Spain). 

The equipment used was as follows: a spectrophotometer UV–Vis 
Helios Alpha™ (Thermo Fisher Scientific Inc., Waltham, MA, USA); an 
incubator IPP 260 (DD Biolab, Barcelona, Spain); a centrifuge Heraeus™ 
Primo™ (Thermo Fisher Scientific Inc., Waltham, MA, USA); and a CB 
Standard Balance (Cobos, Barcelona, Spain). 

Extracellular laccase production. The B. cinerea single-spore 
isolate 213, originally isolated from grapevine leaf in 1998, was 
selected from the collection of UMR SAVE, Bordeaux (Martinez et al., 
2003). It was chosen because of its virulence on grapevine leaves and 
berries and because it is a transposa type strain (Ky et al., 2012; Martinez 
et al., 2005). The pathogen was cultured on Yeast Peptone Dextrose Petri 
plates (YPD: 20 g/L of peptone and glucose; 10 g/L of yeast extract and 
17 g/L of agar in distilled water) and incubated for about 1 week at 20 ◦C 
before use. The spores were then scraped into tubes with vertically so-
lidified YPD and incubated for 4 days under the same conditions. 
Finally, the spores were extracted from 6 tubes, recovering only the 
precipitate with 1 mL of saline solution (0.9% of NaCl). This resus-
pension was added to 125 mL of autoclaved incubation medium (40 g 
Glucose/L, 7 g Glycerol/L, 0.5 g L-histidine/L, 0.1 g CuSO4/L, 1.8 g 
NaNO3/L, 1.8 g NaCl/L, 0.5 g KCl/L, 0.5 g CaCl2⋅H2O/L, 0.05 g FeS-
O4⋅7H2O/L, 1 g KH2PO4/L and 0.5 g MgSO4⋅7H2O/L) and incubated 
with agitation (150 rpm) for 3 days. Finally, the broth was added to 1.4 L 
of autoclaved incubation medium and incubated with agitation (150 
rpm) for 2 days. A solution of 3 g of gallic acid in 40 mL autoclaved water 
was then added and left to incubate for 5 more days. This medium 
containing laccase activity was decanted, filtered through an ash-free 
filter paper and frozen at − 80 ◦C until use. 

Laccase activity assays. Laccase activity was determined using an 
adaptation of the syringaldazine test method (Grassin & Dubourdieu, 
1986). Five mL of the medium containing laccase were added to 0.8 g of 
PVPP (to remove phenolic compounds that can cause interference), 
stirred and centrifuged for 10 min at 8500 rpm. One mL of the super-
natant was introduced into a plastic spectrophotometer cuvette to which 
were also added 1.4 mL of buffer solution (8.2 g/L of sodium acetate in 
deionized water, pH 5.5) and 0.6 mL of syringaldazine solution (60 
mg/L of syringaldazine in ethanol 96%). This solution was then ho-
mogenized by inverting the cell, and absorbance was measured at 530 
nm every minute for 5 min (including a time measurement at 0 min). All 
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analyses were performed in triplicate. By definition, a laccase unit (LU) 
corresponds to the amount of enzyme that catalyzes the oxidation of a 
micromole of syringaldazine per minute. The following equation was 
used to calculate laccase activity by using the slope of the line obtained 
via a calibrating linear regression (ΔA) expressed in absorbance uni-
ts/minute: Laccase activity = 46.15 × ΔA μmol. L− 1. min− 1 = 46.15 ×
ΔA LU. 

Preparation of synthetic grape juice model solution to measure 
browning. A solution containing 100 g/L of D-glucose, 100 g/L of D- 
fructose and 4 g/L of tartaric acid adjusted to pH 3.5 with sodium hy-
droxide was used as the synthetic grape juice model solution for all the 
browning assays. 

