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Abstract

After many years of decline, hunger in Africa is growing again. This

represents a global societal issue that all disciplines concerned with data

analysis are facing. The rapid and accurate identification of food insecu-

rity situations is a complex challenge. Although a number of food security

alert and monitoring systems exist in food insecure countries, the data and

methodologies they are based on do not allow for comprehending food secu-

rity in all its complexity. In this study, we focus on two key food security

indicators: the food consumption score (FCS) and the household dietary

diversity score (HDDS). Based on the observation that producing such in-

dicators is expensive in terms of time and resources, we propose the FSPHD

(Food Security Prediction based on Heterogeneous Data) framework, based

on state-of-the-art machine and deep learning models, to enable the esti-

mation of FCS and HDDS starting from publicly available heterogeneous

data. We take into account the indicators estimated using data from the

Permanent Agricultural Survey conducted by the Burkina Faso government

from 2009 to 2018 as reference data. We produce our estimations starting

from heterogeneous data that include rasters (e.g., population density, land

use, soil quality), GPS points (hospitals, schools, violent events), line vectors

(waterways), quantitative variables (maize prices, World Bank variables, me-

teorological data) and time series (Smoothed Brightness Temperature - SMT,

rainfall estimates, maize prices). The experimental results show a promising

performance of our framework, which outperforms competing methods, thus

paving the way for the development of advanced food security prediction

systems based on state-of-the-art data science technologies.
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1. Introduction

Hunger is well known to be one of the major problems in many African

countries. While a generalized and solid solution to this situation is far from

being reached, constant progress was made during the first fifteen years of the

current century. For instance, taking into account the area of West Africa, the

years after 2000 have seen a decrease in the prevalence of undernourishment

of nearly 2% points, reaching a relatively low value of 10.4% in 2012, which

remained nearly constant until 2014 (10.7%). Nevertheless, an inverted trend

has been observed in recent years, with the same value reaching a peak of

15.2% in 2019 and an alarming projection of 23% for 2030 (FAO et al.,

2020). The same troubling trend can be observed for similar indicators, e.g.,

the prevalence of severe food insecurity situations in West Africa has seen an

increase of nearly 10% points from 2014 (20.7%) to 2017 (29.5%) (FAO and

ECA, 2018).

Among West African countries, Burkina Faso shows one of the most

critical situations, with a prevalence of undernourishment of 21.3% in the

2015–2017 period (FAO and ECA, 2018). Burkina Faso is also one of the

most affected by what is generally called the “triple burden of malnutrition”,

i.e., the coexistence of overnutrition, undernutrition and micronutrient defi-

ciencies (FAO et al., 2018). The reasons behind such situations are complex,

multifactorial, and interdependent. Climate change has certainly had a ma-

jor impact on food production and availability by causing an increase in the

number of extreme weather events (Tapsoba et al., 2019). Another key fac-

tor is the increase in population movements, which, in turn, is caused by the

increasing number of conflicts in the Sahel region. Such movements have a
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major impact on food production and distribution channels (Lacher, 2012).

As a consequence of several food crises that occurred in the 1970s and

1980s in different areas of the world, a certain number of food security warn-

ing and monitoring systems were established by governmental and nongovern-

mental organizations. The aim of these systems, which are still active today,

is to prevent food crises and help countries plan food aid programs to optimize

the production and distribution of food. Some examples are GIEWS (Global

Information and Early Warning System), created by the Food & Agriculture

Organisation (FAO), and FEWSNET (Famine Early Warning Systems Net-

work), founded by the United States Agency for International Development.

These systems also publicly provide periodical bulletins reporting on the food

security (FS) situation at regional and national scales.

However, such systems are mainly based on paradigms that call for the

manual combination and summarization of all the sources of information that

are taken into account during the process according to a series of predefined

rules. While the need to mainly rely on human intervention can be justified

by the complexity of the task at hand, such an effort represents an obstacle to

accurately predicting food crises in time. More specifically, the current pro-

cesses behind these monitoring systems are extremely time-consuming and

allow for limited complexity in the number and heterogeneity of information

sources that can be taken into account.

Moreover, these systems take into account certain key FS indicators, such

as the food consumption score (FCS) or the household dietary diversity score

(HDDS), which require household surveys that are expensive in terms of

time and resources (cf. Section 3.1 for a detailed description of these met-
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rics). In this context, machine learning methods can be exploited to provide

timely estimates of these indicators by using easily accessed publicly avail-

able data. While these early warning systems mainly integrate meteorological

and remote sensing data, we believe that the integration of information from

other fields is related to FS (e.g., commodity prices, violent events, popula-

tion dynamics) and that other data types (e.g., time series, high-resolution

images) will make it possible to describe the phenomenon more completely.

The main objective of this work is to use original and effective machine-

and deep learning-based models able to estimate FCS and HDDS, starting

from publicly available heterogeneous data. More specifically, we aim to

answer the following research questions:

• RQ1: What types of publicly available data can be targeted to predict

FS scores?

• RQ2: How can data that are heterogeneous in terms of thematic, struc-

ture, and spatiotemporal resolution be preprocessed to obtain consis-

tent predictions of the FS for a given study site?

• RQ3: How can state-of-the-art machine and deep learning approaches

be exploited and combined to treat such heterogeneous data?

