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Abstract: Tropical Andean glaciers are retreating rapidly, with possible consequences for trophic
structure and ecosystem processes in high Andean meltwater streams. Here, we measured the
environmental characteristics, quantified pools of particulate organic matter (POM) and periphyton
(Chl. a), sampled benthic macroinvertebrates, determined functional feeding groups (FFG), and
performed mesh bag decomposition experiments with Calamagrostis grass detritus at
17 stream sites along a gradient of glacial influence (GI) with 0–23% glacier cover in the catchment at
4050–4200 m a.s.l. in the Andes of Ecuador. POM was unrelated to GI while Chl. a. showed a weak
(non-significant) negative relationship to GI. The macrofauna abundance decreased while taxon
richness and the number of FFGs per site showed a hump-shaped relationship with increasing GI.
Taxa with an opportunistic and generalist feeding mode generally dominated benthic assemblages
and were related to high GI levels and low Chl. a. Only shredders were negatively related to GI, but
unrelated to POM. Decomposition rates were comparable to those found in temperate alpine streams,
and for both fine (0.0010–0.0065; median 0.0028 d−1) and coarse (0.0019–0.0088; median 0.0048 d−1)
mesh bags, peaked at intermediate GI values, while the difference between bag types was small and
almost constant along the GI gradient. This indicates an overall minor effect of macroinvertebrate
shredders compared to that of microbes, in particular at high GI. It also suggests that the relatively
high average temperature of these high-altitude equatorial streams (7–10 ◦C) does not produce higher
decomposition rates than those in comparable but colder streams at temperate latitudes. The results
suggest that, at the lower end of glacier cover, tropical glacier loss will not change the dominant
microbial role in detritus decomposition, but that part of the physical abrasion could be partially
replaced by biological shredding.

Keywords: Andes; tropical alpine streams; glacier influence; glacial retreat; benthic fauna; macroin-
vertebrates; functional feeding groups; decomposition

1. Introduction

Streams fed by glacial meltwater are notoriously harsh environments that gener-
ally have low average temperature, nutrient concentration, electrical conductivity, and
physical stability, but high turbidity due to suspended solids [1]. Such harsh conditions
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act as environmental filters excluding many aquatic species from these habitats, and are
thus important in structuring the composition of natural aquatic communities [2]. For
example, the density and taxon richness of benthic macroinvertebrates usually decrease
with increasing glacial cover in the catchment or proportion of discharge originating from
glacial meltwater [3–5]. The distribution of biological and functional traits such as feeding
habits of macroinvertebrates also show relationships with the degree of glacial influence in
streams [6–9]. For example, the degree of omnivory seems to consistently increase with
glacial influence [10–12] due to the considerable feeding plasticity of groups dominating
glacier-fed streams [13].

Even though in-stream primary production from algae is usually low, this never-
theless seems to be the main energy basis for the food web in glacier-fed streams, with
even lesser importance of allochthonous detritus [10,14,15]. Furthermore, studies on
input and decomposition of allochthonous detritus have shown that leaf breakdown
rates in glacier-fed streams in the Alps vary widely among sites with different glacial
influence [16–18], reflecting site-specific differences in habitat characteristics and in macroin-
vertebrate shredder density and fungal composition [19].

Glaciers are retreating worldwide [20–22], with profound effects on flow regime and
environmental conditions in meltwater-fed streams [23,24]. These changes are expected
to lead to shifts in biological communities and ecological function in downstream sys-
tems [25–29]. During recent decades, a number of space-for-time substitutions, but also a
handful of diachronic long-term studies have documented changes in macroinvertebrate
communities as a direct result of glacial retreat [30–34]. However, changes in taxonomic
community composition do not necessarily reveal shifts in the ecological function of these
communities [35].