Laccase substrates. Five phenolic compounds representing the 
main phenolic compounds present in wine were used. These included 
one triphenol: gallic acid; three orthodiphenols: caftaric acid, 
(+)-catechin and (− )-epicatechin; and one monophenol: 4-hydroxyben-
zoic acid. All these were supplied by Sigma-Aldrich (Madrid, Spain). 
Stock solutions (2 mM) of each substrate were prepared in synthetic 
grape juice model solution. 

2.1. Browning measurements 

Volumes of 0, 50, 100, 150, 200, 250, 300, 350 and 400 μL of the 
different substrate stock solution (2 mM) were introduced into 1 mL 
spectrophotometer microcuvettes of 10 mm optical path length. The 
final substrate concentration in the reaction media was therefore 0, 0.1, 
0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8 mM respectively. Then, it was added 
the volume of the medium containing laccase activity (around 30 μL 
depending on the batch) needed to obtain a final laccase activity of 2 U/ 
mL in the total experimentation volume. Finally, the definitive volume 
of the reaction media was adjusted to 1 mL with the synthetic grape juice 
model solution. After stirring to homogenize and dissolve the oxygen, 
the absorbance at 420 nm (A420) was measured at time 0, 15, 30 and 45 
min. The slope of the regression straight line was determined in order to 
express the intensity of browning. All the experiments were performed 
in triplicate. 

2.2. Determination of kinetics parameters (Vmax, K0.5 and Na) in a grape 
juice model solution 

The Michaëlis-Menten plot was depicted for each substrate in order 
to visualize the kinetics of browning for each substrate. An attempt was 
also made to represent the Lineweaver-Burk plot, but the results showed 
that the kinetics were not Michaelian but allosteric. Consequently, the 
Vmax was determined empirically and the concentration of substrate 
needed to reach ½ of Vmax (K0.5) was determined by representing Log10 
[V/(Vmax-V)] versus Log10S (Hill plot) (Tsao & Madley, 1972). Ac-
cording to the Hill plot, a regression straight line was obtained that can 
be used to obtain K0.5 and the Hill number. K0.5 corresponds to the 
expression 10− B/A, in which B is the intersection point and A is the slope 
of the regression straight line. The Hill number, which indicates the 
degree of cooperativity, corresponds to the slope of the regression 
straight line (A). When the Hill number is greater than 1, this indicates 
the existence of positive cooperativity. 

(− )-Epicatechin was selected as the substrate for all the other ex-
periments because its browning kinetics were the most appropriate for 
obtaining suitable values for A420 nm (between 0.5 and 1.0 units) at the 
highest substrate concentration after 45 min. 

Influence of pH and ethanol concentration on the kinetic pa-
rameters of browning caused by laccase. Similar experimentation 
using only (− )-epicatechin as substrate were performed to determine the 
influence of pH and ethanol concentration on the browning process 
caused by laccase. For this purpose, different synthetic grape juice 
models with pH of 3.0, 3.5, 4.0, 5.0 and 6.0 (adjusted with sodium hy-
droxide) were used. Similarly, ethanol was added to the original syn-
thetic grape juice model (pH = 3.5) to obtain final ethanol 

concentrations of 0, 5, 10 and 15% (v/v). 
Determination of the inhibitory effect of sulfur dioxide, ascorbic 

acid and glutathione. Analogous testing assays applying only 
(− )-epicatechin as substrate were performed to determine the inhibitory 
effect of the three most frequently used wine antioxidants: SO2, ascorbic 
acid and reduced glutathione. To this end SO2 (in the form of Na2S2O5) 
concentrations of 0, 10, 20 and 30 mg/L, ascorbic acid concentrations of 
0, 50 and 100 mg/L, and reduced glutathione concentrations of 0, 20, 50 
and 100 mg/L were added to the reaction media. 

Statistical analysis. All data are expressed as mean values ± stan-
dard deviation of three replicates. The comparison between categorical 
variables was carried out using one-factor analysis of variance 
(ANOVA). The comparison between continuous variables was per-
formed using multidimensional analysis of the Mahalanobis distance 
(Bedrick et al., 2000). Both statistical analyses were carried out using the 
XLSTAT 2017 statistical package. 

