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A B S T R A C T   

The sensitivity of photosynthesis to environmental changes is essential for understanding carbon cycle responses 
to global climate change and for the development of modeling approaches that explains its spatial and temporal 
variability. We collected a large variety of published sensitivity functions of gross primary productivity (GPP) to 
different forcing variables to assess the response of GPP to environmental factors. These include the responses of 
GPP to temperature; vapor pressure deficit, some of which include the response to atmospheric CO2 concen-
trations; soil water availability (W); light intensity; and cloudiness. These functions were combined in a full 
factorial light use efficiency (LUE) model structure, leading to a collection of 5600 distinct LUE models. Each 
model was optimized against daily GPP and evapotranspiration fluxes from 196 FLUXNET sites and ranked 
across sites based on a bootstrap approach. The GPP sensitivity to each environmental factor, including CO2 
fertilization, was shown to be significant, and that none of the previously published model structures performed 
as well as the best model selected. From daily and weekly to monthly scales, the best model’s median Nash- 
Sutcliffe model efficiency across sites was 0.73, 0.79 and 0.82, respectively, but poorer at annual scales 
(0.23), emphasizing the common limitation of current models in describing the interannual variability of GPP. 
Although the best global model did not match the local best model at each site, the selection was robust across 
ecosystem types. The contribution of light saturation and cloudiness to GPP was observed across all biomes (from 
23% to 43%). Temperature and W dominates GPP and LUE but responses of GPP to temperature and W are 
lagged in cold and arid ecosystems, respectively. The findings of this study provide a foundation towards more 
robust LUE-based estimates of global GPP and may provide a benchmark for other empirical GPP products.   
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1. Introduction 

Gross photosynthetic rate, estimated by gross primary productivity 
(GPP), is a measure of carbon uptake by terrestrial ecosystems, which is 
driven by the availability of energy, water, atmospheric CO2, and nu-
trients (Beer et al., 2010; Haverd et al., 2018; Ichii et al., 2005; Zhang 
et al., 2011). Due to complimentary and simultaneous dependencies on 
these factors, quantification of responses and sensitivities of GPP is often 
challenging (Anav et al., 2015; Ciais et al., 2014; Keenan et al., 2012; 
Zaehle et al., 2014). 

Currently, there is a wide variety of GPP models developed for global 
purposes. Some models have been developed from local measurements 
for mechanistically representing plant function and physiology 
(Kaminski et al., 2013; Law et al., 2002; Lawrence et al., 2011; Vuichard 
et al., 2019), whereas other models are more empirical in nature (Jung 
et al., 2009; Teubner et al., 2019). Mechanistic models are usually robust 
under various climatic and environmental conditions (De Pury and 
Farquhar, 1997). However, their applications at a larger spatial scale are 
often limited due to model complexity, poorly known parameters, and 
divergences between them due to different embedded assumptions 
(Anav et al., 2015). In contrast, empirical models demand fewer drivers 
and parameters but are limited by data quality, representativeness, and 
generality (Jung et al., 2020). Generally, they lacked the theoretical 
links to underlying causes of productivity (Jung et al., 2011). Instead, 
the light use efficiency (LUE) model (Monteith, 1972), which originated 
from a purely empirical model, has been developed with the incorpo-
ration of some theoretical constraints, merging both advantages (Car-
valhais et al., 2010a; Carvalhais et al., 2008; Mäkelä et al., 2008; 
Running et al., 2004). 

The LUE model treated here defines GPP as a product of absorbed 
photosynthetically active radiation (APAR) and LUE (ε). APAR is the 
product of photosynthetically active radiation (PAR) and the fraction of 
absorbed PAR (FAPAR). ε denotes the maximum LUE (εmax) scaled by a 
sensitivity function of environmental factors (fX). LUE models share the 
assumption that ε represents all the photosynthetic processes under 
certain light at the canopy scale and that fX denotes their responses and 
sensitivities to environmental factors. This assumption was later vali-
dated by Wang et al. (2017a), who derived ε and fX of P-model from 
detailed leaf-scale photosynthetic processes. 

As a function of one or multiple environmental factors, fX differs 
between models. Temperature (T) is the driving factor in every LUE 
model due to its essential effect on enzyme activity and electron trans-
port (Medlyn et al., 2002). The partial sensitivity function of T (fT) can 
be represented as a linearly peaked or sigmoidal function, indicating an 
increased photosynthetic rate until a plateau is reached (Mäkelä et al., 
2008; Running et al., 2004). Alternatively, fT can be a bell-shaped 
function to account for a reduction if T exceeds a certain optimum 
(Horn and Schulz, 2011a; Potter et al., 1993; Xiao et al., 2004). It can 
also include a lagged function of T (Horn and Schulz, 2011a; Mäkelä 
et al., 2008) to represent delayed temperature effect on boreal and 
temperate vegetation (Jarvis et al., 2004; Mäkelä et al., 2004). 

In addition to T, some models include vapor pressure deficit (VPD) 
(Horn and Schulz, 2011a; McCallum et al., 2013; Running et al., 2004; 
Wang et al., 2017a; Wang et al., 2015), soil water supply (W; Stocker 
et al., 2018), aridity index (Yan et al., 2017), precipitation index (Horn 
and Schulz, 2011a), land surface water index (LSWI; Xiao et al., 2004), 
or evaporative fraction (Horn and Schulz, 2011a; Yuan et al., 2007) as 
an indicator of water demand for plants. The partial sensitivity function 
of VPD, fVPD, is a decreasing function representing a limitation on 
stomatal conductance, which can be linear (Running et al., 2004) or 
sigmoidal (Horn and Schulz, 2011a; Kalliokoski et al., 2018; Mäkelä 
et al., 2008; Wang et al., 2018). In contrast, the partial sensitivity 
function for W (fW) is usually increasing linearly (Kalliokoski et al., 
2018; Turner et al., 2006a; Xiao et al., 2004) or nonlinearly (Horn and 
Schulz, 2011a; Mäkelä et al., 2008; Stocker et al., 2020), since sufficient 
water supply can guarantee the stomatal openness and physiochemical 

reactions. Either fVPD or fW can include a lagged effect in arid areas 
(Horn and Schulz, 2011a), related to the root distribution and degree of 
aridity. 

Some models embed a partial sensitivity function of APAR, called fL, 
into LUE models (Ibrom et al., 2008; Kalliokoski et al., 2018; Mäkelä 
et al., 2008; Propastin et al., 2012) to account for the light saturation 
effect (Medlyn, 1998), departing from traditionally linear LUE models. 

Diffuse radiation has been found to increase total canopy ε since 
more light can be diffused into deeper canopy layers (Cheng et al., 2015; 
Farquhar and Roderick, 2003; Gu et al., 1999; Huang et al., 2014; Knohl 
and Baldocchi, 2008; Mercado et al., 2009). Therefore, the effect of the 
diffuse radiation ratio, represented by cloudiness index (CI), has been 
incorporated into some LUE models (He et al., 2013; Turner et al., 
2006a; Wang et al., 2015; Wang et al., 2018; Yan et al., 2017), and is 
backed by the classical theory of radiative transfer (Ross, 1981) and 
adopted by mechanistic canopy models (Ibrom et al., 2006). The partial 
sensitivity function of CI (fCI) can be a summed (Turner et al., 2006a) or 
factorial form (Wang et al., 2018), both of which show a monotonically 
positive response to CI. Alternatively, a two-leaf LUE model structure, 
which separates εmax and FAPAR of sunlit and shaded leaves, can ac-
count for the effect of diffuse radiation ratio on different parts of plants. 
fL has not been coupled with fCI in the current LUE models, possibly due 
to the correlation between them (Gu et al., 2002; Knohl and Baldocchi, 
2008). 

Another driving factor for photosynthesis is atmospheric CO2 (Far-
quhar et al., 1980; Haverd et al., 2018; Kaminski et al., 2013) which can 
diffuse into leaves through stomata (Leuning, 1995). Nevertheless, most 
LUE models neglect it, with the exception of CFix (Veroustraete et al., 
2002), P (Stocker et al., 2020), revised EC-LUE (Yuan et al., 2019), and 
PRELES models (Kalliokoski et al., 2018), meaning that traditional LUE 
models are not sensitive to the effect of increasing CO2 concentrations. 
The effect of CO2 variations is usually included in fVPD (Kalliokoski 
et al., 2018; Wang et al., 2017a) due to the dependence of stomatal 
conductance on VPD for controlling gas exchange. A CO2 effect is also 
influenced by T, which affects the affinity of Rubisco for CO2 molecules 
(Veroustraete et al., 2002; Wang et al., 2017a). 

All the above differences between fXs have led to discrepancies be-
tween LUE models and GPP estimates. Although some of these models 
have been compared globally (Yuan et al., 2014; Zhang et al., 2015), or 
regionally (Carvalhais et al., 2010b; Mäkelä et al., 2006; Ruimy et al., 
1999), and GPP estimates have been improved using the Bayesian 
average of multiple models (Zhang et al., 2021), the necessity of 
different environmental factors, their formulations and derived sensi-
tivity of GPP dynamics have not been assessed. 

Our study objective is to evaluate the environmental factors and 
partial sensitivity functions to find a generally robust LUE model for 
most eddy covariance (EC) sites from FLUXNET (Baldocchi et al., 2001). 
We hypothesized that global ecosystem-level variations in GPP and LUE 
would respond to independent changes in T, VPD, W, light saturation, 
CI, and CO2, and that the responses (i.e., partial sensitivity functions) are 
nonlinear. To test these hypotheses, our study followed the workflow in 
Fig. 1. 

2. Materials and methods 

2.1. Light use efficiency model ensemble 

For the first step, we built an ensemble of 5600 LUE models based on 
full factorial structure (Eq. (1)), which allows the most effective testing 
of individual environmental factor effects. 

GPP = εmax⋅PAR⋅FAPAR⋅f T⋅f VPD⋅f W⋅f L⋅f CI (1) 

We selected T, VPD, W, light saturation, CI and CO2 as the most 
dominant factors for governing GPP. Given the relationship between 
CO2 diffusion and stomatal conductance controlled by VPD, the VPD and 
CO2 effects were integrated into a single function, fVPD. We gathered 
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different mathematical representations of the five kinds of independent 
partial sensitivity functions (six fTs, six fVPDs, two of which include CO2 
effect, eight fWs, one fL, and two fCIs, listed in Table 1) from the pub-
lished LUE models (see references in Table 1). One of the fVPDs with a 
CO2 effect, fVPDP0, has fixed parameters for all climate and vegetation 
types (Stocker et al., 2020). We therefore supplemented an identical 
function with flexible parameters (fVPDP). Additionally, we introduced 
a Weibull function for soil moisture (fWWeibull), and an exponential 
function and a bell-shaped function for CI (fCIEXP and fCIHorn). We also 
set a contrast group for each factor (fTnone, fVPDnone, fWnone, fLnone and 
fCInone, all equal to 1) to test if GPP is independent of these environ-
mental factors. In summary, we combined seven fTs, eight fVPDs, ten 
fWs, two fLs, and five fCIs (see function curves in Fig. 2, equations and 
references in Table 1) based on the structure in Eq. (2) to make an 
ensemble of 5600(=7 × 8 × 10 × 2 × 5) LUE models. 

In the ensemble, eleven models have the same structures as pub-
lished models (see their names and structures in supplementary infor-
mation Table S1). 

2.2. Forcing data and observational constraints 

We forced the LUE models using ecosystem-scale observations from 
196 FLUXNET EC sites (fluxnet.fluxdata.org; see distribution map in 
Fig. S1 and site information in Table S2). The forcing data, including 
PAR, FAPAR, T, VPD, W, CI, CO2, and site elevation, were summarized 
in Table 2. We additionally collected GPP (GPPobs), evapotranspiration 
(ET; ETobs), and their uncertainties (see definitions in Table 2) to cali-
brate model parameters. 