Relatively little is known about the ecology of glacier-fed streams in tropical moun-
tains, but overall spatial patterns of macroinvertebrate community structure and diversity
seem to follow what is known from temperate-Arctic latitudes [36–38]. Additionally,
prominent functional traits such as feeding habits and the relationships between functional
traits and glacial influence seem to be largely comparable between temperate and tropical
glacier-fed streams, with functional diversity lower than expected from a null model close
to glaciers [39]. To our knowledge, however, no study on stream ecosystem processes
such as terrestrial leaf litter breakdown along gradients in glacial influence has been per-
formed in tropical high alpine catchments, and therefore was the main focus of the present
study. Marked differences in hydrological and other environmental characteristics exist
among alpine and glacier-fed streams at different latitudes. For example, at high latitudes,
glacier-fed streams show high seasonality in runoff and are surrounded by sparse terrestrial
vegetation and thus input of allochthonous detritus, while at the equator, with little season-
ality, the main flow variation in glacier-fed streams occurs on a diel basis, and streams are
often surrounded by lush grass and bush vegetation [40,41]. Such differences may imply
differences in ecological function between temperate and tropical glacier-fed streams.

Here, we studied functional feeding modes of macroinvertebrates and their relation-
ship to primary food resources and decomposition of terrestrial detritus in small streams
along a gradient of glacial meltwater influence in a tropical catchment in the high Andes of
Ecuador. Our study is thus a space-for-time substitution contributing to the understand-
ing and prediction of the possible future consequences of climate warming and glacier
loss on trophic structure and function on tropical, glacier-fed streams. Specifically, our
objectives were to (1) identify the relationship between glacier influence and quantities
of primary food resources (particulate organic matter and periphyton); (2) examine distri-
bution patterns of macroinvertebrate functional feeding groups (FFG) in relation to food
sources and glacial influence; and (3) determine the decomposition rates of terrestrial grass
detritus along the gradient of glacial influence, and assess the links with specific envi-
ronmental factors and macroinvertebrate FFGs. Our hypotheses were (1) that quantities
of primary food resources would decline with glacial influence; (2) that generalist FFGs
would dominate at high levels of glacial influence; and (3) that the decomposition rate
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of detritus would be negatively related to glacial influence, both the microbial and the
macroinvertebrate-mediated part.

2. Materials and Methods
2.1. Study Area

The field work was carried out between March and May of 2014 in 17 stream sites
located on the western slopes of the ice-capped Antisana volcano, in the Ecuadorian
Andes (Figures 1 and 2). Most of the sites coincided with those used by [39] in their
study of functional structure invertebrate communities. However, our sites focused on the
decomposition of terrestrial detritus, and spanned a narrower gradient in glacial influence
and covered from 0 to 23% of glacier cover in the catchment, and thus did not include the
sites closest to the glaciers. Additionally, our study sites were located within a narrow
altitudinal band between 4040 and 4200 m a.s.l., which reduces the potentially confounding
effect of altitude. Finally, the sites were within a small area of approximately 1.82 km2

(distance among sites between less than a hundred meters at confluences and 3.13 km).
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collected for gut content analysis.
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Figure 2. (A) Site 2, with one of the highest GI values. (B) The spring-fed site 17, with the lowest
GI value of all. (C) Looking upstream at the junction between the spring-fed site 12 to the left and
the primarily glacier-fed site 3 to the right. Site 9 would be just downstream from the picture.
(D) Looking upstream at the junction between the primarily glacier-fed site 4 to the left and
the primarily spring-fed site 13 to the right. Mt. Antisana is seen in the background. (Photos:
Dean Jacobsen).

2.2. Environmental Variables

At every visit to each site, we did spot measurements of conductivity, pH, temperature,
and dissolved oxygen (both concentration and saturation) with WTW portable meters
(WTW GmbH, Xilem Inc., Munich, Germany), and turbidity with a TN-100 EUTECH
Turbidimeter. Additionally, we measured mean current velocity, discharge (using salt
dilution gauging [42]), substrate stability (third part of the Pfankuch index [43]), and
stream slope (see [36] for the methods).
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All measurements were performed in the morning before the daily glacial flow in-
crease. We recorded water temperature and water pressure variations using Hobo water
pressure loggers (Onset Computer Corp., Bourne, MA, USA) at each site. One logger was
fixed on a rock at 4100 m a.s.l. to measure atmospheric pressure. All loggers were set to
take measurements every 30 min. As points of reference, water level and height between
the stream bottom and the Hobo sensor were measured when the loggers were installed
and when they were retrieved. To calculate stream depth, water pressure values were
transformed into water level values by subtracting the atmospheric variations from the
water pressure data [40].