3. Results and discussion 

Kinetic parameters of Botrytis cinerea laccase browning for 
different substrates. Fig. 1 shows the changes in absorbance of the 
different substrates at 420 nm (A420) according to incubation time. 
These graphs only show data from 0.1, 0.2, 0.4 and 0.6 mM of each 
substrate to make it easier to visualize the results. Data for other con-
centrations were used for the kinetic analysis of browning but are not 
presented in these figures. 

All the substrates except 4-hydroxybenzoic acid showed a clear in-
crease in A420 over time. In addition, a clear trend was observed: the 
higher the substrate concentration, the higher the increase in A420. 
Some differences were also detected between the various substrates. 
Specifically, (+)-catechin showed the greatest browning intensity, fol-
lowed in decreasing order by (− )-epicatechin, caftaric acid, gallic acid 
and, of course, 4-hydroxybenzoic acid, which, as mentioned earlier, did 
not react. These data therefore indicate that orthodiphenols are better 
substrates for browning caused by laccase than triphenols, and that 
monophenols, or at least 4-hydroxybenzoic acid, do not seem to react. 

It could be considered unexpected that caftaric acid, which is usually 
seen as one of the main substrates for laccase browning (Cheynier, 
Trousdale & Singleton, 1986; Singleton et al., 1985a, 1985b; Zimdars 
et al., 2017), reacts more slowly than (− )-epicatechin and especially 
(+)-catechin. It could also be considered surprising that (− )-epicatechin 
and (+)-catechin, which are epimers with very similar chemical struc-
tures, show such different behaviors as regards laccase browning. One 
possible explanation could be related to differences in their spatial 
structure. (− )-Epicatechin has a torsional angle between rings B and C, 
which is higher than (+)-catechin (− 45.77◦ and − 31.37◦ respectively) 
(Mendoza-Wilson & Glossman-Mitnik, 2006). The less planar structure 
of (− )-epicatechin might therefore condition its lower reactivity toward 
laccase. Jarosz-Wilkołazka et al., (2009) have reported that (+)-catechin 
is oxidized about three times faster than (− )-epicatechin by laccase from 
Cerrena unicolor. Ma et al. (2009) have also reported a faster oxidation of 
(+)-catechin compared to (− )-epicatechin by laccase from Rhus vernifi-
cera in organic solvents. In contrast, Quijada-Morin et al. (2017) work-
ing with laccases from three different Botrytis cinerea strains, have found 
similar levels of oxygen consumption using (+)-catechin and (− )-epi-
catechin as substrates. Certainly our results indicate that (+)-catechin 
reacts faster than (− )-epicatechin with laccase isolated from the strain 
used. 

Given that a picture is worth a thousand words, Fig. 2 shows the 
yellow color developed by solutions with different concentrations of 
(− )-epicatechin at 0, 15, 30 and 45 min. The results are very clear and 
show that browning increases over time and that it is faster when the 
substrate concentration is higher. 

Fig. 3A shows the Michaëlis-Menten plot for the different substrates 
studied. As expected, the reaction rate (V) increased for all substrates as 
their concentration augmented until asymptotic behavior was reached, 
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when the substrate concentration was high enough to saturate the 
enzyme. The data included in this plot confirm that (+)-catechin causes 
the fastest browning, followed in decreasing order by (− )-epicatechin, 
caftaric acid and gallic acid at the same substrate concentrations. 