2.3. Model calibration 

The purpose of model calibration is to find the best parameter vector 
for each LUE model at each site, and to reduce the model uncertainties 
associated with model parameters. We calibrated LUE model parame-
ters, εmax and parameters of fX (in bold in Table 1), and WAI parameters 
(see their definitions in Appendix A and the reason for jointly calibrating 
WAI and LUE parameters in Appendix C) using a stochastic and 
derivative-free evolutionary algorithm, CMAES (Hansen and Kern, 

2004). CMAES, which is a reliable tool for global optimization (Hansen 
and Kern, 2004; Trautmann et al., 2018), searches the optimal param-
eters (maximum iterations=105 in this study) in a predefined range 
(Table S4) by minimizing a cost function. The definition of an appro-
priate cost function is, therefore, crucial to find the optimal parameters 
given certain constraints on model variables. We define a cost function 
(cf) as the sum of four parts (see equations of cost functions in 
Appendix D): GPP errors (cf1) scaled by uncertainty for constraining LUE 
parameters, ET errors (cf2) scaled by uncertainty for constraining WAI 
parameters, and fX constraints (cf3 and cf4). 

To avoid the selection of a local optimum, we randomly selected nine 
additional parameter vectors using the reciprocal of cf as a weight in the 
last 103 iterations of the evolutionary parameter searching process (i.e., 
103 parameter vectors) to cross-examine the optimal parameter vector 
given by CMAES. The ten parameter vectors were all used in model 
selection (Section 2.5). Parameter uncertainties were also quantified 
using the covariance matrix of parameters (Appendix E). 

2.4. Model assessing metrics 

We evaluated model fitness at daily, weekly, monthly and annual 
scales using the good-quality observational data defined in Appendix B. 
First, we aggregated daily observed GPP (GPP) and simulated GPP (ĜPP) 
to weekly, monthly, and annual scales. Next, we calculated the Nash- 
Sutcliffe efficiency (NSE) to measure the global fitness (NSEg), spatial 
fitness (NSEsp) and site-level fitness (NSEi) of models using Eqs. (2)-(4). 

NSEg = 1 −

∑Ns0
i=1
∑Nt,i

t=1

(
GPPi,t − ĜPPi,t

)2

∑Ns0
i=1
∑Nt,i

t=1

(
GPPi,t − GPPi,t

)2 (2)  

NSEsp = 1 −

∑Ns0
i=1

(

GPPi − ĜPPi

)2

∑Ns0
i=1

(

GPPi − GPPi

)2 (3)  

Fig. 1. The workflow of this study (GPPobs and GPPopt denote the GPP derived from eddy covariance measurement and simulated GPP using the LUE model, 
respectively). 
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NSEi = 1 −

∑Nt,i
t=1

(
GPPi,t − ĜPPi,t

)2

∑Nt,i
t=1

(
GPPi,t − GPPi,t

)2 (4) 

GPPi,t and ĜPPi,t stand for the observed GPP and simulated GPP at 
time step t at site i. Ns0 and Nt,i are the total site number and the total 

time steps at site i. GPPi and ĜPPi are the average observed GPP and 

simulated GPP at site i. The NSE of each site-year and across site-years 
(used in Section 2.5) are the same as Eqs. (4) and (2), but only ac-
count for one-year GPP. Similarly, we calculated coefficient of deter-
mination (R2), and normalized root mean squared error (nRMSE). 

2.5. Model rank and selection 

Model selection usually depends on the methods, data information 

Table 1 
Equations of the partial sensitivity functions (the parameters are in bold). Parameter names in the individual equations are from the original publications. Some 
symbols might hence appear several times (e.g., α) but are actually completely independent.  

fX Equation Reference 

fTCASA Tε1⋅Tε2, Tε1 = 0.8+ 0.02⋅Topt − T2
opt, Tε2 = 2⋅(1 + eTa ⋅(Topt − 10− T))

− 1⋅(1 + eTb ⋅(− Topt − 10+T))
− 1  (Potter et al., 1993) 

fTHorn 2× e− (Tf − Topt)/kT /(1 + e(− (Tf − Topt)/kT)
2
), Tf k = (1 − α)⋅Tk + α⋅Tf k− 1  

(Horn and Schulz, 2011a) 

fTMOD17 (T − TMINmin)/(TMINmax − TMINmin) (Running and Zhao, 2015) 
fTP a+ b⋅T − c⋅T2  (Stocker et al., 2020) 

fTTAL min(Sk/Smax,1), 
Sk = max(Xk − X0,0), Xk = Xk− 1 + 1/τ(Tk − Xk− 1), X1 = T1  

(Mäkelä et al., 2008) 

fTVPM (T − Tmin)⋅(T − Tmax)

((T − Tmin)⋅(T − Tmax) − (T − Topt)
2
)

(Xiao et al., 2004)   

fVPDHorn 1/(1+ ekW ⋅(VPDf − WI )), VPDf k = (1 − α)⋅VPDk + α× VPDf k− 1  
(Horn and Schulz, 2011a) 

fVPDMOD17 1 − (VPD − VPDmin)/(VPDmax − VPDmin) (Running and Zhao, 2015) 
fVPDP0 

m

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

(
c∗

m

)2
3

√
√
√
√
√ , m =

ca − Γ∗

ca + 2Γ∗ + 3Γ∗

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1.6η∗VPD
β(κ + Γ∗)

√ , no parameter is calibrated  

(Stocker et al., 2020) 

fVPDP 

m

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

(
c∗

m

)2
3

√
√
√
√
√ , m =

ca − Γ∗

ca + 2Γ∗ + 3Γ∗

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1.6η∗VPD
β(κ + Γ∗)

√ , c* and β are calibrated  

as above 

fVPDPRELES 
⎛

⎜
⎝e

κ⋅

(
Ca0

Ca

)cκ

⋅VPD

⎞

⎟
⎠

∗1

⋅(1 + (Ca − Ca0)/(Ca − Ca0 + cm))
∗2  

(Kalliokoski et al., 2018)    

fVPDTAL eκ⋅VPD  (Mäkelä et al., 2008) 

fVPDWang 1/(1+ VPD/D0) (Wang et al., 2018) 
fWCFlux 0, if (W < WHCmin); W/WHCmax, if (WHCmin ≤ W ≤ WHCmax); 1, if (W > WHCmax) (Turner et al., 2006a) 
fWHorn 1/(1+ ekW ⋅(Wf − WI )),

Wf k = (1 − α)⋅Wk + αWf k− 1  

(Horn and Schulz, 2011a) 

fWP q(W − θ∗)2
+ 1, if (W≤ θ∗); 1, if (W> θ∗)  (Stocker et al., 2020) 

fWPRELES min(1,W/ρ) (Kalliokoski et al., 2018) 
fWTAL (1 + ((1 − W)/α)v

)
− 1  (Mäkelä et al., 2008) 

fWTAL1 1 − e(− α⋅Wv) (Mäkelä et al., 2008) 

fWVPM (1 + LSWI)/(1 + LSWImax) (Xiao et al., 2004) 
fWWang W (Wang et al., 2018) 
fWWeibull 

k
λ

(
W
λ

)k− 1
e
−

(
W
λ

)k  This study   

fLTAL 1/(γ(PAR⋅FAPAR) + 1) (Mäkelä et al., 2008) 
fCICFlux 1+ μCInor CInor(CI − min(CIYi ))/(max(CIYi ) − min(CIYi )), no parameter  (Turner et al., 2006a) 
fCIEXP CIμ  This study 
fCIHorn 2× e− (CI− Ropt)/kC /(1 + e(− (CI− Ropt)/kC )

2
) This study 

fCIWang 1 − μ(1 − CInor),

CInor = (CI − min(CIYi ))/(max(CIYi ) − min(CIYi ))

(Wang et al., 2018) 

fTnone /fVPDnone fWnone /fLnone /fCInone 1 This study 

T: Temperature. 
Tk: Lagged temperature on day k. 
VPD: Vapor pressure deficiency. 
Ca: Ambient CO2 concentration. 
Γ*: Photorespiratory compensation point. 
η*: Water viscosity relative to its value at 25◦C. 
κ: Effective Michaelis-Menten coefficient of RuBisco. 
W: Soil moisture. 
CI: Cloudiness index. 
Yi: Year i 
*1: fVPD part in fVPDPRELES, including part of CO2 effect, which was constrained using cf3 (see Appendix D) 
*2: fCO2 part in fVPDPRELES, which was not constrained 
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and assessment metrics (Burnham and Anderson, 2002; Burnham et al., 
2011; Efron, 2014). Equifinality between models and between model 
parameters restricts the model selection for a complex ecosystem given 
limited observations (Beven, 1993; Fisher and Koven, 2020). Hence, it is 
challenging to select a robust model in a large model ensemble given a 
few observational sites, which are nearly 28 times fewer than the total 
number of models. Here, we adopted the following strategies to alleviate 
the influences of the model selection method, sites, assessment metrics 
and model equifinality. 

First, to reduce uncertainties caused by using a unique ranking 
method, we ranked the models based on three methods: (1) a site- 
sampling method; (2) pair-wise Kolmogorov–Smirnov (KS) hypothesis 
tests (Appendix F; Lilliefors, 1967); and (3) following the approximate 
Bayesian computation (ABC) scheme (Appendix G; Toni and Stumpf, 
2010). Among these three methods, both the site-sampling and ABC 
consider the equifinality between models and parameter vectors using a 
likelihood value to measure model robustness. 

To avoid the selection of a model that is locally good for a specific 
group of sites, we used a site-sampling method, which defines model 
robustness using the likelihood of being the best model in multiple it-
erations of bootstrapped sites. The detailed workflow of the site- 
sampling method is summarized in Table 3. 

The model likelihood, P1, represents model goodness per site-year 
and can be regarded as the fraction of site-years in which a model is 
among the top 1% best models. In turn, the other model likelihood, P2, 
represents model goodness across site-years, i.e., the overall goodness 
for all the site-years. With the model ranks R1 and R2, sorted according 
to P1 and P2, the model that is the locally best for most site-years and 
overall best can be selected. 

To test if the selection of the metric affected the model selection, we 
repeated the above analysis with RMSE instead of NSE (mef at step 13 in 
Table 3, which corresponds to either RMSE or NSE in the respective 
scenarios). We also tested the other thresholds (step 21 in Table 3) to 
determine the best models (θ0=2%, 3%, 4%, 5% and 10%). The results 
are shown in Fig. S3 and Fig. S4. 

We repeated the above model selection process individually for nine 
climate-vegetation types: arid forest, arid grassland, boreal forest, boreal 
grassland, polar vegetation, temperate forest, temperate grassland, 
tropical forest, and tropical grassland (defined in Appendix H). Finally, 
we selected the global best model as the model in which the sum of R1 
and R2 was smallest at all the sites and the sites of various climate- 
vegetation types; i.e., the best combination of fX. 

To evaluate the strength of the global best LUE model, we compared 
it with a machine learning model (Appendix I) and an ensemble of site- 
best models; i.e., an ensemble of models with the highest NSE at a daily 
scale per site. 

Furthermore, we calculated the likelihoods, P1 and P2, of various 
partial sensitivity functions and their combinations. The likelihoods 
were equal to the average ratio of a partial sensitivity function (e.g., 
fTMOD17) or a combination of partial sensitivity functions (e.g., fTMOD17 
and fVPDMOD17) that appeared in the top 1% best models of all the it-
erations to 1% of total number of models. We treated the partial sensi-
tivity function and the combination with the largest sum of likelihoods 
as the best sensitivity function for each environmental factor or a 
combination of environmental factors. 