2.3. Glaciality Index

A glaciality index has previously been developed for European alpine streams based
on water temperature, conductivity, suspended solids, and the Pfankuch index [6]. Given
the hydrological and environmental differences between alpine and Andean glacier-fed
streams [36,44], we developed a glaciality index slightly modified from those proposed
by [6,45]. Our index was based on mean turbidity (a proxy of suspended sediments), con-
ductivity, Pfankuch index for stream channel stability (only the channel bottom part [43]),
and coefficient of variance (CV) of temperature and depth. The methods for obtaining a
glaciality index score (hereafter GI) for each of the 17 sites followed that of [45]; parameter
values were scaled between 0 and 1 and processed in a non-centered principal component
analysis (NPCA) where we used the first component values as GIs. Sites were ordered
and named from one to 17 according to their glaciality index value, with site 1 having the
highest GI score.

2.4. Primary Food Sources

We measured the amount of two food sources: (1) particulate organic matter (POM),
comprising particles larger than 200 µm, mostly allochthonous organic matter, and (2) ben-
thic periphytic algae (autochthonous resource). POM was obtained from five Surber
samples (20 × 25 cm; mesh size 200 µm) collected at each site (see below). After removal
of macroinvertebrates, the material present in each Surber sample was filtered through
a 200-µm sieve, dried at 80 ◦C for 24 h, weighed, and the mass loss upon combustion at
550 ◦C was taken as the amount of ash-free dry mass of POM >200 µm in the sample.

Chlorophyll a (Chl. a) concentration was calculated as a measure of benthic algal
biomass. At each site, we randomly collected 15 pebbles (avoiding those with filamentous
algae). Pebbles were placed in five containers (three in each) with 96% ethanol, and left
for 1–3 days in the dark until further processing in the laboratory. Later, the containers
were given a 10-min ultrasonic bath to increase extraction efficiency. After settlement for a
few hours, a sample was transferred to a spectrophotometer and absorption was measured
at 665 and 750 nm. The concentration of total Chl. a (including phaeopigments) was
calculated following [37]. The stone surface area was estimated using the same formula
proposed by [46].

2.5. Benthic Macroinvertebrate Sampling

Quantitative data on macroinvertebrate assemblages were obtained from five Surber
samples collected at each site. In order to standardize records, samples were collected
within a reach of approx. 20 m and from areas with medium water flow and a substratum
composed of pebbles–cobbles. Samples were preserved in 75% ethanol. Macroinverte-
brates were identified and counted under a stereoscope OLYMPUS SZ-6145 to the highest
taxonomic resolution possible using local and regional taxonomic reference literature [47].
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2.6. Functional Feeding Group Affiliation and Gut Content Analysis