To answer these questions, we propose a machine learning framework,

namely, FSPHD (Food Security Prediction based on Heterogeneous Data),

able to exploit heterogeneous explanatory data to estimate two target FS

indicators, i.e., FCS and HDDS. To this end, we take into account mul-

tisource heterogeneous data such as rasters (e.g., population densities, land
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use, soil quality), GPS points (hospitals, schools, violent events), line vec-

tors (waterways), quantitative variables (maize prices, World Bank variables,

meteorological data) and time series (Smoothed Brightness Temperature

(SMT), rainfall estimates, maize prices). The proposed framework is based

on an ensemble of state-of-the-art data science techniques such as random

forest (RF) (Qi, 2012), convolutional neural networks (CNNs) (Huang et al.,

2018) and long short-term memory (LSTM) (Song et al., 2020). We test

different variants of the framework that differ in the number and type of

input data and in how the ensemble methods are processed to obtain the

final result. We carry out an extensive experimental evaluation centred on

the study area of Burkina Faso, leveraging FCS and HDDS indicators (cal-

culated using data from the permanent agricultural survey conducted by the

Burkinabe government) as ground truth. Our work continues and develops

a preliminary study that we published in the Data Integration and Applica-

tions Workshop (DINA 2020) (Deléglise et al., 2020).

The rest of the paper is structured as follows: in Section 2, we discuss

related work, in Section 3, we describe the main FS indicators and the data

used in the study, in Section 4, we introduce the proposed framework, in

Section 5, we discuss our experimental evaluation, and Section 6 concludes

the study.

2. Related work

2.1. Machine learning for food security and related problems

Machine learning methods are increasingly used to extract relevant infor-

mation in the context of FS-related problems. Several studies exploit clas-
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sic machine learning techniques (e.g., support vector machines, K-nearest

neighbour, decision trees, and naive Bayes) for the prediction of FS indica-

tors (e.g., Household Food Insecurity Access Scale and dietary energy in-

take) (Okori and Obua, 2011; Barbosa and Nelson, 2016; Lukyamuzi et al.,

2018). In recent years, deep learning techniques, which have proven to

be particularly effective in analysing complex heterogeneous data (Valdés,

2018), have also been used for the analysis of several FS-related topics such

as poverty (Shailesh et al., 2018), drought (Mumtaz et al., 2018), market

prices (Min et al., 2019) and asset wealth (Yeh et al., 2020). However, the

full potential of such techniques has not yet been expressed in the prediction

of FS indicators, and very few studies have focused on this issue. Heisen-

berg et al. (2020) use a classical neural network method called the multilayer

perceptron to predict an FS indicator called the integrated phase classifier

obtained from a household survey conducted by the United States Agency

for International Development (USAID) in the Horn of Africa between 2009

and 2017. They use explanatory data from various domains (e.g., NDVI,

food prices, conflicts, and soil moisture). A small number of studies focus

on variables directly related to the quantity and quality of the food con-

sumed, such as FCS or HDDS (cf. Section 3.1), that are crucial for the

understanding of FS. The main example in this context is the framework

developed by the VAM (vulnerability analysis and monitoring) team of the

World Food Programme (WFP-VAM, 2019). Such a framework integrates

machine and deep learning techniques on heterogeneous data (i.e., satellite

images at different spatial resolutions and GPS points) to predict FCS and

HDDS in several countries. Nevertheless, the results strongly varied from
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country to country, and the predictions were generally not accurate enough

to be used in operational cases. Lentz et al. (2019) also predict FCS and

HDDS with linear regressions using mainly open and free data as predictors.

The response variables are from the Living Standards Measurement Surveys

(LSMS) conducted in Malawi in 2010 and 2013. The data used are from

diverse sources: meteorology, precipitation, market prices and soil quality.

However, the quality of their resulting predictions is relatively low, confirm-

ing that the prediction of these FS indicators is a complex issue, mainly

because of their multifactorial nature. In this article, we want to contribute

to the understanding of this rarely studied problem. In addition, one of

the objectives of the two studies mentioned above (i.e., (Lentz et al., 2019)

and (WFP-VAM, 2019)) is to be able to use free and easily accessible data to

obtain estimates of indicators that are not commonly available because their

computation requires lengthy and expensive household surveys. This topical

issue has been considered by other studies that used open data as explana-

tory variables to predict FS-related indicators (e.g., assets, nightlights and

integrated phase classifiers) using machine learning techniques (Yeh et al.,

2020; Jean et al., 2016; van der Heijden et al., 2018). The use of open data

is also one of the objectives of this study.

2.2. Machine learning on heterogeneous data

Due to the inherent complexity of the phenomena of food insecurity, the

prediction of FS indicators requires the use of explanatory variables of het-

erogeneous thematics, structures and scales. For this reason, to address

this problem, there is a need for methodologies that can combine these ex-

planatory variables such that each source of information contributes to the
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prediction of FS indicators. For these reasons, another body of work strictly

related to our research questions involves the use of machine learning with

heterogeneous data sources. Such approaches have been applied in several

application domains. In biochemistry, P. Lewis et al. (2006) make infer-

ences from large, heterogeneous sets of protein sequences and structures us-

ing support vector machine techniques. In medicine, Miotto et al. (2017)

review recent literature on the application of deep learning technologies to

acquire knowledge and practical insights from complex, large and heteroge-

neous biomedical data. In remote sensing, Benedetti et al. (2018) propose

an end-to-end deep learning framework, named M3Fusion, able to simulta-

neously leverage the temporal knowledge contained in time series data and

the fine spatial information available in very high spatial resolution data us-

ing recurrent and convolutional neural networks. In the road sector, Yuan

et al. (2018) perform a comprehensive study on the traffic accident prediction

problem using a convolutional long short-term memory neural network model

to take into account the spatial heterogeneity and temporal autocorrelation

of the environment at the same time. To address heterogeneous data with

machine learning, it is necessary to apply data fusion methods because there

is no generic machine learning method suited to all types of problems and

data but rather methods that are better tailored to the specificities of each

problem (e.g., classification, regression, clustering, and anomaly detection)

and data source (e.g., quantitative variables, time series, images, and text)