2.6. Environment sensitivities in the best light use efficiency model 

We analyzed the dominant controls for seasonal LUE dynamics using 
the partial sensitivity functions of the global best LUE model and site- 
best models in three approaches. In the first approach, we aimed to 
find the environmental factor to which LUE has the largest sensitivity. 
For this purpose, we calculated the average partial sensitivities and 
adopted the minimum as the dominant environmental factor at site i (Xi) 
as Eq. (5). 

Xi =

⎧
⎪⎨

⎪⎩

T, if fTi = min
i

(
fTi, f VPDi, fWi, fLi, f CIi

)

⋯
CI, if f CIi = min

i

(
fTi, f VPDi, fWi, fLi, f CIi

) (5) 

Then we computed the fraction of each dominant factor (FracX) per 
climate-vegetation type as Eq. (6), where Ns0 denotes the total site 
number of a corresponding climate-vegetation type. We regarded the 
factor with the largest fraction as the major driving factor for the cor-
responding type. 

FracX =

∑
i(Xi = X)

Ns0
, X = T, VPD, W, L, or CI (6) 

In the second approach, we identified the relative contribution of 
each environmental factor (X) to the total LUE variation (CX) per 
climate-vegetation type as Eqs. (7)-(8). 

Fig. 2. Partial sensitivity functions in light use efficiency models describing the sensitivity of LUE to a) temperature (T; fT), b) vapor pressure deficit (VPD; fVPD), c) 
soil water availability (W; fW), d) light saturation (L; fL), e) cloudiness index (CI; fCI) and f) atmospheric CO2 concentration in fVPD. The dotted line (…) denotes the 
function including a lag effect of the driving variable, the dashed line (–) denotes the function including CO2 effect. All the response curves vary with parameters. 
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f Xnor,i =
1 − f Xi

∑f T,f VPD,f W,f L,f CI
f X (1 − f Xi)

, f X = f T, f VPD, f W, f L, or f CI

(7)  

CX =
∑Ns0

i

(
f Xnor,i

)
/

Ns0 (8) 

fXnor,i refers to the normalized partial sensitivity function at site i and 
fXnor,i is the average partial sensitivity function at site i. The CX indicates 
the relative contribution of X from small to large (zero to one). 

In the last approach, we assessed the dominant controls under 
extreme conditions, defined as a condition of T, VPD or APAR larger 

than the 90th percentile, or T, W or CI smaller than the 10th percentile 
values. We aimed to identify which factor most affected GPP when an 
environmental condition is limiting. We calculated the site fraction of 
major driving factors and the relative contribution of each environ-
mental factor per climate-vegetation type under extreme conditions. 

To distinguish the sensitivities of GPP and LUE and cross-validate the 
dominant controls, we compared the above variables with the Pearson 
correlation coefficients (R) between GPPobs and daily forcing variables 
per site, and between LUEobs, GPPobs by APAR, and the same forcings. 

Table 2 
Calculations and processings of the forcing data.  

Abbreviation Definition Unit Equation or source Reference 

Elev Site elevation m FLUXNET websites and literature Table S2 
LE Latent heat flux MJ‧m− 2‧ 

day− 1 
EC observations Table S2 

NEE Net ecosystem exchange gC‧m− 2‧ 
d− 1 

EC observations Table S2 

Precip Precipitation mm EC observations Table S2 
QA Quality flags for all the variables 

from EC measurement 
Unitless 
(0-1) 

FLUXNET dataset (Pastorello et al., 2020) 

QC Quality flags for all the 
reflectance of MCD43A4 product 

Unitless MCD43A2 quality assessment product (Schaaf and Wang, 2015) 

Rg Global radiation MJ‧m− 2‧ 
day− 1 

EC observations Table S2 

Rp Potential radiation MJ‧m− 2‧ 
day− 1 

EC observations Table S2 

Rn Net radiation MJ‧m− 2‧ 
day− 1 

EC observations Table S2 

rred Reflectance at red band Unitless 
(0-1) 

MCD43A4 version 6 Nadir BRDF-Adjusted Reflectance product (Schaaf and Wang, 2015) 

rnir Reflectance at near-infrared 
band 

Unitless 
(0-1) 

As above As above 

rswir Reflectance at short-wave 
infrared band (1230-1250 nm) 

Unitless 
(0-1) 

As above As above 

T Air temperature ◦C EC observations Table S2 
VPD Vapor pressure deficit kPa EC observations Table S2 
CI Cloudiness index Unitless 

(0-1) 
1 − Rg/Rp  (Fu and Rich, 1999; Turner et al., 

2006a) 
CO2 Atmospheric CO2 concentration ppm Observations by NOAA/ESRL. The global annual mean atmospheric CO2 

concentration was converted to daily time steps using a linear 
interpolation function 

www.esrl.noaa.gov/ 
gmd/ccgg/trends/ 

ETobs Evapotranspiration mm converted from LE using a latent heat of vaporization changing with T (Henderson-Sellers, 1984) 
PET Potential ET mm Estimated using Rn and T (Priestley and Taylor, 1972) 
GPPobs Gross primary productivity gC‧m− 2‧ 

d− 1 
Estimated from NEE (Reichstein et al., 2005) 

LSWI Land surface water index Unitless 
(0-1) 

rnir − rswir

rnir + rswir  

(Xiao et al., 2004) 

NDVI Normalized difference 
vegetation index 

Unitless 
(-1-1) 

rnir − rred

rnir + rred  

(Rouse et al., 1974) 

PAR Photosynthetically active 
radiation 

MJ‧m− 2‧ 
day− 1 

Rg × 0.45   

WAI Water availability index mm Estimated using Precip and PET, with two site-calibrated parameters See Appendix A and (Boese et al., 
2019; Tramontana et al., 2016) 

W Soil water supply Unitless 
(0-1) 

W = min(1,WAI /AWC) - 

σLE Random uncertainty of ET MJ‧m− 2‧ 
day− 1 

Standard deviation of LE As above 

σNEE Random uncertainty of GPP gC‧m− 2‧ 
d− 1 

Standard deviation of NEE (Pastorello et al., 2020) 

FAPAR Fraction of absorbed PAR Unitless 
(0-1) 

{
= NDVI (NDVI > 0)
= 0 (NDVI ≤ 0)

(Myneni et al., 1997) 

All the above variables are at the daily scale; 
The gaps in the Rg, Rp, Rn, T, and VPD were filled using machine-learning-based downscaling (Besnard et al., 2019) of gridded product from CRUNCEP (Viovy, 2018a); 
The linear relationship between FAPAR and NDVI was assumed according to Myneni et al., 1997. 
QA was used to filter the reflectance data for good quality and snow-free conditions. 
NDVI and LSWI were calculated at four QA-filtered pixels around EC sites and averaged across all pixels. 
The time-series NDVI and LSWI were filtered by Savitzky-Golay filter (window size was eleven and polynomial order was three) (Savitzky and Golay, 1964). 
Elevation and CO2 were the particular forcing data for fVPDP, fVPDP0 and fVPDPRELES. The other models only required PAR, T, VPD, W, CI, and FAPAR. 
GPPobs and σNEE were used to calibrate LUE model parameters, and ETobs and σLE were used to calibrate WAI parameters (see Appendix D). 
Both QC and QA were applied to screen good-quality data used in cost functions and assessing metrics (Appendix B). 
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3. Results 

3.1. Overall model performance 

On a global scale, most calibrated models had good performance 
across different time scales (Fig. 3). However, none of the models was 
selected as the best one at each site or site-year. The site-best model 
ensemble included 166 different models for 196 sites in total. No single 
model was among the best 1% models at all sites (reflected by P1). 
Considering each site and site-year equally (reflected by P2), some 
models ranked at the top 1% regardless of the sites considered. P1 and P2 
(Fig. 4) had maximum values of 0.82 and 0.83, respectively, which is 
better than published models (P1, P2=0). Therefore, there were novel 
LUE models, i.e., fX combinations, that were equally good for all sites 
and are better than published models. 

3.2. Model with the highest global performance and robustness 

According to the site-sampling method, the global best model (model 
#1, with fTHorn, fVPDPRELES, fWHorn, fLTAL and fCIEXP) with the highest 
rank (i.e., the smallest sum of R1 and R2) was found to be Eq. (9).   

Tf t = (1 − α) ⋅ Tt + α ⋅ Tf t− 1 (10)  

Wf t = (1 − α) ⋅ Wt + α ⋅ Wf t− 1 (11) 

εmax, Topt, kT, κ, cκ, Ca0, cm, kW, WI, γ, μ, and α denote the model 
parameters, and the others were forcing data. T at day t includes a lag 
effect scaled by α of the previous day t-1 (Eq. (10)) in polar, boreal, and 
temperate areas. The same lag effect was included for W in arid areas 
(Eq. (11)). In the other areas, α=0, and Wf and Tf were equal to T and W. 

Table 3 
Workflow of model ranking based on site-sampling method.  

Steps Pseudocode 

1 Requirement: ModelSet = all the LUE models 
ParSet = ten parameter vectors for each LUE model at each site 
SiteSet = all the EC sites 

2 Initialization: set total model number Nm=5600, total parameter vector number Np=10, total bootstrap times Nitr =200, bootstrap site number Ns=150, bootstrap site-year 
number Ny=2, bootstrap time l=l 

3 While 1≤ l ≤Nitr 

4 SiteSample = generate a bootstrap sample Ns sites from SiteSet 
5 SiteYearSample = generate bootstrap sample of Ny years of data from each site in SiteSample 
6 For m = 1 to Nm 

7 For j = 1 to Ns∙Ny 

8 For k = 1 to Np 

9 Simulate GPP (ĜPPj,m,k) using model m and parameter vector Parm,k  

10 Store GPP in a global dataset across all site-years (ĜPPm,k)  
11 For time scale ts=daily, weekly, monthly, annual scale 
12 Aggregate simulated GPP and observed GPP to time scale ts (ĜPPj,m,k,ts, ĜPPm,k,ts, GPPj,m,k,ts and GPPm,k,ts)  
13 Estimate model fitness, which refers to NSE if ts is daily, weekly or monthly scale, and Root Mean Squared Error (RMSE) if ts is annual scale, for each site-year j (mef j,m,k,ts) and 

across all site-years (mef0,m,k,ts) 
14 Normalize mef j,m,k,ts and mef0,m,k,ts, 

nmfj,m,k,ts =
mefj,m,k,ts − min

m
(mefj,m,k,ts)

max
m

(mefj,m,k,ts) − min
m

(mefj,m,k,ts)

nmf0,m,k,ts =
mef0,m,k,ts − min

m
(mef0,m,k,ts)

max
m

(mef0,m,k,ts) − min
m

(mef0,m,k,ts)

15 Calculate two weights of Mi (w1,m,ts,l and w2,m,ts,l) using the average nmf j,m,k,ts, and using average nmf0,m,k,ts, 

w1,m,ts,l =
∑

j

∑Np
k=1nmfj,m,k,ts

Np
/(Ns⋅Ny)

w2,m,ts,l =

∑Np
k=1nmf0,m,k,ts

Np  
16 End For 
17 End For 
18 End For 
19 End For 
20 Rank models according to w1,m,ts,l and w2,m,ts,l and calculate the average rank of all time scales (R1,m,l and R2,m,l) 
21 Calculate model likelihoods P1,m,l and P2,m,l according to R1,m,l and R2,m,l relative to a threshold θ0 (=1% of Nm), 

