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ABSTRACT: Agriculture is a highly weather-dependent activity, and climatic conditions impact both directly crop growth

and indirectly diseases and pest developments causing yield losses.Weather forecasts are now amajor component of various

decision-support systems that assist farmers to optimize the positioning of crop protection treatments. However, properly

accounting for weather uncertainty in these systems still remains a challenge. In this paper, three global and regional

ensemble prediction systems (EPSs), covering different spatiotemporal scales, are coupled to a temperature-driven de-

velopmental model for grapevine moths in order to provide probabilistic forecasts of treatment dates. It is first shown that a

parametric postprocessing of the EPSs significantly improves the prediction of treatment dates. Anticipating the need for

phytosanitary treatments also requires seamless weather forecasts from the next hour to subseasonal time scales. An ap-

proach is presented to design seamless ensemble forecasts from the combination of the three EPSs used. The proposed

method is able to leverage the increased performance of high-resolution EPS at short ranges, while ensuring a smooth

transition toward larger-scale EPSs for longer ranges. The added value of this seamless integration on agronomic predic-

tions is, however, difficult to assess with the current experimental setup. Additional simulations over a larger number of

locations and years may be required.

KEYWORDS: Bias; Ensembles; Forecast verification/skill; Model output statistics; Agriculture; Decision support

1. Introduction

Numerical weather prediction (NWP) models are now

widely used for operational forecasting over a wide range of

spatiotemporal scales (Bauer et al. 2015). In addition, the in-

herent uncertainty of NWP forecasts has motivated the de-

velopment of probabilistic forecasting based on ensemble

prediction systems (EPSs) (Palmer 2019). Typically, a set of

perturbed forecasts is designed in order to account for the

different sources of error, regarding for instance initial condi-

tions and the model formulation. Originally developed for

global models (Molteni et al. 1996; Leutbecher and Palmer

2008), such systems have more recently become popular at the

convective scale for short ranges (Bouttier andRaynaud 2018a;

Hagelin et al. 2017). Several downstream applications also

started to use these probabilistic forecasts (Fundel et al. 2019),

including in particular agriculture (Christ et al. 2015), power

grid management (Pinson et al. 2009), aircraft routing

(Arbogast et al. 2015), hydrology (Bellier et al. 2017, 2018),

and wildfires (Worsnop et al. 2019).

In agriculture, pests develop according to weather condi-

tions (Moyer et al. 2016). Cropmanagement operations such as

applications of phytosanitary treatments are common practices

to control diseases and pests, but they need to be properly

positioned and applied according to some criteria that depend

on the development of the pest population (Cooke et al. 2006).

The precision in their positioning is even more important for

example for biocontrol solutions, which use living organisms to

prevent or reduce damages caused by pests, because of their

lower levels of efficiency (Shipp and Clarke 1999). For that

purpose, different decision support tools (DSTs) have been

developed to predict the evolution of pest dynamics and sup-

port farmers in their decision-making (Pertot et al. 2017). They

are complementary to field observations, and they provide an

opportunity to anticipate the situation and to access variables

that are difficult to observe. Most of these tools require skillful

extended-range weather forecasts, which are most of the time

given by deterministic models (Olatinwo et al. 2011, 2012).

Probabilistic forecasts could provide valuable additional in-

formation to support decision-making, and hence contribute

to a sustainable use of treatments through minimal and timely

applications.

However, raw ensemble weather forecasts may have sys-

tematic errors regarding bias and dispersion, which can have a

negative impact on the subsequent DSTs outputs. Several

statistical postprocessing methods have been proposed to re-

duce these errors, that basically aim at estimating a statistical

relationship between the observations and the predicted

probability distributions. Once this relationship is established,

it can be used to generate calibrated probabilistic forecasts

from ensemble outputs. Postprocessing methods can be di-

vided into two categories: parametric and nonparametric ap-

proaches. Parametric approaches are based on the assumption

that the calibrated predictive distribution of a weather variable

is given by a parametric density function, whose parameters
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depend on ensemble members and are fitted over a training

period (Gneiting 2014). Standard parametric approaches

include nonhomogenous regression (NR)/ensemble model

output statistics (EMOS) methods (Gneiting and Raftery

2005) and Bayesian model averaging (BMA) methods

(Raftery et al. 2005). On the other hand, nonparametric

methods remove any assumption on the variable distribu-

tion. One example is the quantile regression forest pro-

posed by Taillardat et al. (2019).

Calibrated ensemble members can be generated from the

postprocessed distributions, with a random or quantile sam-

pling for instance. However, since the calibration is performed

independently at each location and lead time, the spatiotem-

poral structure of ensemble members is lost. These depen-

dencies, which are crucial to many users, can be recovered with

copula methods (Schefzik 2011), that perform a reordering

of the sampled values based on a given dependence struc-

ture. For instance, the ensemble copula coupling (ECC)

approach (Schefzik et al. 2013) uses the rank structure of

the raw ensemble members, while the Schaake shuffle ap-

proach (Clark et al. 2004) uses the rank structure of past

observations.