(Alzubi et al., 2018). Data fusion is the process of combining multiple data

sources to produce more accurate, robust, and reliable and less redundant in-

formation than by considering each data source individually (Khaleghi et al.,
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2013; Chandrasekaran et al., 2017). Data can be merged at 3 levels (Brena

et al., 2020; Hall and Llinas, 2017): 1) at the data level (early fusion) by

simply concatenating the initial variables to obtain a dataset with a larger

amount of information that can be input into a machine learning algorithm,

2) at the feature level (feature fusion) by extracting more relevant features

from each data source and concatenating them to be input into a machine

learning algorithm, and 3) at the decision level (late fusion) by aggregating

the predictions from models associated with each data source into a global

prediction. This principle of fusion of multiple data sources has been applied

to machine learning at the feature level (Xue et al., 2017; Amin et al., 2018);

for instance, Xue et al. (2017) propose DeepFusion, a multisensor deep learn-

ing framework for human activity recognition using feature extraction with

convolutional and recurrent neural networks to learn informative represen-

tations of heterogeneous sensory data. Data fusion has also been applied to

machine learning at the decision level (Peterson et al., 2018; Guo et al., 2019);

for example, Guo et al. (2019) propose the iFusion framework for the classifi-

cation of medical data, which uses CNNs to treat and combine real-time data

and heterogeneous data at the decision level. They separately use each type

of newly arrived data to train a new discrimination model and fuse the previ-

ously trained models to obtain the discrimination result. Most of the studies

that use machine learning for FS or related fields use data-level fusion to deal

with heterogeneous data, i.e., preprocess their data to jointly combine them

by the same machine or deep learning algorithm, which is the case for the

studies of Heisenberg et al. (2020) and Lentz et al. (2019) described above.

However, fusion at the data level is the most naive and simple to implement
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and does not allow the extraction of information from each type of data in

an optimized way (Hall and Llinas, 2017). Fusion at the feature and decision

level has been barely exploited for problems related to FS, a multifactorial

domain in which the prediction of indicators requires the use of explanatory

data for highly heterogeneous thematics and spatiotemporal scales. The only

such study is that of the WFP (WFP-VAM, 2019), which extracts features

with a CNN and then inputs the features into a ridge regression. Never-

theless, the WFP study does not take into account the sequential aspect of

time series, which is the case for our study. In this study, we use machine

and deep learning approaches to address the complexity of our data, and

we combine heterogeneous explanatory data by fusion at the three possible

levels (data, features, decision) and compare the performance. To the best

of our knowledge, this is the first study to propose such complete testing on

different data fusion strategies for the prediction of FS scores. Additionally,

this is the first study to take into account a large body of heterogeneous data

sources. The existing study that uses the most complete set of information

sources is the framework developed by the WFP (WFP-VAM, 2019) (cf. Sec-

tion 2.1), which does not include several important data sources that we take

into account in our study, i.e., maize price, population density, soil quality

and time series.

3. Data and measures

3.1. Measuring food security

As noted in Section 1, the aspects that contribute to creating food inse-

curity situations in a country are manifold and often interdependent. This
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makes the measurement of FS a challenging problem. The scientific commu-

nity has proposed a plethora of different indicators over the years (up to 450

different FS indicators exist, according to the study in Hoddinott (1999))

that address different aspects of the phenomenon and can thus be considered

to some extent complementary to each other. For this reason, using multiple

indicators can help obtain more objective results on the FS of a particular

country. A well-known definition of FS is the one proposed by Shaw D.J.

(2007), stating that FS holds “when all people have, at all times, physical

and economic access to sufficient, safe and nutritious food”. This definition

entails four major aspects:

1. to what extent adequate amounts of food of an appropriate nature and

quality are available to the population;

2. to what extent people have access to the resources necessary to acquire

the food needed for a nutritious diet;

3. to what extent access to food is stable in cases of unforeseen events

(e.g., natural and/or economic crises); and

4. to what extent appropriate use of food can be realized (e.g., storage,

cooking and hygiene practices).

Such aspects can help analyse and measure food insecurity situations, which

can be taken into account by using information from data sources at multiple

scales (national, regional, household or even individual scale).

In this work, we focus on two indicators that are computed based on

answers to household surveys: the food consumption score (FCS) and the

household dietary diversity score (HDDS). These metrics, which are widely

used in the scientific literature and by governmental and nongovernmental
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organizations (Jones et al., 2013; Maxwell et al., 2014; Vhurumuku, 2014),

can be used to assess the frequency, quantity and quality of food in a certain

area. Detailed definitions for the FCS and HDDS indicators are reported

as follows.