P1,m,l =

{
1, R1,m,l ≤ θ0
0, R1,m,l > θ0 

P2,m,l =

{
1, R2,m,l ≤ θ0
0, R2,m,l > θ0  

22 l = l+1, go to step 3 
23 Calculate the average likelihoods across all bootstrap iterations (P1,m and P2,m), sort models according to P1,m and P2,m, and get the model rank R1,m and R2,m, respectively  

GPP = εmax ⋅ PAR ⋅ FAPAR ⋅
(

2 × e− (Tf − Topt)/kT

1 + e(− (Tf − Topt)/kT)
2

)

⋅

⎛

⎜
⎝

⎛

⎜
⎝e

κ⋅

(
Ca0
Ca

)cκ

⋅VPD

⎞

⎟
⎠⋅
(

1+
Ca − Ca0

Ca − Ca0 + cm

)
⎞

⎟
⎠⋅
(

1

1 + ekW ⋅(Wf − WI)

)

⋅
(

1
γ(PAR⋅FAPAR) + 1

)

⋅(CIμ) (9)   
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Model #1 had the highest sum of ranks for all sites and climate- 
vegetation types. It was most frequently involved among the best 1% 
models even when the sites were bootstrapped and different climate- 
vegetation types were separated (Fig. 5). The likelihood, P1 and P2, 
was lower in arid grasslands, arid forests, polar vegetation, and 
temperate forests than other climate-vegetation types, whereas model 
#1 was not significantly different from the best model at the site subsets. 
Site NSE values from daily to annual scales were also not statistically 
different according to a KS test with a significance level of 0.05. Model 
#1 was also the best model using RMSE as the assessment metric (refers 
to the mef at step 13 in Table 3) instead of NSE (Fig. S3) and using other 
thresholds (θ0 =2%, 3%, 4%, 5%, or 10% at step 21 in Table 3, Fig. S4). 
It was the 13th- and second-best model according to the hypothesis test 
(Fig. S5) and ABC (Fig. S6), respectively. The best models based on the 
two methods, which had a different fW (fWCFlux) and fCI (fCIWang) and a 
different fCI (fCIWang) from model #1, were the 42nd- and the third-best 
models of the site-sampling method. However, the KS test at a signifi-
cance level of 0.05 did not show a difference between model #1 and 
these two models at site-level, across which fWs (fWCFlux and fWHorn) 
and fCIs (fCIEXP and fCIWang) were quite similar (Section 3.3). The 
rankings of the models with fTHorn, fVPDPRELES, and fLTAL, and various 
fWs and fCIs, were higher than other models according to P2 (zoom-in 
windows in Fig. 4). Hence, model #1 was a robust model across the 
climate-vegetation types. 

Compared with the published models and all the other models in the 
ensemble, the global best model, model #1, could simulate the global 
GPP with good performance (global NSE=0.82,0.85,0.89, and 0.88, 

global nRMSE=40%,34%,29%, and 19% at daily, weekly, monthly and 
annual scales, Fig. 6). It could also reflect the spatial variability of site- 
averaged GPP (spatial NSE=0.96, spatial nRMSE=11%). At the site- 
level, model #1 could fit the temporal GPP variations of 85% sites at 
daily and weekly scales, and 73% sites at the monthly scale, when using 
NSE larger than 0.5 as a criterion. Simulated GPP at the sites with the 
largest, median, 25th percentile, and the smallest site NSE (= 0.96, 0.73, 
0.58 and -0.04) at the daily scale were exemplified in Fig. S7a-d. The 
performance of model #1 was close to the site-best models (Fig. 7), 
which indicated generally good representativeness of the global best 
model at a site-level. However, the performance of model #1 for inter-
annual variations was poor. Only 26% of site NSE and 41% of site R2 

were larger than 0.5 at annual scales. This is also apparent in the GPP 
estimates using site-best models and MLbest (Fig. S8), which reflected the 
common limitations in LUE and machine learning models to capture 
interannual variability of GPP given current forcing data. Although 
MLbest generally performed better than LUE models, MLbest tended to 
overfit the GPP and result in considerable error over the period without 
good-quality forcing data (Fig. S9 a and b). In turn, LUE models did not 
have the same issue due to functional constraints. 

3.3. Environment-sensitivity functions with the largest likelihood 

No fTnone, and few fVPDnone, fWnone and fCInone appeared in the best 
models for all sites (Fig. 8) or various climate-vegetation types 
(Fig. S10). Although some of the environmental factors and partial 
sensitivity functions were correlated (e.g., APAR and CI, fL and fCI, see 

Fig. 3. The distribution of Nash-Sutcliffe model Efficiency (NSE) of LUE models at a) daily, b) weekly, c) monthly, and d) yearly scale. Global NSE represents the NSE 
calculated using GPP of all sites, which is the same one in Figure 6. Spatial NSE represent the NSE calculated using site-averaged GPP. Blue asterisks represent the 
published models collected in this study 
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Fig. S11), model improvement was apparent when the variability of 
each factor was considered (Fig. S12). Independent responses to satu-
rated light and CO2 fertilization (included in fVPDPRELES, fVPDP and 
fVPDP0) could be ignored in some best models for some specific climate- 
vegetation types, for example, their likelihoods in arid (Fig. S10b and g, 
d and i) and polar areas (Fig. S10v and x) were not superior. However, 
they were important for boreal and temperate forests (Fig. S10l and aa, n 
and ac) with much larger likelihoods than other partial sensitivity 
functions. Thus, considering light saturation and CO2 fertilization is 
necessary for a global LUE model. 

Some partial sensitivity functions were significantly better than 
others for representing the response of LUE to changes in environmental 
factors globally. fVPDPRELES, a joint VPD and CO2 effect, and fLTAL, a 
light saturation effect, were substantially better when compared to the 
other fVPDs (Fig. 8b and d) and fLnone (Fig. 8g and i) for more site-years 
(indicated by P1) and across site-years (indicated by P2). fTHorn, a bell- 
shaped function with a lag effect in cold climates (i.e., polar, boreal 
and temperate), was superior to the other fTs (Fig. 8a and f). As for fW 
and fCI, several functions performed similarly (Fig. 8c,e,h and j), except 
for the poor performance of fWWAI, in which the slope responding to the 
variations in W was fixed. Thus, many models with fTHorn, fVPDPRELES 
and fLTAL and different fWs and fCIs were among the best models (Fig. 4, 
yellow color). The best models selected according to KS test and ABC, 
which had the same fT, fVPD and fL but different fW and fCI, were also 
similar to model #1. 

The combination of paired partial sensitivity functions did not 
display apparent universal features except two of them. One was the 
fVPDPRELES and fLTAL, with a much larger likelihood than the other 
combinations of fVPD and fL (Fig. S13). The other was the fTHorn and 
fLTAL. The likelihoods were 0.32 and 0.50 according to P1 and P2. The 
combinations of other partial sensitivity functions, e.g., fVPD and fW or 

fT and fCI, were all very close in terms of the likelihood shown in the best 
models. 

The best partial sensitivity functions differed among various climate- 
vegetation types (Fig. S10). For example, fTHorn was more relevant for 
the polar vegetation, boreal vegetation, temperate grasslands and 
tropical forests, but less important for vegetation in an arid climate and 
temperate forests. Instead, the linearly peaked function, fTMOD17, was 
the best for arid vegetation and temperate forests. fVPDPRELES, including 
a CO2 effect, was superior for all climate-vegetation types except the arid 
forest and arid grassland, where fVPDHorn with a delayed VPD function 
was better, and polar vegetation and tropical forest. By contrast, fWHorn 
involving a lag effect of W outperformed in the arid forests and grass-
lands. fWWeibull, a bell-shaped or a decreasing function, was more suit-
able for temperate and tropical grasslands. Furthermore, fCIs, fCIEXP, 
fCIWang and fCIHorn particularly, were similar for every climate- 
vegetation type. The fCInone only appeared with very low likelihood. 
fLnone occurred in the best models for every climate-vegetation type and 
was almost as good as fLTAL for arid forests, arid grasslands and polar 
vegetation. In general, fVPDPRELES and fLTAL were necessary for most 
climate-vegetation types, whereas fTHorn was superior for cold sites, and 
fVPDHorn and fWHorn in arid sites. The other fWs and fCIs were similar 
among various climate-vegetation types. 

3.4. Dominant controls of various climate-vegetation types 

The global best model, model #1, showed a clear pattern of envi-
ronmental effects changing with climate-vegetation types. T was the 
major driving factor (defined in Section 2.6) for all polar and boreal 
sites, along with 54% and 78% of the temperate forests and grasslands, 
respectively (Fig. 9a). The relative contribution (defined in Section 2.6) 
of T was also the largest at the polar, boreal and temperate sites but was 

Fig. 4. Likelihoods of all the LUE models based 
on site-sampling method: (a) P1 is the likelihood 
of a model that is among the best 1% models for 
each site-year, which represents a local good-
ness and can be regarded as a site fraction at 
which a model is among the best 1% models; 
(b) P2 is the likelihood of a model among the 
best 1% models across site-years, which repre-
sents an overall goodness. The two zoom-in 
windows are the best 100 models sorted ac-
cording to P1 and P2. The models with the 
structures of fVPDPRELES and fLTAL (in red color 
and yellow color) typically have a higher rank 
than other models (in blue color). Among these 
models, the models with the structure of fTHorn, 
fVPDPRELES and fLTAL (in yellow color) have 
higher ranks according to P2. The likelihoods of 
the published models (blue asterisk) are all 
equal to zero, which represent that these pub-
lished models were never among the best 1% 
models.   
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rarely higher than 50% (Fig. 9b). W was the major driving factor for 63% 
of arid forests and for 57% arid grasslands. Similarly, the relative 
contribution of W was the largest for arid sites. CI and VPD, including 
CO2, were the respective major driving factors for 40% of tropical forest 
and for 100% of tropical grassland sites. The contributions of CI and 
VPD, including CO2, were the largest to tropical forests and tropical 
grasslands, respectively. However, light saturation effect was less 
observed compared with other factors for most sites. In particular, it 
only had a small contribution to arid grassland and polar sites. 

The pattern of environmental effects on LUE shown by model #1 was 
similar to the site-best models (Fig. S14). The biggest difference between 
them was in the tropical grasslands, CI was the major driving factor and 
had the largest contribution instead of VPD. Moreover, R2 between the 
fT, fVPD, fW, fL and fCI derived from the global best model and site-best 
models was above 0.7 at 73%, 66%, 56%, 87% and 93% sites. Thus, the 
global best model could generally reflect the local responses of LUE to 

the environmental factors. 
The pattern of environmental effects on modeled LUE was however 

not consistent with the correlations between environmental factors and 
GPPobs or LUEobs. The factor that correlated most strongly with GPPobs 
for most climate-types was APAR instead of T or CI (Fig. S15a). W and T 
were also strongly correlated with GPPobs in arid sites and tropical sites, 
and in temperate and cold sites, respectively. The same was observed in 
the average R2 between environmental factors and GPPobs (Fig. S15b). 
By contrast, CI was correlated most strongly with LUEobs (Fig. S15c) at 
cold sites. The average R between CI and LUEobs was also the largest in 
cold sites (Fig. S15d). Nevertheless, the correlation of T with LUEobs was 
extremely low compared with its correlation to GPPobs. Thus, GPP was 
more correlated with APAR, whereas LUE was more correlated with CI. 
Correlations alone could not reflect the dominant controls of the 
different environmental conditions on GPP or LUE. The delayed effects 
of T and W variations in cold and arid sites could not be captured using 

Fig. 5. Ranks of all the LUE models sorted based on site-sampling method for all sites (‘All’) and different climate-vegetation types (arid forest=’AridF’, arid 
grassland=’AridG’, boreal forest=’BorealF’, boreal grassland=BorealG, polar vegetation=’Polar’, temperate forest=’TemperateF’, temperate grass-
land=’TemperateG’, tropical forest=’TropicalF’ and tropical grassland=’TropicalG’). P1(a-j) represents a local goodness for each site-year, and P2 (k-t) corresponds 
to global goodness across all site-years that belong to corresponding climate-vegetation types. The yellow line with asterisk refers to the model with the highest sum 
of ranks for all sites and different climate-vegetation types, which is the global best model selected based on site-sampling method. The other models are in blue. 
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the correlation of instantaneous variables. 