Vignault et al. (2020) have reported classical Michaëlis-Menten ki-
netics for Botrytis cinerea laccase using syringaldazine as substrate to 
enable the kinetic parameters (Vmax and Km) to be determined using 
the Lineweaver-Burk approach. However, our data indicate that, under 
the experimental conditions used, all the plots show a sigmoidal profile 
that indicates allosteric kinetics. It should be taken into account that this 
study has not directly measured laccase activity but browning, a process 

in which the laccase enzyme obviously participates, but which also in-
volves a subsequent chain of chemical reactions that leads to the for-
mation of melanins (Oliveira et al., 2011; Queiroz et al., 2008). Under 
these conditions, the final kinetics of browning may be influenced not 
only by the activity of the laccase enzyme itself, but also by other factors 
related to the subsequent melanin formation reactions. Under the con-
ditions of this model for measuring browning, the kinetic behavior was 
at least apparently allosteric. However, other authors have reported 
allosteric behavior of laccases from different biological origins (Hölker 
et al., 2002; Enaud et al., 2011; Maurya et al., 2020), which would 
support our results. 

Whatever the kinetic behavior of Botrytis laccase, neither the 
Lineweaver-Burk nor the Eadie-Hofstee plot show a linear behavior 
(data not shown), which makes it impossible to determine the kinetic 
parameters. For that reason the reaction maximal velocity (Vmax) was 
determined empirically, and the substrate concentration (K0.5) at which 
the reaction velocity (V) achieves half Vmax was determined using the 
Hill plot (Tsao & Madley, 1972). Fig. 3B shows the Hill plot for the 
different substrates. All substrates showed reasonable linear regression 
coefficients with r2 values between 0.9628 and 0.9837, which indicates 
that this kind of representation can be used for calculating K0.5. All the 
regression lines of the different substrates cut the ordinate axis at the 
same intersection point, around 1.73, but present different slopes. 

Table 1 shows the browning kinetic parameters for the different 
substrates. The highest value for Vmax was that of (+)-catechin, fol-
lowed in decreasing order by (− )-epicatechin, caftaric acid and gallic 
acid, which more strictly confirms the results shown in Fig. 1. Table 1 
also shows the K0.5 values for the different substrates. (+)-Catechin and 
(− )-epicatechin showed identical values of K0.5, which indicates that 
Botrytis laccase needs similar concentrations of (+)-catechin and 
(− )-epicatechin to achieve half Vmax, although Vmax for (+)-catechin 
was significantly higher than for (− )-epicatechin. In contrast, K0.5 was 
significant lower for caftaric acid and especially for gallic acid. The Hill 
number, which indicates the degree of cooperativity, is also shown in 
Table 1. Once again (+)-catechin and (− )-epicatechin presented similar 
values, while caftaric acid and especially gallic acid showed significantly 

Fig. 1. Influence of the type of substrate on the laccase browning kinetics.  

Fig. 2. Yellow color development of the synthetic grape juice model solution as 
a function of (− )-epicatechin concentration and reaction time. (For interpre-
tation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 
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lower values. These data indicate that laccase browning shows positive 
cooperativity for all the substrates, since the Hill number was higher 
than 1 in all cases. 

Influence of pH and ethanol concentration on the kinetic pa-
rameters of Botrytis cinerea laccase browning. Fig. 4 shows the in-
fluence of pH on the laccase browning kinetics using only 
(− )-epicatechin as substrate. The Michaëlis-Menten plot (Fig. 4A) in-
dicates that pH exerts a very clear effect. The higher the pH the faster the 
browning kinetics, although no differences were found between pH 5 
and 6. These data indicate that the optimum pH for laccase browning of 
the B213 Botrytis cinerea strain is between 5 and 6. Other authors have 
reported values of optimum pH for Botrytis cinerea laccases from 3.5 up 
to 5.5 (Dubernet et al., 1977; Fortina et al., 1996; Slomczynski & Nakas, 
1995; Taha et al., 2013). However, it seems that this varies widely 
depending on the substrate (Mayer & Staples, 2002), fungal origin 
(Bollag & Leonowicz, 1984) and even the strain (Quijada-Morin et al., 
2017). 

Fig. 4B shows the Hill plot of laccase browning for (− )-epicatechin at 

Fig. 3. Michaëlis-Menten and Hill plots of different substrate.  

Table 1 
Kinetic constants of laccase browning for the different substrates.  