As mentioned previously, DSTs rely on seamless weather

trajectories, from the next hour to several days ahead,

in order to make early decisions about crop protection

(Calanca et al. 2011). Seamless members can be obtained

from an extended-range EPS such as the ECMWF EPS

(Pappenberger et al. 2013), but it may also be interesting to

integrate higher-resolution EPSs available on shorter time

scales for a better representation of small-scale phenomena.

To the best of the authors’ knowledge, seamless probabi-

listic multisource forecasting is still an open question. In this

paper, the seamless combination of three EPSs with differ-

ent spatiotemporal scales will be considered as a simple

concatenation problem, which aims at matching short-range

forecasts from a fine-resolution EPS to coarse-resolution

forecasts from larger-scale EPSs. A similar approach was

adopted by Wetterhall and Di Giuseppe (2018) in order to

merge subseasonal to seasonal ECMWF ensemble forecasts

for hydrological applications. Seamless integration methods

should address two major challenges: ensuring smooth

transitions (i.e., without temporal discontinuities) between

the different EPSs considered, and providing enhanced

performances with respect to the reference ECMWFEPS, at

least at short ranges.

The goal of this paper is to examine the impacts of post-

processing and seamless EPS merging on both weather and

agronomic outputs. Standard EMOS and ECC methods are

used to generate calibrated distributions, while different

strategies for designing seamless ensemble forecasts are pro-

posed and evaluated in a univariate setting. The outline is as

follows. Section 2 describes the NWP models and the agro-

nomic use case, as well as the postprocessing and seamless

integration methods. Section 3 presents the characteristics and

performances of seamless calibrated ensemble forecasts on

2-m temperature, while the impact on agronomic outputs is

discussed in section 4. Finally, section 5 provides conclusions

and future works.

2. Material and methods

a. Ensemble weather forecasts

For the purpose of this work, three operational EPSs are

considered: the convective-scale AROME-EPS developed

at Météo-France, which covers a western Europe domain

(Raynaud and Bouttier 2016), the global French ARPEGE-

EPS (Descamps et al. 2015), and the global IFS-EPS of the

European Centre for Medium-Range Weather Forecasts

(ECMWF) (Palmer 2019). These models account for both

initial and model uncertainties, and the AROME-EPS uses

selected ARPEGE-EPS members as lateral boundary con-

ditions (Bouttier and Raynaud 2018b). The main charac-

teristics of these EPSs are given in Table 1.

b. Ensemble model output statistics

For postprocessing ensembleweather forecasts, theNR/EMOS

univariate statistical method is used. Let us denote y the weather

variable of interest and x1, . . . , xN theN forecasts corresponding to

theNmembers of a given EPS. The NR/EMOSmethod assumes

that the predictive distribution of y is a parametric density func-

tion p whose parameters depend on ensemble output statistics

(Gneiting and Raftery 2005):

Yjx
1
, . . . , x

N
; p(Yjx

1
, . . . , x

N
). (1)

The parameter of interest in this study is the 2-m temperature,

which is commonly postprocessed using a Gaussian distribu-

tion (Gneiting et al. 2005). Its mean m and variance s2 are

assumed affine functions of the ensemble mean x and the en-

semble variance s2, respectively:

m5a
0
1a

1
x, s2 5b2

0 1b2
1 s

2 ,

where coefficients a0, a1, b0, and b1 are estimated from pairs of

past raw forecasts-observations, by minimizing the mean con-

tinuous ranked probability score (CRPS) of the calibrated

distribution over a training period, as proposed by Gneiting

et al. (2005). In the remainder of the paper, the considered

training period is a sliding window of 60 days prior to the EPS

starting date (Hemri et al. 2014). The observations used are

2-m temperature measurements from the French real-time

weather observation network.

A finite N-sample of calibrated members ~x1, ~x2, . . . , ~xN is

then obtained by randomly sampling the postprocessed dis-

tribution at each lead time. These members are finally re-

ordered with the ECC matching procedure according to the

raw ensemble template (Schefzik et al. 2013). This step ensures

that the new trajectories present a realistic temporal consis-

tency across lead times. Spatial and multivariate dependencies

could also be addressed with the same approach; however, they

are not considered in this study since the agronomic use case

considered only requires univariate forecasts at independent

locations.

c. Seamless ensemble forecasts

In this section, a simple design of seamless ensemblemembers,

which performs a concatenation of the systems AROME-EPS,

ARPEGE-EPS, and IFS-EPS over different spatiotemporal
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scales, is described. Given the characteristics of these EPS, the

seamless forecasts are started at 0000 UTC and constructed

with the following pragmatic approach: the seamless ensemble

is composed of the 12 AROME-EPS members only over the

forecast period 0–48 h; for longer ranges each AROME-EPS

member is matched to an ARPEGE-EPS and/or IFS-EPS

member according to some assignment rules described below.

This configuration is motivated by the higher performance of

the AROME-EPS for its timeframe.

The simplest assignment is to randomly select, without repeti-

tion, members in the target sample, which contains members of

ARPEGE-EPS and IFS-EPS, similarly to (Wetterhall and Di

Giuseppe 2018). This method, hereafter denoted random neigh-

bor (RN), will be used as a naive benchmark for the evaluation of

more advanced strategies.