3.5. Dominant controls under extreme conditions 

Intuitively, under extreme conditions of a given environmental fac-
tor, LUE should be dominated by such a factor. For example, when T was 
below the 10th percentile, it was the major driving factor for most sites 
and had the largest relative contribution compared with other factors 
except in arid forests and tropical vegetation (the sixth row in Fig. 10). 
Similarly, once W is below the 10th percentile, it could also directly 
affect the arid vegetation and tropical grassland (the fourth rows in 
Fig. 10a and b). 

However, we see that LUE variability could be dominated by an 
environmental factor that is not under extreme conditions co-occuring 
when another factor is under extreme conditions. While APAR was 
above the 90th percentile (the third rows in Fig. 10a-i), light saturation 
was the major driving factor of LUE at some arid forests, boreal vege-
tation, temperate vegetation and tropical vegetation sites. However, the 
relative contribution of T, VPD, W or CI was often larger. In contrast, CI 
was the major driving factor and gave the largest contribution to the 
boreal forest and temperate forest sites (the fifth columns in Fig. 10c and 
f) when one of the other factors was under extreme conditions (T≥90th 

percentile, VPD≥90th percentile, W≤10th percentile, APAR≥90th 

percentile, or CI≤10th percentile). In the arid sites, W was always the 
major driving factor and had the largest contribution. 

When the environmental factors were all under extreme conditions 
simultaneously, which refers to T, VPD, APAR were above the 90th 

percentile and CI was below the 10th percentile, the major driving factor 
was T for most sites (‘Co-occur’ in Fig. 10). However, the relative 
contribution of W in arid vegetation and CI in other climate-vegetation 
types were generally more considerable than T. Moreover, a similar 
pattern could be observed from the site-best models (Fig. S16), which 
demonstrated the robustness of the above spatial pattern of these envi-
ronmental effects on LUE. 

4. Discussion 

Through a comprehensive comparison between various combina-
tions of environmental factors and their sensitivity functions, our results 
support the initial hypothesis that global ecosystem-level variations in 
GPP and LUE would respond to changes in T, VPD, W, L, CI, and CO2. 
These environment-sensitivity functions reflect underlying mechanisms 
of the responses of GPP to these factors (Section 4.1). The robustness and 
uncertainties of the selected model and environment-sensitivity func-
tions that might affect the derived environment effects are discussed in 
Section 4.2. A general evaluation of the proposed approach and its 
utility for data-driven global GPP estimation is presented in Section 4.3. 

4.1. Responses of gross primary productivity to environmental factors 

The initial hypothesis was that the responses of GPP to T, VPD, W, L, 
CI, and CO2 were all significant and nonlinear even though the variables 
are correlated to some extent both temporally and spatially. The un-
derlying mechanisms of such responses are discussed in Sections 4.1.1- 
4.1.4. 

4.1.1. Temperature 
Given certain light, photosynthetic capacity can be facilitated by 

increasing T but reduced when T exceeds a certain optimum (Bernacchi 
et al., 2003). The limitation of high temperature on GPP is related to 
high VPD and low W (Fu et al., 2020; Sims and Bradford, 2001). How-
ever, a bell-shaped function (e.g., fTHorn) can better represent the global 
response of GPP to T than a sigmoidal or linearly peaked function, 
reflecting that the reduction in GPP at high temperatures cannot be 
completely compensated by considering other limitations (e.g., high 
VPD or low W) in an LUE model (Bernacchi et al., 2003; Potter et al., 
1993; Xiao et al., 2004). The response of LUE to T can be adequately 
represented by a linearly peaked function, fTMOD17, in only arid areas 
(Fig. S10f), because other limiting factors (e.g., low W) dominate in hot 
climates (Fig. 10a and b; Guo et al., 2015; Zhang et al., 2017a). Hence, 
considering only a positive response of GPP and LUE to T can lead to 
underestimation of the sensitivity of GPP to high temperature even if 
combined with the other factors (Horn and Schulz, 2011a; Hwang et al., 
2008; Turner et al., 2006b). 

A more flexible fT, which can be either a peaked or bell-shaped 
function (e.g., fTCASA), cannot represent the global response of GPP to 
T due to lack of a lag function for T in boreal and temperate climates. 
The lagged T effect on GPP and LUE has been observed (Pelkonen and 
Hari, 1980) and attributed to the incomplete recovery of reduced 
photosynthesis capacity in needleleaves as a result of damage caused by 
low winter temperature (Bergh et al., 1998; Tanja et al., 2003; Yang 
et al., 2020), thawing of frozen soil (Jarvis and Linder, 2000), and 
occurrence of night frosts in spring (Bergh and Linder, 1999). Our results 
demonstrate that a lagged T effect is non-negligible for coniferous 
(Mäkelä et al., 2004) and deciduous forests (Jarvis et al., 2004) in boreal 
and temperate climate (i.e., cold ecosystems; Horn and Schulz, 2011a). 
The effect indicated by the lag parameter of fTHorn in the global best 
model follows Mäkelä et al’s (2008) study instead of Horn et al’s study 
(2011). Polar and boreal vegetation showed an apparent delayed 
response, whereas vegetation from a temperate climate reacted faster to 
T changes (Fig. S17a), possibly due to a warmer spring and different 
plant species (Yang et al., 2020). Although the frost-induced reduction 
in photosynthesis capacity also happens during autumn (Bergh et al., 
1998; Hollinger et al., 1999), which was not considered in this study, the 
loss of GPP due to severe autumn frosts is not as considerable as in spring 
(Bergh et al., 1998; Liu et al., 2018). 

4.1.2. Vapor pressure deficit and soil water supply 
Vegetation responds to both VPD and W limitations by controlling 

stomatal closure to reduce water loss, and avoid critically negative 
xylem water potentials and embolism. Across the models, in general, it is 

Fig. 6. Scatter of GPP estimated using EC data (GPPobs) against GPP simulated 
by the global best LUE model (GPPopt). The scatter color from black to yellow 
represents the scatter density (from large to small), which is related to the 
magnitude of GPP. NSE, nRMSE, and R2 denotes the Nash-Sutcliffe model ef-
ficiency, root mean square error normalized by average GPPobs, and coefficient 
of determination calculated using all GPP modeled by the good quality data. 
The blue line is a 1:1 line. 
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commonly considered as a single factor encompassing the effects of 
water availability (McCallum et al., 2013; Running et al., 2004; Wang 
et al., 2017a; Wang et al., 2015; Yan et al., 2017; Yuan et al., 2007). 
However, the responses of LUE or GPP to VPD and W are not simulta-
neous (see correlation matrix in Fig. S11) and depend on the isohydricity 
or anisohydricity of the vegetation (Roman et al., 2015; Tardieu and 
Simonneau, 1998). The soil water supply also affects the sensitivity of 
GPP to variations in VPD; e.g., a well-watered plant can endure higher 
VPD before closing stomata, whereas a drought-stressed plant are shown 
to close stomata earlier (Tardieu and Simonneau, 1998). Our results 
demonstrate that both W and VPD effects should be considered, which 
agrees with some other (Bagnara et al., 2015; Mäkelä et al., 2006; 
Mäkelä et al., 2008; Stocker et al., 2020; Turner et al., 2006a; Wang 
et al., 2018) studies (Bagnara et al., 2015; Mäkelä et al., 2008; Stocker 
et al., 2020; Turner et al., 2006a; Wang et al., 2018). 

Increasing VPD reduced LUE with changing sensitivity, thus the 
nonlinear functions (e.g., fVPDHorn, fVPDTAL, and fVPDWang) performed 
better than a linear one (e.g., fVPDMOD17) for representing the response 
of LUE to VPD (Fig. 8). We observed that the VPD effect was lagged in 
arid climates, especially for grasslands (Fig. S17c), as the canopy has to 
redevelop green tissue after a dry period (Horn and Schulz, 2011a). 
Woody plants can typically extract water from deeper soils than grasses 
(Kulmatiski and Beard, 2013), resulting in different lags. VPD lags were 

nevertheless not as apparent as those for W (Fig. S17b), both of which 
could reflect the acclimation of plants to water stress (Flexas et al., 
2009), but could also reflect a too fast response of the modeled WAI to 
precipitation and ET, or a model limitation of not representing deeper 
water access (Dorigo et al., 2017). 

LUE responds to increasing W monotonically, but with a different 
sensitivity across sites. Thus, fWWAI with a fixed slope cannot represent 
the response of GPP to W at the global scale. LSWI is a better indicator 
than WAI for the vegetation-relevant moisture state of boreal vegetation, 
possibly due to its advantage of capturing instant variations in leaf water 
content (Chandrasekar et al., 2010). The lower likelihood of 
non-monotonic or decreasing fW, fWWeibull, reflects no constraints of 
high W on photosynthesis, which is opposite of expectations (e.g., 
Stocker et al., 2018). This might be due to lack of water-logged site-years 
on consecutive days in the current FLUXNET dataset. 

4.1.3. Light saturation and diffuse radiation 
Intense light is usually coupled with clear skies, high temperature, 

high atmospheric water demand (Fig. S11) and low soil water supply 
(Piao et al., 2020). Thus, any or a combination of these factors can 
obscure the effect of light saturation in a model, indicating possible ef-
fects of model over-parameterization in relation to the information 
given in the data (Ibrom et al., 2006). Moreover, the high correlation 

Fig. 7. Distribution of site NSE of the global best LUE model (LUEglo) and site-best LUE models (LUEloc) at daily (a), weekly (b), monthly (c) and annual scales (d).  
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between parameters of fL and fCI (R=-0.68, on average) indicates the 
temporal and spatial simultaneity between these two effects. The reason 
is that when CI is large, the same amount of light can be distributed 
across more leaves and light saturation of total canopy can be relaxed 
(Gu et al., 2002; Ibrom et al., 2006; Knohl and Baldocchi, 2008; 
Roderick et al., 2001). Due to the interactions between these factors, 
light saturation seems not as significant as other driving factors in the 
LUE models as it may be. Part of its influence may be mapped to pa-
rameters of other response functions and vice versa, especially on 
models with many functions and parameters. This phenomenon may 

reduce the predictability of the models. 
Intense light however had the strongest effect on GPP at high NDVI 

(Fig. S18), such as some sites in tropical forests (Propastin et al., 2012), 
temperate forests and temperate grasslands. Within the scope of having 
more climate-vegetation types in a global model, it is necessary to 
consider both effects of light saturation (Mäkelä et al., 2008; Medlyn, 
1998) and CI (Wang et al., 2018). To stand for the response of LUE to 
saturated light, an inverse function of APAR is appropriate since another 
study has derived a similar form (Ibrom et al., 2008). 

Increasing CI can improve LUE since it represents a larger ratio of 

Fig. 8. Likelihood of partial sensitivity functions, which is equal to its ratio among the best 1% models derived from P1 (a-e) and P2 (f-j). Two fTs (fTTAL and fTHorn) 
and one fW (fWHorn) include a lag effect in boreal and arid climate, and three fVPDs (fVPDPRELES, fVPDP, fVPDP0) include CO2 effect. 