Substrate Phenol type Vmax 
(AU420/ 
hour) 

K0.5 (mM) Hill’s 
number 

Caftaric Acid o-Diphenol 0.66 ± 0.04 B 0.173 ±
0.011 B 

2.25 ±
0.11 B 

(+)-Catechin o-diphenol 1.75 ± 0.08 D 0.222 ±
0.015 C 

2.65 ±
0.19 C 

(− )-Epicatechin o-diphenol 1.08 ± 0.06 C 0.223 ±
0.015 C 

2.71 ±
0.09 C 

Gallic Acid triphenol 0.48 ± 0.03 A 0.101 ±
0.008 A 

1.74 ±
0.15 A 

4-Hydroxybenzoic 
Acid 

monophenol nd nd nd 

Results are expressed as mean ± standard deviation of three replicates. Different 
letters in a column indicate the existence of statistical difference (p < 0.05). 

Fig. 4. Influence of pH on laccase browning kinetics of the synthetic grape juice model solution using (− )-epicatechin as substrate.  
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different pH levels. Once again reasonable linear regression coefficients 
were obtained with r2 values of between 0.9533 and 0.9962. The 
observed trend was that the slopes and the Y-intercept points increased 
when the pH was higher. These data were used to determine how K0.5 
and the Hill number change depending on pH (Table 2). Data from this 
table confirm that the higher the pH the higher the Vmax, placing the 
optimum pH at between 5.0 and 6.0. The values of K0.5 tended to 
decrease in the range between pH 3.0 and 4.0, although this difference 
was only significant between 3.5 and 4.0. However, K0.5 remained stable 
between pH 4 and 6. These results therefore indicate that the affinity of 
laccase for (− )-epicatechin increases with pH until reaching pH 4.0. The 
Hill number also increased with pH until it reached pH 5.0, which would 
indicate that the degree of laccase cooperativity also increases. 

Fig. 5 shows how the presence of ethanol affects the laccase 
browning kinetics using only (− )-epicatechin as substrate. The 
Michaëlis-Menten plot (Fig. 5A) shows a curious and surprising result, 
since the presence of 5% ethanol activates laccase browning whereas 
15% ethanol did the opposite, with 10% ethanol displaying similar ki-
netics to the control without ethanol. Rasekh et al. (2014) have reported 
that a concentration of 15% ethanol reduces the laccase activity of 
Escherichia coli. However, to our knowledge there is no information 
about how ethanol affects laccase of Botrytis cinerea. These data are 
confirmed by the empirically determined values for Vmax (Table 3). The 
fact that small concentrations of ethanol activate the browning caused 
by Botrytis cinerea laccase is a non-negligible aspect to be considered 
because, when grey rot infects grape bunches, not only does this release 
laccase but it also favors the development of several microorganisms 
(Barata et al., 2012; Barata et al., 2012; Lleixà et al., 2018) that can 
ferment sugars and produce ethanol. In such conditions browning would 
be favored. Fig. 5B shows the corresponding Hill plot, which provides 
reasonable linear regression coefficients for the different ethanol con-
centrations with r2 values of between 0.9755 and 0.9933. 

The values for K0.5 increased slightly when ethanol concentration 
increased, although these differences were only significant between 0% 
and 15%. In contrast, the Hill number tended to clearly decrease. This 
indicates that the presence of ethanol diminishes the affinity of laccase 
for (− )-epicatechin and also the degree of cooperativity. 

Inhibitory effects of SO2, ascorbic acid and glutathione on the 
Botrytis cinerea laccase browning kinetic. As mentioned in the 
introduction, laccase browning is probably the worst problem caused by 
Botrytis cinerea in winemaking and it is for that reason that the wine 
industry is so concerned about finding suitable tools to minimize its 
damage. It was therefore decided to study the effect of the main com-
pounds used in winemaking to inhibit laccase browning – sulfur dioxide, 
ascorbic acid and glutathione – using only (− )-epicatechin as substrate. 