Another approach is to minimize the distance between

matched forecasts in order to ensure a smooth transition between

lead times. Given an appropriate distance measure d, dij denotes

the distance between the ithmember of sample 1 (with sizeN) and

the jth member of sample 2 (the target sample, with sizeM). The

nearest neighbor approach (hereafter denoted NN) assigns to

each member of sample 1 the closest member of sample 2:

j+i 5 argmin
j

fd
ij
g, i5 1, . . . ,N .

This method thus performs an individual optimization for each

member. One drawback is that it allows for member replica-

tion, several members of sample 1 can be matched to the same

member of sample 2, thus leading to an effective ensemble size

smaller than N.

On the other hand, the Hungarian method (hereafter

denoted HU) uses the Kuhn–Munkres algorithm (Kuhn 1955)

to find the optimal bijective mapping between two samples, by

minimizing the total distance of the assignment:

j+ 5 argmin
j

�
�
N

i51

d
ij

�
.

Contrary to the nearest neighbor approach, this method does

not allow for member repetitions.

Two important aspects of this configuration may be men-

tioned. First, the size of the seamless ensemble is constrained

by the AROME-EPS size (12 members), second the matching

procedure between high-resolution and lower-resolution

members is applied one or two times, depending on the se-

lected members at 48 h. If an AROME-EPS member is con-

nected at 48-h lead time to an IFS-EPS member, the matching

procedure is only applied once for that member because IFS

provides forecasts up to 15 days ahead. If it is connected to an

ARPEGE-EPS member then the matching procedure will be

repeated because ARPEGE provides forecast up to 96 h only.

This second assignment will then perform the connection be-

tween this ARPEGE-EPS member and an IFS-EPS member.

Since the agronomic use case considers 2-m temperature

forecasts at independent locations, the merging of EPS mem-

bers applies to time series. The metric d chosen is then the

dynamic time warping (DTW) distance, initially proposed by

Berndt and Clifford (1994), since it is well suited for measuring

the similarity between two time series. The DTW performs an

optimal nonlinear alignment between the two sequences,

which can provide a more intuitive similarity measure than the

Euclidian distance since it allows for similar shapes to match

even if they are out of phase. The type of the warping window,

as well as its width, which controls the amount of temporal shift

allowed, are tuning parameters. In the following, the Sakoe–

Chiba window is used with a width of one hour (Sakoe et al.

1990). The DTW is implemented using the R algorithm pro-

posed in (Giorgino et al. 2009) and applied over a period W

prior to the merging time tmerge. This matching criterion is thus

only based on the information prior to the connection time.

Other strategies using information posterior to the connection

time could also be considered but they are beyond the scope of

this paper.

The three assignment procedures RN, NN, and HU are

applied at tmerge 5 48 h using calibrated AROME-EPS mem-

bers as sample 1 and calibrated ARPEGE-EPS1IFS-EPS

members as sample 2. If a second assignment is necessary it is

performed at tmerge 5 96 h, the ARPEGE-EPS members se-

lected at 48 h are used as sample 1 and the remaining IFS-EPS

members (i.e., those not chosen at 48 h) are used as sample 2.

Note that all members, including the control members of both

models, are considered for the matching.

d. Probabilistic verification scores

The verification of ensemble forecasts is performed with a

comprehensive set of standard metrics, including bias and

TABLE 1. Characteristics of the three EPSs used (corresponding to their operational configurations over the period 1 Jun 2018–

31 May 2019).

Characteristics model AROME-EPS ARPEGE-EPS IFS-EPS

Size 12 perturbed members 34 perturbed members1 1 control

forecast

50 perturbed members 1 1 control

forecast

Horizontal resolution 2.5 km Stretched grid, 10 km over France 18 km

Vertical resolution (levels) 90 90 91

Initial time of forecast 2100 UTC 1800 UTC 0000 UTC

Lead times 51 h 102 h 360 h

Output frequency 1 h 3 h 3 h up to 144 h, 6 h beyond

Dynamical core Nonhydrostatic Hydrostatic Hydrostatic

Archive grid resolution

(regular lat/lon)

0.0258 3 0.0258 0.18 3 0.18 0.58 3 0.58
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root-mean-squared error (RMSE) of the ensemble mean and

probabilistic scores presented below. Note that observation

errors are not accounted for in the score computation.

1) CONTINUOUS RANKED PROBABILITY SCORE

The CRPS is well suited to the verification of probabilistic

forecasts of a continuous variable (Candille and Talagrand 2005;

Candille et al. 2007). Let us denote F the cumulative distribution

function (CDF) associated with an ensemble forecast and 1{y#x}

the CDF of a scalar observation y, the CRPS is defined as the

quadratic difference between the forecast and observed CDFs:

CRPS(F , y)5

ð
R

[F(x)2 1fy#xg]
2 dx . (2)

The CRPS measures the overall performance of an ensemble

forecast, the smaller the score, the better the performance.

2) RECEIVER OPERATING CHARACTERISTICS

The receiver operating characteristics (ROC) curve is used

to determine how well a forecast discriminates between events

and nonevents (Hanley and McNeil 1982). Given a binary

event, the ROC curves plot the hit rate against the false alarm

rate using increasing probability thresholds to make the yes/no

decision. The area under the ROC curve (denoted hereafter

AUC) summarizes the forecast skill. An area of 0.5 indicates

no skill, the closer the AUC is to 1 the better the forecast skill.