Fig. 9. Environment sensitivities in the global best model across different climate-vegetation types: (a) site fraction of the major driving factor and (b) relative 
contribution of each environmental factor. T (orange) is temperature, VPD (sky blue) is vapor pressure deficit, W (dark blue) is soil water supply, L(yellow) is light 
saturation and CI (gray) is cloudiness index in both figures. ‘Major driving factor’ represents the environmental factor that has the strongest effect on LUE at site-level. 
‘Relative contribution’ is a measure of the contribution of an environmental factor to the total limitation on LUE at site-level and is averaged per climate- 
vegetation type. 
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diffuse radiation when total radiation does not change. However, the 
importance of CI cannot be identified in GPP due to the negative cor-
relation between CI and PAR, which might offset the positive effect of CI. 
However, a more flexible function, e.g., fCIHorn which can be mono-
tonically increasing, decreasing or bell-shaped function, cannot better 
represent the response of GPP to CI at the global scale. This indicates 
that a monotonic and positive relationship between LUE and CI across 
climate-vegetation types is the most appropriate, in contrast to Alton’s 
study (2008) but in agreement with other studies (Cheng et al., 2015; 
Gu et al., 2002). 

4.1.4. CO2 
As the fuel of photosynthesis, elevating CO2 concentration fertilizes 

GPP at a slow speed (Smith et al., 2016; Wenzel et al., 2016). CO2 
fertilization can be heterogeneous both temporally and spatially (Liu 
et al., 2016). Although the effect was not considered in most LUE 
models, our results reflect the advantages of including a CO2 effect in an 
LUE model. It would translate into a further larger spectrum of LUE 

applications considering the large increase in atmospheric CO2 in the 
last few decades. 

Since the degree of the CO2 fertilization is related to VPD, which 
affects stomata closure and gas exchange, whether an LUE model can 
capture the CO2 effect depends on the function form of fVPD. Model 
performance can be restricted if the function is inappropriate (e.g., 
fVPDP is not as good as fVPDPRELES), and the modeled responses to 
elevated CO2 could be divergent (Haverd et al., 2018; Smith et al., 
2016). 

Furthermore, using a spatially varying CO2 forcing in an LUE model 
(Sun et al., 2018; Worden et al., 2021) can be worthy for exploring the 
effect of CO2 fertilization on the spatial variability of GPP. 

4.2. Model robustness and uncertainties 

In the following section, we will discuss model robustness tested 
using various model selection methods, groups of randomly selected 
sites, and model assessing metrics (Section 4.2.1), possible uncertainties 

Fig. 10. Environment sensitivities of LUE in the global best model under extreme conditions across different climate-vegetation types: site fraction of each ‘major 
driving factor’ (indicated by the size of the squares) and ‘relative contribution’ of each environmental factor (indicated by the color of the squares). X-axis represents 
the environmental factors: temperature (T), vapor pressure deficit (VPD), soil water supply (W), light saturation (L), cloudiness (CI). ‘Co-occur’ represents the 
environmental condition at site-level when T≥90th percentile, VPD≥90th percentile, W≤10th percentile, APAR≥90th percentile, and CI≤10th percentile. There are no 
‘Co-occur’ points at tropical sites (h and i). CI≤P10, APAR≥P90, W≤P10, VPD≥P90, T≤P10 and T≥P90 represent the environmental conditions that CI≤10th 

percentile (clear skies), APAR≥90th percentile (intense light), W≤10th percentile (low soil water availability), VPD≥90th percentile (high atmospheric water de-
mand), T≤10th percentile (low temperature), and T≥90th percentile (high temperature), respectively. The larger a square is, the more sites at which an environmental 
factor has the strongest effect on LUE. The more bright (yellow and red color) a square is, the larger the relative contribution of an environmental factor to the total 
limitation on LUE is. For example, W is the major driving factor of LUE and has the largest relative contribution when CI≤P10 in arid forests (a). 
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of the selected model resulting from model parameter estimation, model 
structure (Section 4.2.2), observational data (Section 4.2.3), and other 
potential drivers (Section 4.2.4). 

4.2.1. Model selection methods, sites, and model assessing metrics 
Model assessments are usually sensitive to the model selection 

methods, the given data information and the assessment metrics 
(Burnham and Anderson, 2002; Burnham et al., 2011; Efron, 2014). For 
example, VPM model has different performances in Zhang et al. (2017b) 
(global R2=0.74 and RMSE= 2.08 gC‧m− 2‧d− 1, 113 sites) and in Yuan 
et al. (2014) (spatial R2=0.44, 157 sites). In our study, the best model 
varied with selection methods and the bootstrapped sites (represented 
by site-years) but not with the assessment metrics or thresholds to 
identify the best models. The ranks of the best 20 models are more 
sensitive to sites and site-years (variance in ranking =134) than model 
selection methods (variance in ranking = 96), highlighting the impor-
tance of the bootstrap approach in selecting a robust model across sites, 
thereby, on a global scale. The best model selected here using two 
assessment metrics, six thresholds and three independent model selec-
tion methods, was among the best 1% models of 77% of different 
site-years groups (200 random groups in total) and among the best 10% 
models of 100% of different site-years groups. Furthermore, it was not 
statistically different from any other model ranked at the first place in 
any site-years group using KS test (significance level = 0.05) at daily and 
weekly scales. Thus, the selected model and partial sensitivity functions 
are robust for the current FLUXNET dataset. 

4.2.2. Model parameters and structures 
Another source of model uncertainty is its parameters. To avoid the 

selection of local optima in parameter calibration, we used a stochastic 
and derivative-free evolutionary global-search algorithm (Hansen and 
Kern, 2004). Multiple optimized parameter vectors were considered 
both in site-sampling-based and ABC-based model selection so that a 
robust model that is insensitive to different parameter vectors could be 
selected (Toni and Stumpf, 2010). However, it is possible to find un-
certain parameters due to the functional form, correlations among 
driving factors (Fig. S11) and among parameters (see Section 4.1.3). An 
experiment of parameter prediction using site-specific biotic and abiotic 
properties (Section S1) showed large biases in parameter prediction. The 
parameter extrapolation in an area without EC measurement could be 
therefore problematic. Nevertheless, it was reported that the parameters 
of Horn’s model could be extrapolated using the site-specific properties 
(Horn and Schulz, 2011b). Site-averaged fT and fW, the least correlated 
environmental factors and sensitivity functions (Fig. S11) among all 
others, could also be predicted (Fig. S19), demonstrating that the pattern 
of GPP response to these environmental factors is controlled by the 
biophysical and environmental characteristics and emphasizing the 
importance of reducing parameter correlation. 

The global best model selected in this study has the lowest uncer-
tainty in the application at the global scale if neglecting the uncertainty 
from parameters. At the local scale or site-specific scale, the biome-best 
model or site-best model might have a lower uncertainty than the global 
best model. Besides, the model uncertainty can come from the model 
structure that combines partial environmental sensitivity functions. For 
example, according to Liebig’s law, partial sensitivity functions can be 
combined in a minimal form (Minunno et al., 2015; Tian et al., 2020; 
Yuan et al., 2007). They can also be combined in a summed (Horn and 
Schulz, 2011a) or more complex mathematical form (McCallum et al., 
2013; Oliphant et al., 2011; Wang et al., 2017a). Furthermore, whether a 
two-leaf model structure (He et al., 2013; Yan et al., 2017), splitting 
absorbed light into sunlit and shaded portions, can represent the effect 
of diffuse radiation on GPP better than big-leaf model structure is still 
unknown. 

4.2.3. Eddy covariance and remote sensing data uncertainty 
In this study, model selection and analysis of environment 

sensitivities rely on the assessment using EC data. Although the quality 
control variables can filter for good data quality, systematic and random 
errors due to filtering methods remain in EC measurements (Aubinet 
et al., 2012), thereby influencing the training and evaluation of models 
(Jung et al., 2020). Furthermore, the partitioning method of fluxes 
causes data uncertainties. On the one hand, the estimation algorithm of 
GPP from NEE still needs to improve. For example, nocturnal estimates 
of ecosystem respiration neglect the inhibition of respiration by plants 
during daytime (Keenan et al., 2019), thus creating error and uncer-
tainty in GPP (Reichstein et al., 2005). On the other hand, standard 
partitioning methods can produce physically unrealistic estimates of 
GPP under the influence of photodegradation in an arid region (Cleverly 
et al., 2016). We note that the LUE models, in general, can produce 
reasonable estimates of GPP in the absence of unbiased EC data. How-
ever, even at some sites where these biases are small at a daily scale, the 
errors can propagate to the annual scale, albeit only at a few sites. Thus, 
the evaluation of modeled interannual variability, trends, and magni-
tudes of annual GPP for the sites with these issues can be problematic. 
Moreover, the sparse distribution of EC towers globally creates gaps for 
some climate and vegetation types (Alton, 2020), thus affecting the 
applicability of our models in regions with extreme environmental 
conditions. 

The remote-sensing-derived vegetation index, NDVI, related to leaf 
chlorophyll content (Rouse et al., 1974; Zhang et al., 2018), was used in 
this study to represent FAPAR which has a linear relationship with NDVI 
(Myneni et al., 1997). Consequently, the calibrated εmax values can be 
smaller than using FAPAR since FAPAR was usually overestimated 
(Kanniah et al., 2009) but should have a similar spatial pattern with 
calibrated εmax using FAPAR (Horn and Schulz, 2011a). However, the 
mismatch between the footprints of remote sensing data and EC mea-
surements might result in a lack of representativeness for pixel data (i.e., 
remote sensing image pixel) relative to point data (i.e., EC tower), 
especially at an EC site with extremely fragmented landscape (Cescatti 
et al., 2012). Consequently, landscape heterogeneity might affect the 
reliability of the modeled environment-sensitivities in a few sites 
(Migliavacca et al., 2015). 

4.2.4. Other drivers of gross primary productivity 
It is known that stand age and slowly changing environmental factors 

(e.g., N deposition, CO2 fertilization, climate change and management) 
affect GPP responses to the local environment (He et al., 2012; Ma et al., 
2019; Medlyn, 1998). Given a long time series of data, this effect can be 
demonstrated by calibrating the model parameters for every year and 
analyzing the time series of their values (Wu et al., 2013; Wu et al., 
2012). In the FLUXNET dataset, there are several sites with long time 
series that exhibit long-term trends (Fernández-Martínez et al., 2017; 
Pilegaard and Ibrom, 2020). Some of this variability might be captured 
with partial sensitivity functions that include, e.g., the CO2 effect (Sec-
tion 4.1.4). With the increasing availability of long-term flux datasets 
(Baldocchi, 2020), similar studies might reveal ways to include these 
long-term dynamics in LUE models. 

4.3. General evaluation of the approach and prospects for future 
application 

We showed that a large variety of LUE models are currently being 
used. Many of those were developed from predecessors (e.g., He et al., 
2013; Wang et al., 2015). To our knowledge, this is the first study to 
evaluate the potential of all possible LUE modeling approaches, 
considering every combination of environmental factors and their par-
tial sensitivity functions, which resulted in testing 5600 different LUE 
models on their global and site-specific performances, and in consid-
ering various site groups in the model evaluation. 

The results confirmed that no single model can be used with the 
highest performance to simulate all sites and years, however, a global 
best model, model #1, performed surprisingly well in its robustness. The 
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selected model constituted a not as yet published model structure, which 
confirmed both our initial hypothesis and the usefulness of a systematic 
model development and benchmarking approach as presented in this 
study. Although LUE models do not present a full physiological or 
ecological description of GPP responses, model #1 reflects a represen-
tation required to explain the variability in the current FLUXNET data-
set. At the local scale or site-specific scale, a site-best model with specific 
features (i.e., the necessary environmental factors and the appropriate 
sensitivity functions) might be more effective but underperform at other 
sites where such features may be redundant while others may be 
missing. At the global scale, model #1 captures the features that are 
essential across various ecosystems, suggesting that model #1 could be a 
reference for future model selection towards a robust global GPP 
estimation. 