Food Consumption Score (FCS): The aim of this indicator is to

estimate the cumulative frequency of the different food groups consumed

over a period of 7 days within each household taken into account in the

survey. FCS can then be considered a proxy of the quantity of nutrients and

energy intake. Taking into account the weights reported in Table 1 for the

different food groups, FCS can be computed using the following equation:

FCS =
9∑

i=1

xi.pi (1)

where xi is the frequency of consumption for each food group i and pi is

the weight of food group i, as reported in Table 1.
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Food group Weighting

Cereals and tubers 2

Pulses 3

Vegetables and leaves 1

Fruits 1

Animal proteins 4

Dairy products 4

Sugars 0.5

Oils 0.5

Condiments 0

Table 1: Food groups and their weights for the calculation of the food consumption score

(FCS). Source: (Wiesmann et al., 2009)

Household Dietary Diversity Score (HDDS): The aim of this in-

dicator is to measure food consumption frequency and diversity by focusing

on the nutritional quality of the diet. More specifically, HDDS is calculated

based on the number of different food groups consumed in the last 24 hours.

The categorization used to identify the food groups is not standard and may

vary from case to case, depending on the context and on the available data.

For instance, in some cases, the same categories taken into account for FCS

are used (i.e., those in Table 1), as in the framework proposed in (WFP-VAM,

2019), while in other cases, a different classification including 12 food groups

is taken into account, i.e., as proposed by the FAO (Kennedy et al., 2013).

In this work, we use the FAO methodology to calculate the HDDS, using

the categories reported in Table 2. HDDS can then be computed using the
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following equation:

HDDS =
12∑

i=1

xi (2)

where xi = 0 if food i has not been consumed during the past 24 hours and

xi = 1 if food i has been consumed during the past 24 hours.

Food group

Cereals

Roots and tubers

Vegetables

Fruits

Meat products

Eggs

Fish and seafood

Legumes, nuts and seeds

Milk and dairy products

Oils and fat

Sweets

Condiments, spices and drinks

Table 2: Food groups for the calculation of the household dietary diversity score (HDDS).

Source: (Kennedy et al., 2013)

3.2. Study data

In this section, we present the data from which the response variables

(i.e., FCS and HDDS) are derived and then detail the heterogeneous data

used as explanatory variables.
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3.2.1. Response data

The response variables, or FS indicators, are derived from the Perma-

nent Agricultural Survey, which has been conducted annually as part of

the routine of the Burkinabe Ministry of Agriculture since 1982 in Burk-

ina Faso (Permanent Agricultural Survey, 2015). The survey was conducted

using two-stage stratified sampling (villages and households). The sampling

frame for the first stage was obtained from the agricultural module of the

2006 general population census. This frame yielded a list of villages (7,871

villages and areas) containing 1,219,241 agricultural households (in 2008, a

total of 1,424,909 households were agricultural, representing 81.5 percent of

households (Bureau central du recensement général de l’agriculture, 2011)).

The sampling frame for farm households is created in each sampled village

(selected with probability proportional to the number of farm households)

from a household list drawn up each year by enumerating all farm house-

holds in the village. For this study, we take into account the data that are

available from 2009 to 20181. The resulting dataset contains information

from 46,400 farm households, i.e., an average of 4,640 farm households per

year distributed in 344 of the 351 communes illustrated in Figure 1. A farm

household is defined as a household practising one of the following activities:

temporary crops (rainfed and off-season crops), fruit growing, and animal

husbandry. As in most surveys, the quality of data obtained from household

surveys can be affected by biases. Nonobservation bias related to the failure

to acquire information (coverage and sampling bias, nonconsent bias, nonre-

1These data are not public and were privately provided to us by the Burkinabe Ministry

of Agriculture.
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sponse bias) (Lepkowski, 2001) and measurement bias due to measurement

error during data collection (linked to the interviewer, the respondent or the

questionnaire) (Kasprzyk, 2001) are the two main types of bias. These bi-

ases can bring noise to the data and affect the performance of the machine

learning algorithms applied to them. This is partly why studies (presented in

Section 5) that have predicted FCS and HDDS via machine learning offer low

performance. We used these data to build our ground truth by averaging the

FCS and HDDS indicators by commune, considering a time window from

2009 to 2018, resulting in 3,066 observations. The other studies that predict

these indicators (presented in Section 2) are based on a 1-year time window.

To the best of our knowledge, our study is the only one to date to be based

on a 10-year time window, which makes it possible to establish decision rules

based on interannual variations that are therefore more generalizable over

time.
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Figure 1: Spatial distribution of the 351 communes of Burkina Faso (background map:

Google Maps).

3.2.2. Explanatory data

To address RQ1 (“what types of publicly available data can be targeted

to predict FS scores?”), there exist a large number of proxies indicators

related to one or more components of FS that can be taken into account,

e.g., vegetation indices, rainfall, food prices, local population densities, soil

quality, and numbers of violent events, schools and hospitals (Fritz et al.,

2018), that we take into account when selecting the explanatory data for our

study.

The multifactorial aspect of FS implies the use of heterogeneous explana-

tory data to obtain as complete a picture of the situation as possible. FS

proxies used as explanatory variables can be considered heterogeneous at
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three levels.

1. At the thematic level, they are related to domains such as remote sens-

ing, meteorology, economy, demography, or soil quality and utilization.

This implies having a complete vision of the factors of famine in the

place under study.

2. At the structural level, there are various types of data: quantitative

values, GPS points, line vectors, time series, and rasters. This requires

the use of tools and methods appropriate for the processing of each

data point.