3) RELIABILITY DIAGRAM

For a given binary event, the reliability diagram plots the

observed frequency of the event against the binned predicted

probabilities. A forecast is reliable if the observed and pre-

dicted probabilities are consistent, in other words, if the reli-

ability diagram is close to the diagonal.

4) OBSERVATION COVERAGE

The observation coverage measures the percentage of ob-

servations that fall in the predicted range. The expected obser-

vation coverage percentage for a perfectly reliable ensemble of

size N is calculated as [(N 2 1)/(N 1 1)] 3 100%.

Statistical significance of scores differences between two

forecasts is assessed with the Wilcoxon signed-rank test

(Wilcoxon et al. 1970). Wilcoxon tests are performed using the

significant level a 5 0.05.

e. The agronomic use case

In the French vineyard, two species of insects of the

Lepidoptera’s order, Eupoecilia ambiguella and Lobesia botrana,

known as grapevine moth, are responsible for quantitative and

qualitative damages (Thiéry et al. 2013). These insects evolve in

four successive stages of development and may have several re-

production cycles, usually three and up to five per year according

to climatic conditions and mainly temperatures. Second and third

cycles usually are themost critical in terms of damages. To control

grapevine moth, winegrowers have three types of treatments at

their disposal: chemical products, biocontrol tools (trichograms

and Bacillus thuringiensis toxins) (Thiéry et al. 2018) or sexual

confusion. The correct positioning of the treatment depends on

themode of action of its active ingredient in response to the target

(eggs, larvae, etc.). Since the number and precise timing of the

development cycles are highly dependent on weather conditions

and can be difficult to predict, mathematical models are often

used in addition to fieldmonitoring to describe their evolution and

predict their attainment.

In this work we consider the EVA model described (in

French) by Chavent (1983), and operationally used by the

French Institute for Vine and Wine. EVA is a phenological

model based on the thermal conditions of the grapevine moth

development cycles. From the accumulation of the hourly

temperature, the model calculates the proportion and accu-

mulation of individuals at each stage over time. When it

reaches a certain level, a fraction of the populationmoves on to

the next stage. The timing of treatment is based on a devel-

opmental decision threshold. Based on discussions with ex-

perts, the two thresholds relevant to trigger the positioning of

the treatment on eggs accumulation are commonly fixed at 2%

for ovicide chemical treatments and 15% for biocontrol

treatments (due to the lower persistence of the product).

EVA simulations consist of an analysis step and a prediction

step. In the analysis step the model is run using time series of

observed hourly temperatures from an initialization date to the

forecast starting date. This procedure then provides the initial

conditions for the prediction. In the prediction step the model

is integrated using hourly temperature forecasts. A schematic

representation for the analysis and the prediction steps is

shown on Fig. 1. Ensemble EVA simulations are obtained by

FIG. 1. Schematic representation of the analysis and prediction

steps. During the analysis step the agronomic model is run with

observation data from an initialization date to the forecast starting

date. The model is then run using weather forecasts from the

forecast starting date to the maximum lead time.
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running the prediction step with temperature forecasts from

EPS members or from the seamless members, while initial

conditions are the same for all EVA members. Note that

hourly temperature is a direct output from AROME-EPS,

while ARPEGE-EPS and IFS-EPS outputs are linearly inter-

polated to a 1-h frequency.

A probabilistic evaluation of the EVA ensemble forecasts is

performed with the same measures used in NWP, applied to

the predicted distribution of recommended treatment dates. It

is important to note that an observation-based treatment date is

calculated by running theEVAmodel with observed temperature

over the entire season. This is the standard operational practice

because field observations of the grapevinemoth’s stage series are

often difficult to obtain. In the remainder of the paper results will

be presented for the positioning of phytosanitary treatments on

the second development cycle using the 15% threshold.

f. Experimental setup

Agronomic simulations and evaluations with the EVAmodel

are performed for the years 2018 and 2019 at eight sites that

correspond to famous French vineyards where the grapevine

moth causes significant damages (Fig. 2). It is assumed that there

is no spatial dependency between these locations. Initialization

date for EVA simulation is set on 20 September of the previous

year. From this initialization date to the starting date of the

forecast, the model is integrated using temperature measure-

ments from the French real-time meteorological observation

network. EVA forecasts are run in the period ranging from

1 April to 19 September (for years 2018 and 2019), when the

impact of the grape berry moth is the most significant.

Three additional sites corresponding to wheat fields that can

be affected by tritiform septoria (STB), a major disease in

Europe of winter wheat (Miedaner et al. 2013; Kollers et al.

2013; Suffert et al. 2011; Ghaffary 2011), have been considered

for the purpose of meteorological evaluation. These 11 loca-

tions provide a wide variety of meteorological conditions in

different parts in France. The verification of calibrated and

seamless 2-m temperature ensemble forecasts is performed

over a 1-yr period from 1 June 2018 to 31 May 2019 and uses

observations from the French real-time meteorological

network. Corresponding AROME-EPS, ARPEGE-EPS,

and IFS-EPS forecasts are extracted from the operational archive

at the nearest model grid points to the agronomic locations.