A global, or regional, application of model #1 requires necessarily a 
larger scale availability of forcing data and understanding of changes in 
model parameters, as in any other semi-empirical or mechanistic 
modeling approach. The global best LUE model has the potential to be 
applied both globally and regionally since the forcing data are available 
at various spatial scales (e.g., CRUNCEP; Viovy, 2018a). However, 
model parameters are unknown for locations without observational 
data, which requires assumptions on factors controlling its variability, 
such as plant functional type (Running et al., 2004), or in addition 
vegetation properties and climatic conditions (Carvalhais et al., 2010b), 
or assuming a single parameter set optimized across all sites (Yuan et al., 
2007). Parameter extrapolation is an underlying challenge for LUE 
models, and for all other kinds of parametric approaches, from empirical 
to mechanistic models (Luo and Schuur, 2020). As such, to apply the 
best model, or any other model developed locally, at global scales, de-
mands parameter extrapolation approaches to be further studied. 

5. Conclusion 

To identify the environmental drivers of GPP and the appropriate 
partial sensitivity functions, our study focused on a comprehensive and 
exhaustive assessment of an ensemble (n=5600) of previously reported 
and new LUE models based on a bootstrap approach using 196 eddy 
covariance CO2 flux sites. A robust model with good performance at the 
global scale and across various climate-vegetation types, which has not 
been published before, was selected. Our results demonstrated that the 
responses of GPP to temperature, VPD, soil water supply, light satura-
tion, cloudiness and CO2 are all significant and mostly nonlinear. The 
effects of temperature and soil water supply on GPP are lagged in cold 
and arid regions, respectively, due to the recovery of photosynthetic 
capacity. According to the selected model, temperature and soil 

moisture are the dominant factors in cold and arid environments, 
respectively. The effects of cloudiness index and light saturation are 
observed across various ecosystems. 

Our study confirms that the light saturation, diffuse fraction, and 
CO2 fertilization, which are usually ignored in global empirical models, 
should be considered for the estimation of GPP at the global scale. In 
addition, non-arid regions reveal a nonlinear and bell-shaped response 
of GPP to temperature while cold and arid ecosystems show lagged ef-
fects of temperature and soil moisture on GPP. The future use of the best 
model at global scales, necessarily entails further studies on the 
extrapolation of model parameters. For a justified evaluation and cali-
bration of both mechanistic and data-driven models, the recommenda-
tion from this study is to consider the representativeness of the 
observational data across various ecosystems and the equifinality be-
tween model structures and parameters. 
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Appendix A. Water availability indicator 

We calculated water availability indicator (WAI, in mm) to represent soil water supply conditions (Tramontana et al., 2016). It assumes the soil 
water storage as a single bucket, and the precipitation (or melted snow) and ET are the only influx and outflux. The ET, called ETsim, is estimated from 
PET, or a water decay velocity multiplies with the water deficit (i.e., bucket size minus WAI at last time step) if it is smaller than PET. The bucket size 
and the water decay velocity are controlled by available water content (AWC, in mm) and a decay coefficient for ET (θ), and vary across ecosystems 
(Boese et al., 2019). We assume these two parameters were different at each site, relative to the soil properties and climate condition. Thus, these two 
parameters were calibrated by constraining the errors in ETsim (see Appendix D). Furthermore, we compared different approaches to calibrate WAI 
parameters, which denote fixing them, calibrating them independently or jointly with LUE model parameters, to find the best approach that has the 
most good-performance LUE models (Appendix C). According to the comparison result, we calibrated AWC and θ jointly with LUE model parameters, 
εmax and parameters of fX. 
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Appendix B. Data screening strategy 

We screened the data quality used in the cost functions and model assessment. We defined the criteria that the climate data (PAR, T, VPD, W and 
CI) was bad-quality if the corresponding quality flag (QA), acquired from FLUXNET dataset, was smaller than 0.80. If the forcing data was estimated 
from observational data, we used the QA of the observational data instead (e.g., use QA of Rg for PAR, minimum QA of Precip, T and Rn for W). We 
regarded the remote sensing data as bad-quality if the average quality flags (QC) of the 4 pixels around the EC sites, acquired from MCD43A2, were 
smaller than 0.5. In the cost functions (see Appendix D), we excluded all the bad quality data, the filled data (see gap-filling method in Table 2) and the 
data violates the corresponding variable definition (i.e., GPP<0) or makes the cost function infinite (i.e., σNEE<0.02 or σLE<0.02). Besides, we 
removed the site-years without LE observations and sites with less than 160 effective points that meet the above quality screening criteria. We defined 
the data used in the cost functions as good-quality data. 

We also set different criteria in model assessment at different time scales. At a daily scale, we calculated the statistics only using the good-quality 
data. At the weekly and monthly scale, we calculated the weekly or monthly QA based on the average minimum of the daily QA and QC of all the 
forcing data. If GPP or ET at a daily scale is a filled value, or GPP<0, QA at weekly and monthly was set to zero. We only used the data that weekly or 
monthly QA was larger than 0.70 in more than four weeks or months. At the annual scale, we only considered the data that the average QA of GPP was 
larger than 0.5 and the effective observation period was longer than 4 years (136 sites in total). 

Appendix C. Comparison of WAI parameters calibration 

The WAI parameters, controlling the simulated water availability dynamics in our study, affect the model result. Here we set six experiments (see 
descriptions in Table S3) to assess the best approach for calibrating WAI parameters: optimize WAI parameters jointly with LUE model parameters 
(‘Full’); fix WAI parameters but optimize LUE model parameters (‘Fix’); optimize WAI parameters and LUE model parameters individually (‘IDP’) 
under all conditions; the same three optimizing approaches under the supply-limited condition (‘Sup’, ‘SupFix’ and ‘SupIDP’) which is defined by 
ET<PET. In these experiments, we applied the trust-region-reflective algorithm (Moré and Sorensen, 1983), a nonlinear least squares solver integrated 
into the optimization toolbox of MATLAB R2019a, to search the optimal parameters. Then we assessed the model fitness using the site NSE (NSEi), 
global NSE (NSEg) and spatial NSE (NSEsp) at daily, weekly, monthly and annual scales defined in Section 2.4. As our study aimed to find the best 
model, we selected the calibration approach according to the number of good-performance (global NSE>=0.75) models. 

The result showed that the ‘Sup’ had the most good-performance models (256 models) at a daily scale, and the ‘Full’ had the most good- 
performance models (849, 1210, and 1922 models) at weekly, monthly and annual scales (Fig. S2). The largest global NSE of the ‘Full’ (0.78, 
0.81, 0.85 and 0.87) and the ‘Sup’ (0.78, 0.82, 0.85, and 0.87) were all greater than the ‘Fix’, ‘SupFix’, ‘IDP’ and ‘SupIDP’ at daily, weekly, monthly 
and annual scales. However, the site NSE of the best-performance model in ‘Full’ was not different from the best model in ‘Sup’ significantly according 
to the Kolmogorov–Smirnov (KS) hypothesis test with a significance level of 0.05. Since the ‘Full’ had the most good-performance models at more time 
scales than the others, we adopt it as the best approach for calibrating WAI parameters. In other words, we optimized the WAI parameters jointly with 
LUE model parameters to calibrate the LUE models. 

Appendix D. Cost functions 

We define the cost function (cf) as the sum of the GPP errors (cf1, equation D.2), the ET errors (cf2, equation D.3), and the fX constraints (cf3 and 
cf4). 

cf = cf1 + cf2 + (cf3 + cf4) (D.1)  

cf1 =
∑Nt

t=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

GPPt − ĜPPt

)2
⋅ σNEEt

− 2

√

(D.2)  

cf2 =
∑Nt

t=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

ETt − ÊTt

)2
⋅σLEt

− 2

√

(D.3) 

Here, we compared GPPobs (GPP) and ETobs (ET), against simulated GPP using the calibrated LUE models (ĜPP) and ETsim (defined in S1; ÊT), 
respectively. t represents the time step of GPP and ET, ranging from 1 to the total days (Nt). Due to the uncertainties in observation and estimation and 
the different units of GPP and ET, we weighted the squared differences between GPP and ĜPP, ET and ÊT using the estimated uncertainty of GPP (σNEE) 
and ET (σLE), respectively. The parameter vector that minimizes the sum of cf1 and cf2 is the best for the LUE model and WAI, respectively. 

We follow the concept of ecological and dynamic constraints (EDC, by Bloom and Williams, 2015) to regularize the inversion approach via two 
additional constraints: cf3 (equation D.4) and cf4 (equation D.5). 

cf3 = ((1 − max(f Tr)) + (1 − max(f VPDr)) + (1 − max(f Wr)) + (1 − max(f Lr)))⋅c (D.4)  

cf4 =

(
∑

r

(
f Tr(T< 0∘C) > θf T

)
+
∑

r

(
f VPDr(VPD> 2kPa) > θf VPD

)
+
∑

r

(
f Wr(W< 0.01) > θf W

)
)

⋅c (D.5) 

These impose constraints on the simulated fX based on two assumptions: the instantaneous ε of vegetation can reach its potential, εmax, under some 
specific environmental condition (cf3) and is inhibited under a non-ideal growing condition (cf4). These two cost functions were calculated inde-
pendently from cf1 and cf2, using an artificial input (PAR=0-20 MJ‧m− 2‧day− 1, FAPAR=0-1, T=-10-40◦C, VPD=0-2 kPa, W=0-1 and CI=0-1). cf3 is to 
set the maximum of fT, fVPD, fW, and fL (≤1, see Fig. 2 and Section 2.1) to one, which implies that the corresponding environmental factor does not 
limit ε at a certain point within the given ranges of PAR∈ [0,20] (in MJ‧m− 2‧day− 1), FAPAR∈[0,1], T∈[-10,40] (in◦C), VPD∈[0,2] (in kPa), W∈[0,1] 
and CI∈[0,1], represented by r in equations D.4-D.5 (e.g., max(fTr) represents the maximum fT when temperature is ranging between -10 and 40◦C). 

The constraint of cf3 was not applied on fCICFlux, fVPDP, and fVPDP0 and applied in a different way on fVPDPRELES, since they can be larger than one 
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in theory. The fVPDs include the effect of CO2 variations, which can have fertilization on GPP (Haverd et al., 2018) and increase εmax. The increasing 
CI can also enhance εmax (Wang et al., 2015), but the range of fCI can be different depending on the assumption about εmax. Here, the fCICFlux is larger 
than one, assuming εmax is the maximum LUE under all sky conditions and the other fCIs are smaller than one, assuming εmax is the maximum LUE 
under totally diffuse radiation condition (see equations in Table 1). Furthermore, we separated fVPDPRELES into fVPD and fCO2 parts (*1 and *2 in 
Table 1) and only restricted the fVPD part using cf3. 

Another constraint, cf4, is to guarantee the fT, fVPD, and fW smaller than a threshold (θfT, θfVPD, and θfW) under a non-ideal condition (T<0◦C, 
VPD>2 kPa, or W<0.01). Here the thresholds (θfT=0.2, θfVPD=0.9, and θfW=0.2) were estimated according to the normalized ratio of GPP to APAR at 
all sites. The other non-ideal conditions were not included since they vary across sites. The c in equations D.4-D.5 denotes a penalty term (=104, an 
empirical value) to coordinate the scales of cf1, cf2, cf3, and cf4. 