In order to enhance thee statistical reliability of quantitative multivariate analysis,
we excluded non-abundant species (taxa with less than 50 individuals in total) from the
analyses [48], and, thus, a total of 27 taxa (separating larvae and adults of Neoelmis) were
analyzed. Studies on ecological structure and ecosystem processes in streams is limited by
incomplete and erroneous classification of invertebrates to FFGs, in particular regarding
less well studied alpine streams [35], and even more so when it comes to high-Andean
streams [49]. Therefore, here, the assignment of macroinvertebrate taxa to specific FFGs
was conducted in two ways. For the 15 taxa for which the literature [11,47,48,50–53] pro-
vided detailed and consistent information on specialized feeding habits in accordance with
our own experience, these were used as the FFG. For the remaining 12 taxa with scarce or
inconsistent literature information and less specialized mouth parts, we analyzed the gut
content, and estimated the proportion of different food types within the foregut (initial half
of the digestive tract). Thus, gut content analysis was used as a proxy for FFG affiliation.
Five categories of food types were identified: (i) filamentous algae; (ii) diatoms; (iii) coarse
detritus (>200 µm); (iv) fine detritus (<200 µm); and (v) animal tissue (similar to [54]). The
12 taxa analyzed were Hyalella sp. (Hyalellidae, Amphipoda), Claudioperla sp. (Gripoptery-
gidae, Plecoptera), Andesiops sp. (Baetidae, Ephemeroptera), Anomalocosmoecus sp. (Lim-
nephilidae, Trichoptera), Mortoniella sp. (Glossosomatidae, Trichoptera), Orchrotrichia sp.,
Neotrichia sp. (Hydroptilidae, Trichoptera), Cyphon sp. (Scirtidae, Coleoptera), Neoelmis sp.
larvae, Neoelmis sp. adult (Elmidae, Coleoptera), Blepharicera sp. (Blephariceridae, Diptera),
and Molophilus sp. (Limoniidae, Diptera). Gut content analysis was performed on 10 ran-
domly chosen individuals obtained from Surber samples from ten sites (one individual
per site) covering the whole GI gradient (from site 1 to 17). Based on either referential
literature information or gut content analysis, the following nine specific FFGs were de-
fined following the notion presented in [51,55], and the clustering method of proportional
food resource used by [48]: predators/scrapers, predators/collectors, predators, scrapers,
shredders/scrapers, shredders, shredders/collectors, collectors/scrapers, collectors (see
more details under data treatment).

2.7. Detritus Decomposition

Decomposition of the dominant riparian vegetation, common páramo grass Calam-
agrostis intermedia (J. Presl.) Steud., was measured as mass loss of 5.0 g DW of abscised
leaf blades representative of those that naturally enter streams. Leaf blades were placed
in litterbags (15 × 10 cm) of two different mesh sizes (0.3 and 5 mm). The fine-mesh bags
excluded macroinvertebrates, while coarse-mesh bags did not. Initially six, and later ten,
replicate bags of each type were installed in each stream. The exposure started at the
beginning of March 2014 and lasted for 92 days, except for the five sites (2, 5, 6, 7, 15),
where bags were left for 35 days (due to logistic constraints). After retrieval, the grass
material was rinsed to remove fine particulate matter and invertebrates [56]. The remaining
plant material was dried (48 h at 50 ◦C), weighed, ashed (4 h at 550 ◦C), and weighed again
to calculate ash-free dry mass (AFDM). AFDM was used to calculate daily decomposition
rate (k) for each litterbag using the well-established negative exponential decay model [57],
which reflects the most commonly observed functional response for leaf decomposition in
streams [58,59]. To account for the effect of temperature on decomposition [60], we also
calculated the decomposition rate per degree day. For this, we replaced time (t) with the
sum of mean daily temperatures (above 0 ◦C) accumulated until retrieval. We subtracted
decomposition rates in fine mesh bags (kFM) from those in coarse mesh bags (kCM) to
represent macroinvertebrate activity and physical abrasion (kCM–kFM).
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2.8. Data Treatment

We used the proportional food resource data from the gut content analysis and ref-
erential literature data for each taxon in a common paired group cluster analysis (PGCA)
on all 27 taxa with Euclidean similarity measures to define the nine specific FFGs and to
determine the taxa belonging to each of them, following the rationale of [48]. Densities of
each of the nine FFGs at each site were then calculated from taxon abundances in the Surber
samples. An ordination triplot from a canonical correspondence analysis (CCA) of the
17 sites based on FFG densities and with POM, Chl. A, and GI included as environmental
variables (all log-transformed) was performed as a direct gradient analysis. All the above
analyses were conducted using the PAleontological STatistics (PAST) software [61].