Seamless forecasts are designed using the DTW distance

computed over the last W 5 7 h before the merging time, fol-

lowing the performances obtained with different W values

between 1 and 48 h.

3. NWP results

In this section we first present the impact of statistical

postprocessing of temperature forecasts, and we then discuss

the characteristics and probabilistic performances of the dif-

ferent seamless temperature forecasts.

a. Verification of calibrated forecasts

Figure 3 presents the bias and RMSE for 2-m temperature

ensemble mean forecasts over a one year period, before and

after postprocessing. As expected, the parametric calibration

procedure allows for a noticeable improvement of the three

EPS performances over the entire forecast range. These cali-

brated ensembles are used in the remainder of the paper to

compute seamless forecasts.

b. Justification of seamless design

We recall that the proposed strategies for building seamless

forecasts are based on twomain choices: using the AROME-EPS

only over the first 48 h and selecting subsequent ARPEGE-EPS

FIG. 2. Locations used for theweather and agronomic simulations. The red points correspond

to vineyards, and the green points correspond to wheat fields. The latitude–longitude coordi-

nates of each point are also provided.
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and IFS-EPS members based on their proximity to AROME-

EPS members over the last 7 h (corresponding to forecast

ranges 42–48 h). We provide here some objective results to

justify this configuration.

Figure 4 presents the CRPS for the three calibrated EPSs

over a 1-yr period. The AROME-EPS is shown to perform

significantly better up to around 20-h lead time. From 24- to

48-h ranges, the AROME-EPS is better than ARPEGE-EPS

and close to or slightly worse than the IFS-EPS. These results

thus support the idea of opting for the AROME-EPS over its

timeframe. Over the forecast window 48–96 h the ARPEGE-

EPS performs worse than the IFS-EPS, despite its higher res-

olution. This thus justifies the choice of considering both

ARPEGE-EPS and IFS-EPS members for the connection at

48 h, instead of ARPEGE-EPS members only.

c. Characteristics of seamless forecasts

1) ORIGIN OF SELECTED MEMBERS AT 48H

As a first diagnostic, Table 2 presents the percentage of

ARPEGE-EPS and IFS-EPS members selected for the

connection at 48 h, for the three seamless designs and over

different periods.With the random draw, 59.3% of the selected

members come from the IFS-EPS, because of the larger size of

this ensemble. On the other hand, the distance-based assign-

ments provide more balanced selections, and some seasonal

variations are observed. In spring and summer the IFS-EPS is

more frequently chosen, while the ARPEGE-EPS is slightly

preferred in winter. In autumn, both EPSs are almost equally

likely. These variations reflect the mean distances between the

AROME-EPS members and the ARPEGE-EPS and IFS-EPS

members. It has been verified for instance that in winter the

ARPEGE-EPS members are on average closer to the

AROME-EPS members. Since the ARPEGE-EPS is used

as lateral boundary conditions for the AROME-EPS, one

could have expected a higher representation of ARPEGE-

EPS members in this 48-h selection. However, it is likely

that 2-m temperature mainly results from small-scale

physical processes and only slightly depends on the large-

scale coupling.

It can finally be noticed that the percentages obtained with

the NN and HU methods are very similar. In addition, differ-

ences in the NN and HU selections, which are only due to the

assignment rule (the distance criterion is the same), are rather

FIG. 3. (left) Bias and (right) RMSE of ensemble mean forecast for 2-m temperature, as a function of forecast lead time. Scores are

computed for the 11 sites over the period 1 Jun 2018–31 May 2019 with raw (solid line) and calibrated (dashed line) ensembles. (top)

AROME-EPS, (middle) ARPEGE-EPS, and (bottom) IFS-EPS. The plus (minus) signs at the top indicate that the performance of the

calibrated ensemble is statistically better (worse) than the raw ensemble performance, according to the Wilcoxon test.

FIG. 4. CRPS of 2-m temperature forecasts as a function of forecast lead time. Scores are

computed for the 11 sites over the period 1 Jun 2018–31May 2019 for the three calibrated EPS.

The plus (minus) signs at the top indicate that the performance of the AROME-EPS and the

ARPEGE-EPS is statistically better (worse) than the IFS-EPS performance, according to the

Wilcoxon test.
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small with an intersection between NN and HU selected

members equal to 87% on average for this 48-h connection.

2) REPETITION OF MEMBERS FOR THE NN STRATEGY

As explained in section 2c, a major limitation of the nearest

neighbor approach is the possible repetition of selected

ARPEGE-EPS and IFS-EPS members, thus breaking the as-

sumption of independent ensemble members. To examine this

aspect, Fig. 5 presents the distribution of effective ensemble

size (i.e., the number of independent ensemble members) after

the first and second merging steps. It appears that most en-

sembles have between 9 and 12 independent members, while

full 12-member ensembles after the first and second connec-

tions only represent 20% and 10% of the cases, respectively.

Ensembles with less than 6 independent members are also

observed in a few extreme cases.

d. Performance of seamless forecasts

The different seamless designs are evaluated using two cri-

teria: the temporal discontinuities in temperature time series in

the vicinity of the junction time, and the probabilistic perfor-

mances up to 15 days ahead. Ideally, the best seamless design

is the one that optimizes the two criteria, in other words, one

that minimizes temporal discontinuities and maximizes the

performance.