Appendix E. Parameter uncertainty estimation 

We calculated the standard errors and correlation coefficient of the optimized parameters based on the Jacobian matrix of cost function against 
parameters (Omlin and Reichert, 1999) of each model at each site. We normalized the standard errors by the optimized parameters to unify the units of 
different parameters. If the optimized parameter approximates zero, the normalized standard error is equal to the original standard error. We also 
calculated the spatial correlation coefficient between the parameters across sites. We utilized the normalized standard error to measure the parameter 
uncertainties used in Section S1. 

Appendix F. Model selection using the pair-wise hypothesis test 

The two-sample Kolmogorov–Smirnov (KS) hypothesis test (Lilliefors, 1967) is a non-parametric test commonly used to compare two samples. It 
compares the empirical cumulative distribution functions of two samples and tests if they differ (two-tailed) or one is larger than the other (one-tailed) 
at a significance level. Therefore, it is sensitive to the differences in both shape and location of the cumulative distribution functions. Here we adopt 
the test to compare every pair of the LUE models based on their site NSE at different time scales. We sorted the models according to the workflow as 
below.   

Requirement: ModelSet = all the LUE models 
ParSet = one optimized parameter vector for each LUE model at each site 
SiteSet = all the EC sites 
Initialization: set total model number Nm=5600, total site number Ns0=196 
For time scale ts=daily, weekly, monthly, annual scale 
For m = 1 to Nm 
For m2 = 1 to Nm 
If m ∕= m2 
For i = 1 to Ns0 

Simulate GPP using model m and m2 (ĜPPm,i,ts and ĜPPm2 ,i,ts)  

Store GPP in a global dataset across sites (ĜPPm,ts).  
Estimate model fitness at site-level, NSE, of m and m2 (mef1,i and mef2,i) 
End For 
Compare NSE vector of m and m2 (mef1 and mef2): test two hypothesis H1 (mef1< mef2) and H2 (mef1> mef2) 
Store larger times of m1: 

Lm,m2 ,ts =

⎧
⎨

⎩

1, if H1is rejected and H2 is accepted
0, if H1 is rejected and H2 is rejected
− 1, if H1is accepted and H2 is rejected  

Calculate global NSE and spatial NSE of m (NSEg,m and NSEsp,m, as defined in Section 2.4) 
End If 
End For 
Calculate the frequency of m larger than the other models: 
Lm,ts =

∑Nm
m=1,m∕=m2

Lm,m2 ,ts/Nm  

End For 
End For 
Calculate the average frequency of m larger than the other models at different time scales 
Lm =

∑

ts
Lm,ts/4  

Get the rank Rm of m according to Lm, NSEg,m and NSEsp,m  

All the LUE models were sorted according to Rm (Fig. S5). The percentages of Lm,m2 ,ts is positive (red color) and is negative (blue color) represent the 
goodness and weakness of m, respectively. On the other hand, the blank area stands for the percentage of models equal to m. The KS test showed that 
the best model has the structure of fTHorn, fVPDPRELES, fWCFlux, fLTAL and fCIWang (site NSE medians were 0.72, 0.78, 0.81, 0.25 at daily, weekly, 
monthly and annual scales). The global best model, model #1, was the 13th best model according to Rm, which is not different from the best model 
significantly at daily, weekly, monthly scales but slightly worse at the annual scale (site NSE medians were 0.73, 0.79, 0.82, 0.22 at daily, weekly, 
monthly and annual scales). 

Appendix G. Model selection using approximate Bayesian computation scheme 

The approximate Bayesian computation (ABC) scheme (Beaumont et al., 2002) refers to an evolutionary algorithm successfully used for parameter 
estimation and model selection (Toni and Stumpf, 2010; Toni et al., 2009). ABC randomly sample the models and parameter vectors from the whole 
model and parameter spaces and screen them by rejecting the poor models or models with improper parameter vectors according to their posterior 
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distribution of the model fitness. The model that survives has the best performance and the most applicable parameter vectors. 
To select a robust model that is insensitive to different parameter vectors, we collected the optimized parameter vectors of each model at each site 

in 10% of the first half (using a uniform sampling with a step of 10) and 100% of the last half iterations of the parameter searching process (5.5*104 

parameter vectors in total). Notwithstanding that a generic algorithm can be used to cut down the time, searching the best model and parameter vector 
in a whole parameter space of 5600 models at 196 sites is not practical. For this reason, we randomly select 5000 parameter vectors for each model at 
each site using the normalized reciprocal of cf (defined in Appendix D) as a weight. A model with a set of parameter vectors for all sites was regarded as 
a particle. All the particles (5600*5000) were compared simultaneously using a model distance (d) compared to a genetic threshold (θ). The models 
with the parameter vector that meet the threshold in the last iteration were selected as the best models. The workflow of ABC method is defined below.   

Requirement: ModelSet = all the LUE models; 
ParSet = 5000 optimized parameter vectors for each LUE model at each site; 
SiteSet = all the EC sites; 
Initialization: set total model number Nm=5600, total parameter vector number Np=5000, total site bootstrap times Nitr 
=10, bootstrap site number Ns=150, total threshold update times Nθ=20, set site bootstrap time l=l 

While 1≤ l ≤Nitr 
For n = 1 to Nθ 
For m = 1 to Nm 
For k = 1 to Np 
For j = 1 to Ns 

Simulate GPP (ĜPPj,m,k) using model m and parameter vector Parm,k  

For time scale ts=daily, weekly, monthly, annual scale 
Aggregate simulated GPP and observed GPP to time scale ts (ĜPPj,m,k,ts and GPPj,m,k,ts)  
Estimate model fitness at site j, NSE, of m (mef j,m,k,ts) 
End For 
End For 
Divide NSE vector mefm,k,tsinto twelve bins (-∞ - -1.0, -1.0-0.0, 0.0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 

0.7-0.8, 0.8-0.9, 0.9-1.0) and statistic the counts of site NSE in each bins (Nb) 
Calculate the cumulative sum of normalized Nb (Cumb) and distance of model m (dm,k,ts), which is used to reject a particle 

(a model with a parameter vector). 
Cumb =

∑12
b=1(Nb /Ns + Cumb− 1)

Cum1 = N1/Ns  

dm,k,ts =
∑12

b=1Cumb  

End For 
End For 
Update threshold θl,ts,n, where θl,ts,1 is the 10th percentile of distance vector, dm,k,ts and θl,ts,20 is the minimum in dm,k,ts 
θl,ts,n = n⋅(θl,ts,1 − θl,ts,20)/Nθ  

Compare dm,k,ts with θl,ts and calculate model weight 

wm,k,ts,l,n =

{
1, if di,k,ts ≤ θl,ts,n
0, if di,k,ts > θl,ts,n  

wm,l,n =
∑

ts
(
∑Np

k=1wm,k,ts,l,n /Np)/4  

End For 
Calculate the average model likelihood 
Pm,l =

∑20
n=16wm,l,n/5  

l=l+1, go to 3) 
Calculate the average likelihood of all the iterations, Pm, and derive the model rank Rm  

The top model sorted according to Rm (Fig. S6) was selected as the best model according to ABC, which has fTHorn, fVPDPRELES, fWHorn, fLTAL and 
fCIWang in the model structure (site NSE were 0.73, 0.78, 0.83 and 0.22 at daily, weekly, monthly and annual scales). Model #1 was the second-best 
model, which was not different from the best model according to ABC at daily, weekly, monthly and annual scales (KS test, significant level=0.05). 

Appendix H. Ancillary data 

We gathered the Plant Functional Type (PFT) classified according to IGBP global vegetation classification scheme from the site information 
published on the FLUXNET network websites and literature (Table S2). Then we classified the vegetation to the forest (=EBF, ENF, DBF, DNF, MF, 
WSA, OSH and CSH) or grassland (=GRA, CRO, WET and SAV) based on the PFT per site. We also extracted Koeppen-Geiger climate types (Clim) from 
the re-analyzed Koeppen-Geiger map (Rubel et al., 2017), which had the spatial resolution of five arc minutes, according to the nearest neighboring 
pixel. We determined the main climate type according to the first character of KG classification: tropical (=A), arid (=B), temperate (=C), boreal (=D), 
and polar (=E). Finally, we defined nine climate-vegetation types as tropical forest (TropicalF, five sites), tropical grassland (TropicalG, three sites), 
arid forest (AridF, eight sites), arid grassland (AridG, 14 sites), temperate forest (TemperateF, 63 sites), temperate grassland (TemperateG, 37 sites), 
boreal forest (BorealF, 41 sites), boreal grassland (BorealG, 20 sites) and polar vegetation (Polar, five sites). 

Moreover, we collected the site-specific biotic and abiotic traits from different sources. We calculated the nineteen bioclimatic variables (BIO1- 
BIO19 in Table S5) using CRUNCEP products based on the ANUCLIM algorithms (Xu and Hutchinson, 2013). Besides, we computed eleven bioclimatic 
vegetation indexes using enhanced vegetation index (EVI) according to the algorithms of the first eleven bioclimatic variables (VIF1-VIF11 in 
Table S5). We also collected the leaf dry matter content (LDMC), specific leaf area (SLA), leaf N and P concentrations (LNC and LPC) derived from 
remote sensing data (Moreno-Martínez et al., 2018) and soil properties (Table S6) of the surface soil (Hengl et al., 2017). We extracted the average 
total atmospheric nitrogen (NdepNHX and NdepNOY, in g∙m− 2∙yr− 1) and phosphorus deposition (Pdep, in g∙m− 2∙yr− 1) from a global estimation (Wang 
et al., 2017b) using the mean of three nearest inversed distance weighted pixels for each site. Furthermore, we estimated the annual aridity index 
(AIann) and monthly AI’s seasonality (AIseas) using mean annual Precip divided by mean annual PET, and standard deviation of mean monthly aridity 
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index (= mean monthly Precip divided by mean monthly PET) divided by its mean, respectively. 
Furthermore, we set another two plant types according to the PFT. The first was cropland, forest, grassland, savanna, shrubland and wetland (PT1). 

The second (PT) was equal to the PFT with a merged evergreen forest (=ENF and EBF), deciduous forest (=DNF and DBF), savanna (=WSA and SAV) 
and shrubland (=OSH and CSH). Based on all the above covariates and site-specific elevation (Table S2), we predicted the parameters and partial 
sensitivity functions using a random forest method (Section S1). 

Appendix I. Model assessment using machine learning models 

Another method to assess the LUE model was based on its distance to the machine learning model. The machine learning algorithms are non- 
parametric and more flexible for handling multi-dimensional data. Machine learning models should generally perform better because they can 
flexibly harvest the information in the forcing data, while the LUE models are constrained to their functional forms. We assume they can achieve either 
the same or the higher model fitness at each site. Accordingly, we simulate the GPP using the same forcing data based on the machine learning tool 
provided by simpleR (Lázaro-Gredilla et al., 2013), which includes ten different algorithms. We trained the ten learners using 70% of the good-quality 
data and assess the fitness using NSE at a daily scale. We only compared the machine learning models with the largest NSE per site (MLbest models) 
among the ten trained models per site with the site-best and global best LUE models. 

However, our results show that the site-best LUE models reached values close to the MLbest models at most sites (see Fig. S8). NSE values at only 50 
(in 196) sites were lower than the MLbest apparently (NSE difference larger than 0.2) at a daily scale. The global best LUE model underperformed 
slightly compared with the site-best LUE models. NSE values at 77 sites were apparently lower than the MLbest at a daily scale. At weekly and monthly 
scales, the NSE differences were even smaller. Notwithstanding, MLbest models were worse than LUE models at 72 (in 136) sites at annual scale (see the 
first bar in Fig. S8d). Furthermore, MLbest models have a considerable error in the period without good-quality forcing data for training (Fig. S9a and 
b), in contrast to the LUE models which did not have the same issue due to functional constraints. 
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