Differences in detritus decomposition between bag types were tested by paired t-
tests, after having checked for normality by Shapiro–Wilk and Kolmogorov–Smirnov
tests. Relationships between POM, Chl. a, macroinvertebrate density, taxon richness,
number of FFGs, density of individual FFGs, and decomposition rates as dependent
variables and GI as the independent variable were investigated by comparing best fit
simple linear, exponential, or quadratic regression models. Bonferroni correction for
multiple comparisons was not applied when evaluating the significance of P-values. T-tests
and regressions were undertaken using SPSS software version 27.

To further search for relationships between detritus decomposition rates and site
characteristics (both environmental and biological) as independent factors, we used gener-
alized additive models (GAMs) in the R package MGCV. First, we tested the effect of all
factors independently upon kCM, kFM, and kCM–kFM. Then, we built models including all
individual factors that proved significant in the first round, and selected the best models
according to the lowest AIC. Due to the relatively low number of sites, we did not include
interaction effects in the models.

3. Results
3.1. Glaciality Index, Environmental Variables, and Food Sources

Environmental characteristics for the 17 study sites are provided in SI 1 and SI 2. The
first two axes of the NPCA used to assign the glaciality index to our 17 sites accounted
for 82% and 15% of the total variability, respectively (SI 3). Of the five chosen variables,
turbidity and conductivity were those that contributed most to defining this gradient, the
temperature CV and Pfankuch index contributed less, while that of depth CV was lower
than 1% for both axes. The first axis values provided a quite evenly distributed gradient in
GI, from 0.328 and 0.297 at the two purely glacier-fed sites 1 and 2 to 0.129 and 0.160 at the
two spring-fed sites 17 and 16 (SI 1).

POM and periphyton pools varied greatly among stream sites. POM was highest
at site 3 (28.5 g AFDW m−2) and lowest at site 10 (2.5 g AFDW m−2), but unrelated
to GI (Figure 3A). Chlorophyll a concentration varied from 187.7 mg m−2 at site 6 to
16.2 mg m−2 at site 4. A weak (non-significant) negative exponential relationship between
Chl. a and GI may be recognized (R2 = 0.16, p = 0.598), and if the 188 mg Chl. a outlier is
omitted, the relationship becomes highly significant (R2 = 0.41, p = 0.008) (Figure 3B).
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3.2. Functional Feeding Group Affiliation and Distribution Patterns

We sampled a total of 123,040 macroinvertebrate individuals. The density varied
between 1131 (site 1) and 17,529 ind. m−2 (site 14). In total, 27 taxa were collected, varying
between 13 (site 1) and 24 taxa (site 7) per site (SI 4). Density of macroinvertebrates showed
a negative exponential (R2 = 0.38, p = 0.009) and taxon richness (R2 = 0.39, p = 0.033) a
hump-shaped, quadratic relationship with increasing GI (Figure 4A,B).

The most abundant food items identified in the gut content analyses were coarse
detritus (10–52%, mean 25%) and fine detritus (8–47%, mean 18%) while filamentous algae
(9–37%, mean 14%) and diatoms (5–42%, mean 13%) were less ingested. Animal parts were
rarely found in guts (0–9%, mean 0.8%) (SI 5). Considerable amounts of fine glacial rock
fragments were also observed in the guts.

From diet composition based on gut content and literature classification, the re-
sult of the PGCA clustered the 27 taxa into nine specific FFGs: four specialist feeding
groups (predators, scrapers, shredders, and collectors) and five groups with more gener-
alist feeding traits (predators/scrapers, predators/collectors, collectors/scrapers, shred-
ders/scrapers, and shredders/collectors). Specialist predators included five taxa (all from
literature classification), specialist shredders and scrapers four taxa each, and collectors
(gatherers and filterers) three taxa. All generalist groups contained two taxa each. The
number of FFGs per site ranged from six to nine and were related to GI in a hump-shaped,
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quadratic way (R2 = 0.51, p = 0.007), even though the hump-shaped pattern only arises due
to the site with the highest GI (Figure 4C).
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Abundances from Surber samples were grouped according to the nine FFGs (SI 4).
Collectors/scrapers (mainly Chironomidae) were the most abundant, constituting 29.2%
of all individuals). Shredders/scrapers constituted 26.4% of individuals, and these were
mainly Hyalella sp. (Hyalellidae). Scrapers accounted for 25.1% of individuals, mainly
Andesiops sp. (Baetidae). Finally, we observed 7.4% shredders, and these were primarily
Anomalocosmoecus sp. (Limnephilidae).