1) ANALYSIS OF AVERAGE DISCONTINUITIES

The ability of the seamless design strategies to generate

smooth transitions between two EPS members is measured

with the amplitude of temperature differences between lead

times 48 and 49 h for the first assignment, and lead times 96 and

97 h for the second assignment. The distributions of these 1-h

absolute temperature differences are shown in Fig. 6 for the

three seamless designs. Differences obtained with the IFS-EPS

members, which are seamless by construction, are taken as a

reference. As expected, the largest discontinuities are obtained

with the RN strategy, while the discontinuities obtained with

the NN and HU assignments are much smaller and close to

those observed in the seamless IFS-EPS forecasts. These re-

sults thus indicate that the mergings obtained with the NN and

HU methods are able to provide realistic forecasts. Note also

that smaller discontinuities are observed for the 96-h connec-

tion, especially for the RN strategy. This is because this second

assignment is done only for the ARPEGE-EPS members, and

the IFS-EPS members selected at 48 h contribute to reduce the

average temperature differences.

2) CRPS

The probabilistic performances of the different seamless

ensemble forecasts are assessed with respect to the IFS-EPS

performance. Since the seamless ensembles have only 12

members, the IFS-EPS scores are computed using a random

subset of 12 members. As expected from Fig. 4, the positive

impact of seamless forecasts is the largest in the first 24 h, when

forecasts from the AROME-EPS are used, with an average

CRPS improvement of 9% over the first forecast day (Fig. 7).

For longer lead times, the NN ensemble performs significantly

worse because of its smaller effective ensemble size. The RN

ensemble performs best for forecast days 2–4 because the

number of IFS-EPS members, which perform better than

ARPEGE-EPS members (Fig. 4), is larger. From forecast days

5 to 15, RN and HU ensembles have similar performances,

with CRPS values not statistically different from the IFS-EPS

CRPS. Examination of CRPS at individual locations (not

TABLE 2. Percentage of selected ARPEGE-EPS and IFS-EPS members with the different assignment strategies for the first matching

step, over different time periods. Theoretical values for the random selection are 40.7% for ARPEGE-EPS and 59.3% for IFS-EPS,

according to their respective ensemble size.

ARPEGE-EPS IFS-EPS

Time period RN (%) NN (%) HU (%) RN (%) NN (%) HU (%)

1 Jun 2018–31 Aug 2018 40.7 45.65 45.41 59.3 54.35 54.59

1 Sep 2018–30 Nov 2018 40.7 49.60 49.10 59.3 50.40 50.90

1 Dec 2018–28 Feb 2019 40.7 53.00 52.50 59.3 47.00 47.50

1 Mar 2019–31 May 2019 40.7 46.27 45.87 59.3 53.73 54.13

FIG. 5. Frequency histograms of the number of independentmembers in theNNensembles, computed for the 11 sites over the period 1 Jun

2018–31 May 2019 (a) after the 48 h-merging step and (b) after the 96 h-merging step.
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shown) indicates that over the first 2 days using AROME-EPS

leads to an improvement at 8 sites (over 11). At longer ranges

(from days 7 to 15), the seamless HU and RN forecasts both

improve on average the IFS-EPS performance at 7 sites.

3) AUC AND RELIABILITY

The short-range improvement of seamless forecasts is linked

to both increased resolution (Fig. 8) and reliability (Fig. 9).

Over the first 48 h, seamless forecasts improve the reliability of

probabilities higher than 0.6 for the event 2-m temperature

above 158C. Over the whole 15 days forecast range, RN and

HU ensembles are very close to the IFS-EPS, while the NN

reliability is slightly worse, especially for small probabilities.

Similar conclusions are obtained with thresholds 58 and 108C.
Since the added value of using the AROME-EPS is mainly

restricted to the first 24 h, an alternative seamless setup would

be to perform the first merging at 24 h instead of 48 h. Figure 10

indicates that this earlier merging leads to noticeable im-

provements of the HU ensemble performance from day 2 to 4.

Overall, from anNWPpoint of view theHU seamless design

is the only one to fulfill both smoothness and performance

evaluation criteria. This seamless forecast is shown to efficiently

FIG. 6. Boxplots of absolute temperature forecast differences, averaged over ensemble

members, between lead times 48 and 49 h (in black) and lead times 96 and 97 h (in gray),

computed for the 11 sites over the period 1 Jun 2018–31 May 2019. These forecast differences

are presented (from left to right) for IFS-EPS members and for the seamless RN, NN, and HU

ensemble members.

FIG. 7. CRPS of 2-m temperature forecasts computed for the 11 sites over the period 1 Jun

2018–31 May 2019, as a function of forecast day. Results for the random 12-member IFS-EPS

and the three seamless ensembles are overlaid. The plus (minus) signs at the top indicate that

the performance of a seamless ensemble is statistically better (worse) than the IFS-EPS per-

formance, according to the Wilcoxon test.
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combine the higher performance of the convective-scale

AROME-EPS at short ranges, while maintaining the perfor-

mance of the IFS-EPS at longer ranges. In the next section, the

impact of calibrated and seamless forecasts is examined on the

performance of the agronomic simulations.