3. At the spatiotemporal scale level, data can be available spatially by re-

gion, commune, station or pixel and temporally by decade, year, month

or week. This point requires the use of techniques to extract pertinent

information at a common scale on which they can be combined

This involves choosing the most suitable spatiotemporal scale, which also

implies answering RQ2 (“how can data that are heterogeneous in terms of

thematic, structure, and spatiotemporal resolution be preprocessed to obtain

consistent predictions of the FS for a given study site?”). First, FS proxies

are preprocessed to extract relevant explanatory variables at the commune

scale, which is the smallest administrative boundary for which the response

variables are spatialized, enabling the number of examples for model learn-

ing to be maximized. Some proxies from raster data or GPS points have a

finer granularity and must be aggregated by commune by summing (rain-

fall), averaging (minimum and maximum temperatures, soil quality), count-

ing (number of hospitals, schools and violent events), taking the maximum

(smoothed brightness temperature (SMT), elevation) or more complex aggre-
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gations (Gini coefficient, autocorrelation, and differential entropy of popula-

tion rasters). Other proxies (meteorological data accessible by stations and

commodity prices accessible by markets) are available at a coarser granularity

and must be interpolated on every commune: in these cases, we chose to use

K-nearest neighbour interpolation, which is an accurate and rapid technique.

Population and land cover rasters are resampled to a 100 metre resolution,

and 10x10 100 metre pixel patches are used as input to a CNN to predict

FCS and HDDS, which returns predictions and features by commune. The

scaling method for each variable is detailed in the ”scaling up” column of

Table 3. The normalized difference vegetation index (NDVI), a vegetation

index, is treated by a culture mask to consider only NDVI in cropping ar-

eas2. Some variables are normalized by population (e.g., numbers of schools,

hospitals, and violent events) or by area (number and length of waterways).

Then, each explanatory variable is centred and reduced in relation to com-

munes and years (consists of subtracting the mean and dividing it by the

standard deviation). Finally, the explanatory variables obtained are selected

by retaining only those that are significantly correlated with the response

variable under consideration (p-value less than 0.05). The information on

each dataset is available in Table 3; for more details on the variety of data

used in the models, see Appendix A. To address the structural heterogeneity

of the data, the selected explanatory variables are classified into 4 groups

with a similar structure to treat each group with an appropriate machine

learning method:

2Culture mask: S2 prototype land cover map at 20 m in Africa 2016

21



• Time series that have multiple values per year and one value per com-

mune. They are aggregated into monthly time series (May to November

of the year in which the FS indicator is collected and of the previous

year)

• Conjunctural data that have one value per year and one value per

commune.

• Spatial data that have one value per commune and are invariant per

year.

• High spatial resolution (HSR) data that have multiple values per

commune. The values are 10x10 100 m pixel patches extracted from

each data source.

The aim of this categorization into 4 groups is to make the different cat-

egories of explanatory variables suitable for independent processing by dif-

ferent branches of the framework, each based on specific machine learning

techniques (i.e., each branch will be based on the most suitable technique for

the specific data type, as will be detailed in the next section).
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Variable Resolution Frequency Source Scaling up

Time series [several values per year; one value per commune] [70 vars]

Smoothed brightness

temperature (SMT)

[14 vars]

4 km 7 days National Oceanic and

Atmospheric Admin-

istration (NOAA)

Maximum

Rainfall [14 vars] 6 km 10 days Tropical Rainfall

Measuring Mission

(TRMM)

Sum

Average minimum

and maximum tem-

peratures [2x14 vars]

21 km 1 month WorldClim Mean

Maize price [14 vars] 64 markets 1 month Société Nationale de

Gestion du Stock de

Sécurité alimentaire

(SONAGESS)

K-nearest neigh-

bour interpola-

tion

Conjunctural data [one value per year; one value per commune] [20 vars]

Meteorological data [7

vars]

10 stations 1 year Knoema platform K-nearest neigh-

bour interpola-

tion

Population density [4

vars]

100 m 1 year Afripop Spatial autocor-

relation 2 km

and 5 km, Gini,

entropy

Economic data [7 vars] Country 1 year World Bank Country value

Normalized difference

vegetation index [2

vars]

250 m 1 year Modis Mean

Spatial data [one value per commune] [13 vars]

Hospitals, schools [2

vars]

Point vectors 2018 Open Street Map Count

Violent events [4 vars] Point vectors 2018 Armed Conflict Loca-

tion & Event Data

Project (ACLED)

Count

Soil quality [3 vars] 1 km 2008 Food and Agriculture

Organization (FAO)

Mean

Waterways [2 vars] Line vectors 2008 Digital Chart of the

World (DCW)

Count, length

Elevation data [2 vars] 1 km 2018 Consultative Group

on International Agri-

cultural Research

(CGIAR)

Maximum, vari-

ance

High spatial resolution data [several values per commune] [4 vars]

Population density 100 m 1 year Afripop CNN

Land cover (crops,

forests, building

areas)

20 m 2016 European Space

Agency

CNN

Table 3: Summary of the datasets
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4. FSPHD Framework