The CCA triplot based on FFG densities showed a GI gradient that clearly followed
the first axis (Figure 5). Shredders, shredders/scrapers, scrapers, and predators were
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associated with high Chl. a and low GI. Most generalist feeding groups such as preda-
tor/collectors, shredder/collectors, and predator/scrapers were more closely related
to high GI. In addition, predator/collectors and shredder/collectors were associated
with high POM values. The regression analyses showed that the densities of predators
(R2 = 0.459, p = 0.003) and shredders (R2 = 0.342, p = 0.014) were linearly and negatively
related to GI, while predator/collectors (R2 = 0.241, p = 0.045) and collector/scrapers
(R2 = 0.353, p = 0.012) were linearly and positively related to Chl. a. No FFG related
significantly to POM.
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3.3. Detritus Decomposition

Average mass loss of Calamagrostis leaf packs ranged from six to 55% and from six to
44% in coarse and fine mesh bags, respectively. Decomposition rates (k values) differed
greatly among sites, but were always higher in coarse than in fine mesh bags (p < 0.001;
paired t-test). There was also a highly significant linear relationship between decomposi-
tion rates in coarse and fine mesh bags (R2 = 0.84, p < 0.001; linear regression). There were
no differences in decomposition rates between bags exposed for 35 days and those exposed
for 92 days, neither for coarse (p = 0.77; t-test) nor for fine mesh bags (p = 0.98). Daily
decomposition rates for coarse mesh bags (kCM) were 0.0019–0.0088 (median 0.0048 day−1)
and for fine mesh bags (kFM) 0.0010–0.0065 (median 0.0028 day−1) (SI 6). Although regres-
sions of kCM and kFM against GI were non-significant, we found that quadratic models
best explained the relationship, showing the highest decomposition rates at medium val-
ues of GI, while this pattern was much less evident for kCM – kFM (i.e., shredder activity
plus physical abrasion) (Figure 6). Likewise, the GAMs found no significant relationship
between any of the decomposition rates and GI (SI 7). Rates based on degree-days (dd)
varied between 0.00025 and 0.00104 for kCM (median 0.00054 dd−1) and from 0.00014 to
0.00082 for kFM (median 0.00035 dd−1). Decomposition rates calculated in dd−1 showed
all the same patterns as those described above for rates day−1, except that R2 values for
regressions against GI were slightly lower using dd (not shown).
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Results from the GAMs indicated significant effects of some of the individual site
characteristics on decomposition rates. Rates in coarse mesh bags (kCM), when tested
against variables individually, were related to predator/collector abundance, tempera-
ture CV (both negative), Pfankuch index, and Chl. a (both hump-shaped) (all p < 0.05),
while in the model including these four factors only predators/collectors, temperature CV
(U-shaped) and Pfankuch index (hump-shaped) were significant (p < 0.05) (SI 7). Fine
mesh bag rates (kFM), when tested against factors individually, were related to temperature
CV, turbidity (both negative), Pfankuch index (hump-shaped), and Chl. a (saturation)
(all p < 0.05), while in the model including these four factors, only temperature CV (nega-
tive) and Chl. a (positive) were significant (p < 0.05) (SI 7). The kCM–kFM difference was
only related negatively to scraper abundance (both p < 0.05) (SI 7).