4. EVA results

In this section we focus on the development of the second

generation of the grapevine moth. The treatment date is de-

termined from the cumulative level of the egg stage using the

threshold 15%, commonly used by experts for the application

of biocontrol treatments. Five ensembles of 12 EVA simula-

tions are compared, which are driven by 12 random tempera-

ture forecasts from the raw and calibrated IFS-EPS, and by the

three 12-member seamless ensembles. To evaluate these pre-

dictions, scores commonly used for NWP EPS verification are

applied to the distributions of treatment dates. These scores

are presented as a function of the time interval between the

observation-based treatment date and the forecast starting

date. According to this approach and considering that the

maximum lead time of probabilistic forecasts used for this

work is 15 days, the results are provided for time intervals

between 1 and 15 days. For long time intervals, the treat-

ment threshold may not be reached by some members at the

end of the forecast. For these members the model sets the

treatment date to ‘‘beyond.’’ To perform the scores com-

putation, these ‘‘beyond’’ dates are arbitrarily set up to 17.

Finally, given the results of the meteorological evaluation,

only seamless forecasts with a first merging at 24 h are shown

in this section.

a. Bias

The bias of the ensemble mean treatment date is presented

in Fig. 11. For short-term predictions corresponding to time

intervals between 1 and 3 days, the bias is zero whatever the

FIG. 8. AUC of 2-m temperature forecasts above 158C, computed for the 11 sites over

the period 1 Jun 2018–31 May 2019, as a function of forecast day. Results for the random

12-member IFS-EPS and the three seamless ensembles are overlaid. The plus (minus) signs at

the top indicate that the performance of a seamless ensemble is statistically better (worse) than

the IFS-EPS performance, according to the Wilcoxon test.

FIG. 9. Reliability diagram for 2-m temperature forecasts above 158C, computed for the 11 sites over the period 1 Jun 2018–31 May 2019:

lead times (a) 0–48 and (b) 0–360 h. Results for the random 12-member IFS-EPS and the three seamless ensembles are overlaid.
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temperature forecast used. For time intervals between 4 and

7 days, the bias slightly increases toward positive values (which

means that the treatment date is slightly too late) and there is a

small benefit from using calibrated temperature forecasts. This

positive bias is in agreement with the negative temperature

bias of raw IFS-EPS forecasts seen in Fig. 3. The advantage of

calibration becomes larger for forecasts between one and two

weeks before the treatment date, with bias values that remain

close to zero.

b. CRPS

The impact of the calibration procedure is also clearly visible

on the CRPS (Fig. 12), which is significantly improved for

week-2 forecasts by almost 40%. This improvement is ob-

served at all sites except Bordeaux. On the other hand, it is

more difficult to conclude about the value and ranking of

seamless forecasts, compared to calibrated IFS-EPS. Local

CRPS at individual locations (not shown) indicate that the

seamless HU week-2 forecasts lead to a slight improvement

over the calibrated IFS-EPS at 6 sites (over 8). On the other

hand, NN and RN showed an improvement over 5 sites.

c. Observation coverage

Finally, Fig. 13 shows the percentage of observation-based

treatment dates that fall in the predicted range. Consistently

with previous results, the prediction is almost perfect for short

intervals and hardly sensitive to the meteorological forecast

used up to a one-week interval. For longer time intervals, the

observation coverage significantly decreases to less than 70%,

which is lower than the theoretical value of 85% for a reliable

12-member ensemble, while calibrated and seamless forecasts

help maintaining a high level of observation coverage, with

values around 95% or more up to 11 days. The mean obser-

vation coverage over days 7–15 is slightly larger for the HU

forecasts, with a value of 94.5% compared to values between

91% and 92% for the calibrated, RN and NN forecasts.

From an agronomic point of view, the impact of weather

forecast improvements is rather limited up to one week before

FIG. 10. CRPS of 2-m temperature forecasts computed for the 11 sites over the period 1 Jun

2018–31 May 2019, as a function of forecast day. Results are given for seamless HU ensembles

with a first merging at 24 h (dashed–dotted line) and 48 h (solid line). The plus (minus) signs at

the top indicate that the performance of the 24-h merging is statistically better (worse) than the

performance of the 48-h merging, according to the Wilcoxon test.

FIG. 11. Bias of the ensemble mean treatment date forecast, as a function of the time interval

(in day) between the observation-based date and the forecast starting date. Scores are averaged

over the eight vineyard sites and the period of interest 1 Apr–19 Sep for the years 2018 and

2019. Results from using raw IFS-EPS, calibrated IFS-EPS, and the three seamless ensemble

forecasts are overlaid.
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the treatment date. This behavior may be specific to the EVA

model. It is possible that the evolution rules based on the

accumulation of daily temperatures and threshold effects

contribute to reduce the impact of forecast accuracy and

uncertainty at short ranges. On the other hand, the advantage

of using calibrated forecasts is clearly visible between 7 and

15 days and this may help winegrowers to better anticipate the

scheduling of treatments. It is, however, not possible to prop-

erly conclude on the added value of seamless forecasts with the

current experimental setup. Additional simulations covering a

larger number of locations and years may be required to

detect a more robust signal.