To address RQ3 (“how can state-of-the-art machine and deep learning

approaches be exploited and combined to treat such heterogeneous data?”),

in this section, we define our proposed machine learning framework, namely,

Food Security Prediction based on Heterogeneous Data (FSPHD), devised

to estimate FCS and HDDS. The aim of the proposed framework is to in-

tegrate several state-of-the-art machine and deep learning techniques able to

exploit the full potential of the large body of heterogeneous data that are in-

put. To this end, we propose two types of regression models (cf. Figure 2) to

predict FCS and HDDS, which correspond to two different variants of the

proposed framework, namely, model (a) and model (b). Models (a) and (b)

are inspired by machine learning studies using decision-level fusion (Peterson

et al., 2018; Guo et al., 2019) and feature-level fusion (Xue et al., 2017; Amin

et al., 2018), respectively, to process and combine heterogeneous explanatory

variables. Both feature-level and decision-level fusion approaches have been

proven to be effective in several application domains (e.g., medicine (Amin

et al., 2018; Guo et al., 2019), human activity recognition (Xue et al., 2017),

and chemistry (Peterson et al., 2018)). Therefore, given the exploratory na-

ture of this work, we preferred to propose two variants of the framework

rather than just choosing one of the available fusion approaches. Another

key point of the framework design is that each branch is designed to inte-

grate the most suitable method for each specific data type, i.e., according

to what has been observed in the existing literature. The challenge is to

extract, with each branch, complementary information on FS from each data

source. Conjunctural and spatial (CS) data are classical numerical data (i.e.,
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a single numerical value for each observation of the response variable) and

are processed by an RF, which is one of the machine learning methods of-

fering the best compromise between performance and interpretability when

the data are not complex. Time series data are processed using an LSTM

architecture, which is a proven machine learning method for sequential data

processing owing to its feedback connections. (Song et al., 2020). The HSR

data are input into a CNN, which is a neural network method tailored for

the analysis of visual imagery (Huang et al., 2018). More specifically, model

(a) and model (b) of FSPHD are structured as follows:

• Model (a): We apply a linear model (LM) with ridge regularization

on the responses of the three machine and deep learning models: the

response of the LSTM on the time series, the response of the CNN on

the HSR data and the response of the RF on the CS data. This model

is based on decision-level fusion, aggregating predictions obtained with

different strategies to obtain a more robust overall prediction.

• Model (b): We use an RF on the features extracted by the deep

learning models. This model is based on feature-level fusion, which

allows complex data (i.e., time series and HSR data) to obtain new

representations better correlated to the response variable and more

efficiently processable by an RF.
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Figure 2: Visual schema of the FSPHD framework, which combines heterogeneous ex-

planatory data to predict the food consumption score and the household dietary diversity

score. Models (a) and (b) are based on decision and feature fusion, respectively.

5. Experimental Evaluation

5.1. Competing methods and ablations

To evaluate the performance of the FSPHD framework, we compare it

to the performance of several baselines, ablations and competing methods.

We use the following two independent studies as our competing methods:

• As a first competing method, we select the WFP framework introduced

in Section 2.1 (WFP-VAM, 2019). This study examines the regression
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of FCS and HDDS obtained from a survey of 3,650 Burkinabe house-

holds. Households are aggregated in 567 geolocalized villages. They

use data from various sources (Open Street Map, Google Maps, Sen-

tinel 2, ACLED) as explanatory variables. Village-scale features are

extracted from each data source with an appropriate method: images

are processed by a CNN and the shortest distances from a village to a

school and a hospital and the number of violent events at 10 km are

extracted from GPS data. The features are input from a PCA, and

the first 10 main components from a ridge regression are finally input

for FCS and HDDS predictions. We ran their framework (using the

public code) with their data (personal communication) to obtain the

results.

• The second competing method is that from a study conducted by (Lentz

et al., 2019) (cf. Section 2.1). They predict FCS and HDDS in Malawi

using data obtained from the 2010 Living Standards Measurement Sur-

vey (LSMS) for training and using data obtained from the 2013 LSMS

for testing. The data for 2010 (training) and 2013 (testing) contain

12,270 and 3,999 observations, respectively, which are aggregated in

768 and 204 villages. They use linear regressions and compare the per-

formance of their models using only open and free data and adding

data from the previous LSMS survey. In our study, we take into ac-

count the performance of models that incorporate only open data in

accordance with our objectives. The data used are from diverse sources:

meteorology, precipitation, market prices and soil quality.

We also define three baseline models to test simpler machine and deep learn-
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ing techniques on different subsets of explanatory variables:

• Type (c) Model: We apply an RF directly on initial variables: time

series only, CS variables only and both types of data. These models

are based on data-level fusion.

• Type (d1) Model: We apply an LSTM suitable for the treatment of

time series.

• Type (d2) Model: We apply a CNN suitable for HSR data.

Finally, to further investigate the contribution of each group of features to

the final solution, we define three ablations of the type (b) model by applying

it as follows:

• only on LSTM features

• only on CNN features

• only on CNN features and CS variables

5.2. Experimental Setting

The FSPHD framework has been implemented using TensorFlow 1.15

under Python 3.7, and the code is publicly available on GitHub3. The RF

is set up with 900 trees with a maximum depth of 20. The LSTM is pa-

rameterized with 2 layers of 64 neurons. The cost function used is the mean

square error, and the optimizer is based on the FTRL algorithm. The CNN

is configured with 3 convolution layers with 32, 64 and 128 filters. A max

3https://github.com/pipapou/FSPHD Code
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pooling of dimension 2 is placed after each convolution layer. The cost func-

tion used is the mean square error, and the optimizer is based on the Adam

algorithm. For model (b) using feature fusion, 64 features are extracted from

the LSTM, and 128 features are extracted from the CNN. LSTM and CNN

are trained from scratch using a batch size of 250 as well as 1,000 and 100

epochs, respectively. To assess the performance, we randomly select 85% of

the dataset for model learning and 15% for testing by repeating this pro-

cedure 5 times and calculating the average performances. We use Rˆ2 to

evaluate the regression performance.