4. Discussion
4.1. Glaciality Index, Environmental Variables, and Food Sources

In Swiss alpine streams, maximum temperature, conductivity, and substrate stability
were found to be important for placing sites along a gradient of glacier influence [6]. In
contrast, in our study on the Ecuadorian streams, turbidity contributed the most to our
GI, followed by conductivity and, to a much lesser extent, temperature variation. This
difference could be because our slightly modified GI was applied not only to glacier-fed
streams, but to spring-fed and superficial drainage-fed streams, and because larger glaciers
(and rivers) were included in the study by [6].

Levels of benthic algae biomasses (measured as Chl. a concentration) were high in our
sites compared to summer levels reported from European alpine streams, but were more
comparable to those during low flow conditions during early spring and autumn [15,62,63].
In accordance with [15], we found a slight decrease in benthic Chl. a toward higher levels
of glacial influence (Figure 3). Another study from the same Andean glacier-fed streams as
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ours, but at higher altitudes and closer to the glaciers, found considerably lower benthic
algal biomass, and showed that the variation in biomass was mainly related to water
temperature, concentration of suspended solids (turbidity), and Pfankuch stability [37].

Coarse particulate organic matter inputs are usually low or lacking at high latitude,
alpine streams, especially in glacier-fed ones with sparse or no riparian vegetation [17,64].
Additionally, detritus is retained for shorter periods in turbulent and hydrologically un-
stable streams [65,66]. We found that POM pools were high compared to streams in the
Alps [17,62]. Our POM pools were comparable to those reported by Kuhn et al. [37], and
virtually constant along the GI gradient (Figure 3). The dense páramo vegetation of grass
and shrubs in equatorial highlands probably provides considerable input of allochthonous
POM [2]. It is important to note that all 17 stream sites were located roughly at the same
altitude, with no systematic difference in riparian vegetation along the GI gradient. In
addition, as opposed to temperate regions, in the tropics, allochthonous organic matter
input occurs year round, and not as short seasonal pulses [67]. However, pools of POM
not only depend on riparian allochthonous input, but also on autochthonous production
(aquatic macrophytes), retention, and decomposition rates. We did not determine the
origin of POM in the Surber samples, and part of the POM could stem from submerged and
emergent aquatic macrophyte vegetation that is common in these streams including those
with glacial influence. Finally, decomposition rates (discussed below) were relatively low.

4.2. Functional Feeding Group Affiliation and Distribution Patterns

Invertebrate density was inversely related to GI while taxon richness, and to a lesser
degree FFG richness, showed a hump-shaped relationship. FFG richness was less affected
by GI, since the fewer taxa present at higher GI represented more feeding guilds. The
hump-shaped pattern in taxon richness has been found in previous studies from the same
region [38,68]. Functional diversity of aquatic macroinvertebrates varies with land cover
type in alpine streams [69], and decreases with increasing glacier cover in Arctic-temperate
catchment [9]. However, in this equatorial alpine catchment, overall functional diversity
seems to mirror the humped-shaped taxon richness versus GI pattern [39], here shown
specifically by the number of FFGs. Most generalist feeding groups such as collectors,
predators/collectors, shredders/collectors, and predators/scrapers were more closely
related to the harsher environment at high GI levels. This high degree of feeding general-
ism or omnivory in glacier-fed streams seems to be in accordance with studies from the
European Alps [10–12,35].

Shredders showed a significantly negative relationship with the GI, in accordance
with the findings in [39]. The distribution of shredders toward streams with lower GI does
not appear to be driven by POM, because shredder abundance did not correlate to POM,
which, in turn, showed no significant pattern along the GI gradient (Figure 3). Thus, species
contributing to shredding (primarily Hyalella sp. and Anomalocosmoecus sp.) seem to be
particularly limited by the environmental harshness at high GI rather than food sources.