5. Discussion and future works

The goal of this paper was to evaluate the potential of sta-

tistical postprocessing and seamless integration methods to

generate skillful 2-m temperature ensemble forecasts for ap-

plication to crop protection. Postprocessing is based on the

well-known EMOS and ECC methods, while new strategies

have been proposed to design seamless ensemble forecasts from

the concatenation of several ensemble predictions with different

spatiotemporal scales. The seamless methods aim at generating

ensemble members from high-resolution AROME-EPS fore-

casts at short ranges, with a smooth transition toward larger-

scale EPSs at longer ranges. The proposed approach performs

minimum-cost associations betweenmembers from the different

EPSs, according to a given distance and matching rules.

The evaluation is first performed from a meteorological

point of view. It is shown that a naive random association of

EPS members achieves satisfactory probabilistic perfor-

mances, but with the inconvenience of generating large

discontinuities in the vicinity of the matching time. On the

other hand, the distance-based associations lead to smaller

discontinuities and achieve good performances with the

Hungarian matching algorithm.

Ensembles of agronomic forecasts are then issued from

the calibrated and seamless weather forecasts. Statistical

FIG. 12. CRPS for the forecast treatment date, as a function of the time interval (in day)

between the observation-based date and the forecast starting date. Scores are averaged over

the eight vineyard sites and the period of interest 1 Apr–19 Jun for the years 2018 and 2019.

Results from using raw IFS-EPS, calibrated IFS-EPS, and the three seamless forecasts are

overlaid.

FIG. 13. Observation coverage, as a function of the time interval (in days) between the

observation-based treatment date and the forecast starting date. The percentage values of

observation coverage are averaged over the 8 vineyard sites and the period of interest 1Apr–19

Sep for the years 2018 and 2019. Results from using raw IFS-EPS, calibrated IFS-EPS, and the

three seamless forecasts are overlaid.
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postprocessing strongly benefits to the quality of the treatment

date prediction, especially between one and two weeks before

the treatment date, which indeed allow a better anticipation of

the spraying schedule for the winegrowers. However, the im-

pact of seamless forecasts is more difficult to assess and may

require a more thorough evaluation considering additional

locations and years. Agronomic models that depend on less-

predictable variables and that aremore sensitive to short-range

weather uncertainty will also be considered in future studies to

better highlight the potential of the seamless ensembles.

The proposed method is generic and could be applied to

other parameters. Since precipitation play a major role in the

development of diseases and pests, calibration and seamless

combination of precipitation forecasts is a natural step for-

ward. The calibration of precipitation has already been con-

sidered in the work of Scheuerer (2014); Taillardat et al. (2019)

for instance. The design of seamless predictions may require

specific considerations especially regarding the choice of the

distancemetric tomeasure the similarity between precipitation

forecasts which are subject to spatiotemporal intermittency.

Seamless forecasts are important to several applications,

including in particular hydrology and energy production, and

concern different time scales, e.g., from nowcasting to NWP or

fromNWP to seasonal forecasts. It would be straightforward to

design seamless forecasts over wider time ranges with the in-

tegration of more EPSs and matching steps. For instance, ad-

ditional connections to S2S forecasts (White et al. 2017) could

be interesting for a longer-term management of agricultural

practices.

The smoothness criterion is central in the proposed seamless

design strategy, although it may not be crucial for this crop

protection application that is mainly sensitive to the cumula-

tive effect of some weather variables. However, it is relatively

intuitive and of particular interest for other applications, such

as the electricity production from renewable energies, which

is very sensitive to rapid changes in the meteorological

conditions.

Possible avenues for improving the seamless integration

method include a relaxation of the ‘‘AROME-EPS only’’ as-

sumption over the first 2 days with, for instance, an initializa-

tion of the seamless ensemble with a clustering of all available

EPS members. It is also possible to develop a backward

matching procedure, starting from all IFS-EPS members at

long ranges with backward connections to shorter-range EPSs.

This approach would preserve the full ensemble variability at

long ranges (that may be the most relevant for crop protec-

tion). Another elegant way would be to build seamless blended

ensemble forecasts from the aggregation of probabilistic

forecasts and Schaake shuffle reconstruction, as proposed

by Zamo (2016).

The extension of the seamless design to a multivariate con-

text is an important future step since most applications require

several meteorological input variables. There are at least two

ways of doing this, either using the current univariate matching

scheme based on the most important weather variable for

the application or using a multivariate metric such as the

Mahalanobis distance. This aspect will be the subject of

future works.

Finally, an important question is whether it is more efficient

to calibrate the input temperature forecasts or rather to di-

rectly calibrate the end-product. In the present case, the cali-

bration of temperature is the preferred option because it first

improves the construction of seamless forecasts by reducing

the concatenation gaps. Second the calibration of treatment

dates is, to the best of our knowledge, an unexplored area that

may face several challenges. For instance, there is no guarantee

that treatment dates follow a simple parametric distribution

and the historical sample of observation-based treatment dates

available for calibration is rather small because there are only

three or four generations of grapevine moth per year.
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