5.3. Quantitative Results

Table 4 reports the quantitative performance (Rˆ2) of the two variants

of the FSPHD framework and all the competing methods. It can be seen

how FSPHD outperforms all the competing methods and baselines, with

model (b) (i.e., the feature fusion approach) outperforming model (a) (i.e.,

the decision-level fusion approach). Even though the predictions obtained

with the FSPHD framework are still not accurate enough to be used in op-

erational contexts, the values of Rˆ2 obtained for FCS (0.469) and HDDS

(0.434) are undoubtedly statistically significant, outperforming all the com-

peting methods and thus proving the benefits of the integration of different

data science techniques for a large body of heterogeneous data.

Competing methods

The results obtained by the WFP framework in the Burkina Faso area

(cf. Table 4) are relatively modest (0.34 for FCS and 0.30 for HDDS). As

already stated in Section 2.1, the results of the WFP framework seem to be

extremely data dependent, so the same framework may obtain comparable
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results in other countries (e.g., Senegal, Sierra Leone) (WFP-VAM, 2019).

Regarding the study of Lentz et al., we note that the Rˆ2 associated with

FCS and HDDS is even lower, not exceeding 0.2.

Baseline models

We observe that the models of type (c) (only based on the use of RF

directly on explanatory variables) give performances that are already signif-

icant and close to those of more sophisticated models; by integrating only

the CS variables, we obtain Rˆ2 of 0.414 and 0.401 for FCS and HDDS, re-

spectively. This validates the data source selection and preprocessing applied

to the data in use. The type (d1) and (d2) models aim at processing data

with complex structures (time series and HSR images) with a suitable deep

learning method. The LSTM does not succeed in highlighting the sequential

aspect of time series, offering lower performance than the RF on the same

data (i.e., model (c) on the time series): 0.232 vs 0.241 for FCS and 0.223 vs

0.237 for HDDS. Our hypothesis is that in the present case, where we have

noisy response variables, the LSTM capable of detecting complex patterns

in sequential data overintercepts the noise despite our settings and therefore

overfits the data. Future work should focus on other methods to improve

the consideration of time series. The CNN on HSR data gives interesting

performance results (= 0.34 for FCS and 0.392 for HDDS); these values

are significantly improved by putting the features extracted from the CNN

into an RF (0.434 for FCS and 0.418 for HDDS).

FSPHD framework

Variants (a) and (b) of FSPHD represent two strategies for combining

different types of data. The model of type (a), which consists of aggregating
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the responses of the models with a linear model, has moderate performance

for FCS (0.375) and greater performance for HDDS (0.426), which shows

the contribution of the type (a) model using decision-level fusion for the

HDDS prediction. The model of type (b) consists of aggregating the features

of the models with an RF. This solution obtains the best performance by

combining the features of the CNN with the CS variables (0.469 for FCS

and 0.434 for HDDS). The performance is then significantly better than

that when processing CNN features and CS variables separately with an RF,

demonstrating that these two types of data provide additional information on

FS and the ability of the type (b) model using feature-level fusion to extract

this information.

31



Model Model type FCS HDDS

Competing methods

WFP study Feature fusion 0.34 0.30

Lentz et al. study Data fusion 0.16 0.18

Data-level fusion

RF (Time series) (c) 0.241 0.237

RF (CS vars) (c) 0.414 0.401

RF (Time series + CS vars) (c) 0.339 0.326

Suitable deep learning method

LSTM (Time series) (d1) 0.232 0.223

CNN (High spatial resolution data) (d2) 0.34 0.392

FSPHD Framework

Decision-level fusion

LM (RF, LSTM and CNN responses) (a) 0.375 0.426

Feature-level fusion

RF (LSTM features) (b) 0.194 0.181

RF (CNN features) (b) 0.434 0.418

RF (CNN features + CS vars) (b) 0.469 0.434

RF (CNN and LSTM features + CS vars) (b) 0.455 0.43

Table 4: Performance (Rˆ2) of the FSPHD framework, competing methods and ablations

for food consumption score and household dietary diversity score prediction. The column

“model type” designates the type of model used, according to the model categorization in

Section 5.
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5.4. Model interpretation

Due to the poor performance associated with the LSTM, it is not appro-

priate to use features importance techniques on it to deduce relevant and

reliable information. Describing the complex spatial patterns of the CNN is

also complicated because of its black box effect, which makes it also unsuit-

able for the use of classical important features techniques. We can simply say

that the land use and population dynamics used at the CNN input seem to

play an important role in FS, knowing the good CNN performance. In order

to obtain information on the importance of the variables processed by both

neural networks (i.e. CNN and LSTM), we considered the model of type (b)

which combines by feature fusion the features obtained by the LSTM and

the CNN and the CS variables. We computed on this model the permuta-

tion importance of all the variables processed by the RF (results available

on GitHub4). The permutation importance is defined as the decrease in a

model score when single feature values are randomly shuffled in the test set

and is usually used in the literature to perform regressions in machine learn-

ing (Grömping, 2015). As expected, the most important variables are the

CNN features while the features derived from LSTM and CS variables gen-

erally appear in lower positions in the ranking. Note that these features are

the result of a complex representation learning process on the original in-

put data, so that interpretability is limited to the importance of each model

(i.e., by identifying which branch of the model the most important variables

come from), and not of the original variables (e.g., conversely to what seen

4https://github.com/pipapou/Permutation-importance-for-FCS-and-HDDS
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for RF in Table 5). The interpretability of neural networks, which is a cur-