Fig. 6 shows the influence of different doses of SO2 on laccase 
browning. The Michaëlis-Menten plot (Fig. 6 A) indicates that 30 mg of 
SO2/L completely inhibited laccase browning, whereas 20 mg of SO2/L 
inhibited around a third, and finally 10 mg of SO2/L caused hardly any 
inhibition in the kinetics. This inhibitory effect of sulfur dioxide on 
laccase activity has been widely described in the literature (du Toit 
et al., 2006; Oliveira et al., 2011; Verma et al., 2018; Ribéreau-Gayon 
et al., 2006a; Vignault et al., 2020). 

Fig. 6B shows the corresponding Hill plot, which provides reasonable 

linear regression coefficients for the different sulfur dioxide concentra-
tions with r2 values of between 0.9073 and 0.9733. 

The inhibitory effects of SO2 on laccase browning are confirmed by 
the empirically determined values of Vmax (Table 4). Considering the 
obtained values of Vmax, a dose of 30 mg of SO2/L inhibits laccase 
browning by 96%, while 20 mg of SO2/L inhibits by 32%, and finally 10 
mg of SO2/L only inhibited by 1%. This inhibitory effect of SO2 on 
laccase browning is around 100% higher than that described by Claus 
(2020) in a real grape juice. However, this difference could be due to the 
fact that real grape juice has many substances capable of combining with 
SO2 and thus reducing its effectiveness. 

Data from Fig. 6B were used to determine how K0.5 (Table 4) was 
affected by the presence of different doses of sulfur dioxide. The values 
for K0.5 tended to increase with the presence of SO2. This indicates that 
sulfur dioxide not only decreases the Vmax of laccase browning but also 
the affinity for its substrate. Table 4 also shows that the presence of SO2 
seems to increase the degree of cooperativity, since the higher the SO2 
concentration the higher the Hill number. 

Fig. 7 shows how the presence of ascorbic acid affects laccase 
browning. The Michaëlis-Menten plot (Fig. 7 A) confirms that ascorbic 
acid really does protect against laccase browning because the supple-
mentation with 50 mg/L and especially with 100 mg/L significant de-
creases the augmentation of A420 over time. It should be noted that the 
maximal legal dose established by the OIV for this antioxidant is 250 
mg/L (OIV, 2021). The corresponding Hill plot (Fig. 7B) provides 
reasonable linear regression coefficients for the control without ascorbic 
acid and for when 50 mg of ascorbic acid/L was added (r2: 0.9733 and 
0.9146 respectively). However, in the case of a supplementation with 
100 mg/L the linearity worsened (r2: 0.7112), probably because it was 
affected by the strong inhibition. All the regression lines cut the abscissa 
axis at the same intersection point, around − 0.65, but show different 
slopes. Bearing in mind the empirically determined values of Vmax for 
laccase browning (Table 5), a supplementation with 50 mg of ascorbic 
acid/L caused 51% of inhibition while 100 mg/L reached 83%. The 
inhibitory effect of ascorbic acid in laccase browning is well known (du 
Toit et al., 2006; Ribéreau-Gayon et al., 2006b; Vignault et al., 2020) 
and for that reason it is widely used in wineries, especially when grapes 
are affected by grey rot (Steel et al., 2013). The presence of ascorbic acid 
did not affect K05, probably because it acts to reduce the availability of 
one of the laccase substrates (oxygen) and does not act directly on the 
enzyme. The Hill number tended to decrease in the presence of ascorbic 
acid, which indicates a decrease in the degree of cooperativity. 

Fig. 8 shows the influence of different doses of glutathione on laccase 
browning. The Michaëlis-Menten plot (Fig. 8 A) confirms that gluta-
thione really does protect against laccase browning and that its pro-
tective effect is dose dependent. Indeed, a dose of 100 mg/L almost 
completely eliminates the yellow color generation in the interval of 
(− )-epicatechin concentrations between 0.1 and 0.4 mM, and only a 
slight increase in A420nm was detected at higher concentrations. This 
protective effect of glutathione against wine browning has been widely 
reported previously (Makhotkina & Kilmartin, 2009; Oliveira et al., 
2011; Kritzinger et al., 2013; Zimdars, 2020; Bahut et al., 2020). 