4.3. Detritus Decomposition

Our decomposition rates for both coarse mesh (median 0.0048 d−1), and in particular
for fine mesh bags (median 0.0028 d−1), were slightly lower than those reported by [56] for
Calamagrostis in nearby, non-glacial, and slightly lower lying páramo streams (kCM median
0.0057; kFM median 0.0048 d−1). These authors found that decomposition rates were
lower in streams with low taxon richness and abundance of shredders (primarily Hyalella
sp., Anomalocosmoecus sp. and Nectopsyche sp.). It is well established that decomposition
rates vary greatly among different species of leaf litter [70], so direct comparison with
other studies using other leaf species is problematic. Nevertheless, compared to the
decomposition of Alnus sp. leaves (which is a relatively quickly decomposed species) in
Swiss alpine streams (k = 0.0029–0.0305 d–1 [19]), our decomposition rates were also low.
The lowest decomposition rates of Alnus sp. leaves occurred immediately below glaciers,
where microbial action was the main contributor. Decomposition rates of Alnus sp. in coarse
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mesh bags were considerably higher in glacier lake outlets, where the glacial influence is
moderated by a less harsh environment (in particular higher mean temperatures), thus
allowing higher densities of shredders (the trichopteran Acrophylax zerberus) [19]. Our rates
for Calamagrostis sp. seem to be quite comparable to those found in Swiss Alpine streams
for Larix sp. needles (which is a relatively slowly decomposed species) with k ranging
0.0017–0.0055 d−1 [16]. Again, the decomposition of the Larix sp. needles was highest in
a spring brook due to abundant nemourid stonefly shredders compared to a pro-glacial
and a glacial lake outlet stream. Overall, the relatively high average temperature of the
equatorial alpine streams (7–10 ◦C) compared to e.g., European Alpine streams apparently
does not raise decomposition rates accordingly.

Our study showed a non-significant, although somewhat intriguing hump-shaped
relationship between decomposition rates for both fine and coarse mesh bags and GI values
(Figure 6). The GAM analyses revealed that several of the environmental variables included
in the GI had significant effects on decomposition rates, but that this humped-shape of both
kCM and kFM seemed to be related mainly to the Pfankuch index (i.e., the physical stability
of the stream bed). In addition, the temperature CV had a consistently negative effect on
both kCM and kFM, both tested individually and in combined models. However, these
relationships are hard to explain. The GAMs found no effect of shredders on decomposition
rates, instead, effects were found for predators/collectors (kCM) and scrapers (kCM–kFM).
These effects are hard to explain, but we obviously cannot dismiss that some taxa have
been misplaced regarding FFG.

As expected, kCM was generally higher than kFM rates, but overall, the two quadratic
regressions followed each other closely, so the absolute difference between the two treat-
ments varied little across the entire GI gradient (Figure 6). The difference in decomposition
rates between fine and coarse mesh bags is usually attributed to shredding by macroinverte-
brates and physical abrasion and fragmentation [59]. Thus, the effect of macroinvertebrate
shredders (mainly Hyalella sp. and Anomalocosmoecus sp.) appeared to be minor compared
to the microbially mediated decomposition, which in fact only decreased very slightly
toward low GI values, but more clearly toward high GI. Surprisingly, while shredder abun-
dance was unrelated to POM quantities, they showed a very clear decreasing abundance,
and virtually disappeared at high GI levels (Figure 5). As neither kCM nor kCM–kFM rates
were related to the abundance of shredders, the nearly constant kCM–kFM difference and
the increasing kCM:kFM ratio toward high GI levels (data not shown) are probably due to
increased physical abrasion and fragmentation at high GI, as suggested by [16] and [18],
while at low GI levels, shredders contribute relatively more and physical abrasion relatively
less to decomposition.

5. Conclusions

Our study showed that (1) food resources such as POM and benthic periphyton in an
Ecuatorial high páramo stream network were not related to glacial meltwater influence
(within the lower end of the gradient, as studied here); (2) that generalist FFGs dominate
at high levels of glacial influence; and (3) that decomposition rate of detritus appeared to
be hump-shaped related to glacial influence, and our results suggest that tropical glacier
loss will not change the dominant microbial role in detritus decomposition, but that the
physical abrasion might be partially replaced by biological processes such as shredder
action with reduced glacial influence.
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