The corresponding Hill plot (Fig. 8B) provides reasonable linear 
regression coefficients with r2 values between 0.9470 and 0.9733, with 
the exception of the highest dose of glutathione. In this case the linearity 
worsened (0.7725), probably due to the strong inhibition caused by 100 
mg of glutathione/L, similar to what happened with the highest dose of 
ascorbic acid. It should be noted that all the regression lines are nearly 
parallel without significant differences between the slopes (from 2.57 ±
0.17 to 3.00 ± 0.71). 

Considering the empirically determined values of Vmax for laccase 
browning (Table 6), 20 mg of glutathione/L caused an inhibition on 
laccase browning of 24%. This increased to 47% and 80% in the case of 
50 and 100 mg/L respectively. It should be stressed that 20 mg/L is the 
maximum legal dose authorized by the OIV for this antioxidant (OIV, 
2021). The presence of glutathione increased K05 values, although these 

Table 2 
Influence of pH on the Kinetic constants of laccase browning.  

pH Vmax (AU420/hour) K0.5 (mM) Hill’s number 

3.00 0.88 ± 0.03 A 0.235 ± 0.06 B 1.89 ± 0.07 A 
3.50 1.08 ± 0.06 B 0.223 ± 0.015 B 2.71 ± 0.09 B 
4.00 1.46 ± 0.07 C 0.155 ± 0.011 A 2.81 ± 0.12 B 
5.00 2.00 ± 0.06 D 0.154 ± 0.007 A 3.62 ± 0.10 C 
6.00 2.02 ± 0.07 D 0.152 ± 0.005 A 3.64 ± 0.13 C 
p-value <0,0001 <0,0001 <0,0001 

Results are expressed as mean ± standard deviation of three replicates. Different 
letters in a column indicate the existence of statistical difference (p < 0.05). 
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differences were only significant for the highest dose of this compound 
(100 mg/L). This suggests that the presence of glutathione reduces the 
affinity of laccase in respect to (− )-epicatechin. In contrast, supple-
mentation with glutathione did not cause significant differences in the 
Hill number. 

In summary, this paper proposes a synthetic model for measuring 
laccase browning in a matrix close to real grape juice that makes it 
possible to study how laccase browning acts in the presence of different 

possible substrates. It is obvious that the used matrix is much simpler 
than the real grape juice but it allows a much better approach than 
working with the substrates usually used for the study of laccase, such as 
syringaldazine or ABTS. The results indicate that orthodiphenols are 
better substrates for laccase browning than triphenols and that mono-
phenols, or at least 4-hydroxybenzoic acid, do not appear to be reactive. 
Moreover, of the orthodiphenols, (+)-catechin showed the greatest 
browning intensity, followed in decreasing order by (− )-epicatechin and 

Fig. 5. Influence of ethanol on laccase browning kinetics of the synthetic grape juice model solution using (− )-epicatechin as substrate.  

Table 3 
Influence of ethanol on the Kinetic constants of laccase browning.  

Ethanol (% v/v) Vmax (AU420/hour) K0.5 (mM) Hill’s number 

0 1.08 ± 0.06 B 0.223 ± 0.015 A 2.71 ± 0.09 D 
5 1.45 ± 0.05 C 0.244 ± 0.011 AB 2.37 ± 0.07 C 
10 1.13 ± 0.08 B 0.258 ± 0.012 B 1.81 ± 0.10 B 
15 0.75 ± 0.05 A 0.260 ± 0.009 B 1.52 ± 0.11 A 
p-value <0,0001 0.0189 <0,0001 

Results are expressed as mean ± standard deviation of three replicates. Different 
letters in a column indicate the existence of statistical difference (p < 0.05). 

Fig. 6. Influence of SO2 concentration on laccase browning inhibition of the synthetic grape juice model solution using (− )-epicatechin as substrate.  

Table 4 
Effects of SO2 on the kinetic constants of laccase browning.  

[SO2] (mg/L) Vmax (AU420/hour) K0.5 (mM) Hill’s number 

0 1.08 ± 0.06 C 0.223 ± 0.015 A 2.71 ± 0.09 A 
10 1.07 ± 0.03 C 0.276 ± 0.008 A 2.74 ± 0.06 A 
20 0.73 ± 0.21 B 0.376 ± 0.110 AB 3.65 ± 1.05 AB 
30 0.04 ± 0.02 A 0.490 ± 0.250 B 4.49 ± 2.29 B 
p-value <0,0001 0.0412 0.0496 

Results are expressed as mean ± standard deviation of three replicates. Different 
letters in a column indicate the existence of statistical difference (p < 0.05). 
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caftaric acid. 
This model can be also used to determine the inhibitory effect toward 

laccase browning of the most frequently used antioxidants – sulfur di-
oxide, ascorbic acid and glutathione – and could certainly be tried in the 
future on new antioxidants. Our results confirm that sulfur dioxide, 
ascorbic acid and glutathione really are effective in protecting grape 

juice against laccase browning. The effectiveness of ascorbic acid and 
glutathione also confirm that both antioxidants could be useful tools 
when it comes to reducing the doses of sulfur dioxide in winemaking, 
especially when grey rot is present. However, in the case of glutathione 
the dose needed to effectively protect grape juice against laccase 
browning is higher than the current maximum dose established by the 

Fig. 7. Influence of ascorbic acid concentration on laccase browning inhibition of the synthetic grape juice model solution using (− )-epicatechin as substrate.  

Table 5 
Effects of ascorbic acid on the kinetic constants of laccase browning.  

[Ascorbic acid] (mg/ 
L) 

Vmax (AU420/ 
hour) 

K0.5 (mM) Hill’s number 

0 1.08 ± 0.06 C 0.223 ± 0.015 A 2.71 ± 0.09 C 
50 0.53 ± 0.03 B 0.231 ± 0.011 A 2.14 ± 0.11 B 
100 0.18 ± 0.03 A 0.225 ± 0.032 A 1.59 ± 0.23 A 
p-value <0,0001 0.9010 <0,0001 

Results are expressed as mean ± standard deviation of three replicates. Different 
letters in a column indicate the existence of statistical difference (p < 0.05). 

Fig. 8. Influence of glutathione concentration on laccase browning inhibition of the synthetic grape juice model solution using (− )-epicatechin as substrate.  

Table 6 
Effects of glutathione on the kinetic constants of laccase browning.  

[Glutathione] (mg/L) Vmax (AU420/hour) K0.5 (mM) Hill’s number 

0 1.08 ± 0.06 D 0.223 ± 0.015 A 2.71 ± 0.09 A 
20 0.82 ± 0.02 C 0.244 ± 0.006 A 2.68 ± 0.06 A 
50 0.57 ± 0.04 B 0.280 ± 0.019 A 2.57 ± 0.17 A 
100 0.22 ± 0.05 A 0.451 ± 0.068 B 3.00 ± 0.71 A 
p-value <0,0001 <0,0001 0.5590 

Results are expressed as mean ± standard deviation of three replicates. Different 
letters in a column indicate the existence of statistical difference (p < 0.05). 
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OIV (2021). Given the safety of this compound, it would be advisable to 
increase its maximum dosage. 

Further studies are needed to verify the efficiency of the proposed 
model on other laccase substrates such as anthocyanins, flavonols and 
proantocyanidins, and also to test other possible inhibitors of laccase 
browning, such as oenological tannins and other possible antioxidants. 
In addition, the influence of other components of grape juice such as 
heavy metals should also be considered. 
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