rent issue, should be the subject of future work. Several methods have been

recently developed to explain the predictions of neural network models, by

identifying the input variables (e.g., pixels, time series items) that have most

contributed to the model decision (Montavon et al., 2018; Khormuji and

Rostami, 2021), e.g., sensitivity analysis, occlusion analysis and layer-wise

relevance propagation (LRP). However, these methods are not suitable for

our experimental setting, since they are tailored to classification problems,

while our study focuses on regression. For CS variables that are directly

processed by the RF, the significance of variables can be approached by

the permutation importance. The top 10 ranks of CS variables according

to their permutation importance for FCS and HDDS are shown in Table

5. We note that variables from multiple domains are included in these two

top 10 lists: landscape structure (3 variables), population dynamics (2 vari-

ables), soil quality (2 variables), meteorological (2 variables), vegetation (1

variable), insecurity (1 variable), sanitary (1 variable) or economic (1 vari-

able) variables, which confirms the importance of the combined use of data

sources from multiple domains. Seven variables are included in the top 10 of

both FCS and HDDS, and they seem essential for the prediction of FS in

our case.

Among these variables, we find:

• The average NDVI of the year preceding the survey. The NDVI, which

is an indicator of vegetation quality, is considered only for crop areas,

so it is related to the quality of agricultural crops. An interesting fact

is that the average NDVI of the previous year is more important than
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that of the same year, which is situated near these top 10.

• Three variables related to the landscape structure: the total length of

the rivers, which allows us to evaluate the availability of water, and the

maximum and variance of the altitude. The structure of the relief has

an evident impact on agriculture (e.g., accessibility of cultivated areas

to agricultural development and water, specific types of plantations at

certain altitudes).

• Two variables express the population dynamics: the spatial autocorre-

lations at 2 km and the differential entropy associated with the popu-

lations; the population density and movements can create pressures for

FS. This confirms, with the good performance of the CNN that takes

land use and population data as input, the importance of these data

sources.

• A soil quality variable: the nutrient retention capacity, which is directly

linked to the availability of agricultural produce.

We also find that some variables are specific to a single FS indicator. The

top 5 of the FCS contains 2 variables that are absent from the HDDS top

10: the gross national expenditure of the country and the number of violent

events, which seem to be more specific to the amount of nutrients consumed.

Conversely, the average maximum temperature per day is present in the

HDDS top 5 and absent from the FCS top 10, so this variable seems to be

specifically related to the quality and diversity of the diet. Our explanation is

that crop diversification, and consequently diet diversification, is dependent

on weather and temperature.
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Rank FCS HDDS

1 Population entropy Soil quality (Nutrient reten-

tion capacity)

2 Gross national expenditure Average NDVI of previous

year

3 Average NDVI of previous

year

Maximum elevation

4 Maximum elevation Average maximum tempera-

ture per day

5 Total violent events Population entropy

6 Variance of elevation Maximum relative humidity

7 Population spatial autocorre-

lation 2 km

Total length of waterways

8 Total length of waterways Variance of elevation

9 Soil quality (nutrient reten-

tion capacity)

Number of hospitals

10 Soil quality (rooting condi-

tions)

Population spatial autocorre-

lation 2 km

Table 5: Top 10 ranks of CS variables processed by RF according to their permutation

importance for FCS and HDDS.

6. Conclusion

This study proposes the FSPHD framework, which uses machine learn-

ing methods to predict by regressions two key FS indicators that are normally

obtainable through costly and lengthy household surveys. To validate our
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models, we used as labels a database including households from across Burk-

ina Faso from 2009 to 2018 using mostly global public data as explanatory

variables to ensure the replicability and generalizability of our methods to

other countries. We faced two scientific obstacles: 1) The multifactorial as-

pect of FS implies the choice of heterogeneous input data (at the thematic,

structural and spatiotemporal scale levels) and suitable preprocessing to max-

imize the contribution of each data point. To take into account a maximum

number of facets of FS, we integrated data from different topics (landscape

structure, population dynamics, soil quality, meteorology, vegetation, inse-

curity, or economy), encoded in different types (quantitative values, GPS

points, line vectors, time series, and images) and with different spatiotem-

poral granularities, and we had to perform suitable treatments to extract

relevant information from these data (e.g., aggregations, interpolations, nor-

malizations). 2) Machine learning methods suitable for each type of variable

had to be chosen and combined. We have seen that the performance ob-

tained by our models (Rˆ2) is not high, not exceeding 0.469 or 0.434 for Rˆ2

in the prediction of FCS and HDDS, respectively. However, the results of

this study are superior to most of the rare works we were able to compare it

with. These results indicate that the prediction of these FS indicators is a

complex issue. This study adds another layer to this little-studied issue. We

have also observed the modest but significant contribution of deep learning

models (CNNs) to the processing of HSR data. The use of this type of data in

the context of FS is therefore a relevant avenue for future work. However, the

use of deep learning models (LSTM) for time series processing did not yield

significant results, and future research will include better treatment of time
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series because the temporal aspect plays an important role in FS. Addition-

ally, we have demonstrated the contribution of models combining different

types of machine learning methods suited to each type of data, which con-

firms the contribution of this kind of approach. The models of type (b) based

on feature-level fusion allow us to obtain the best performance. Finally, we

have observed that the variables indicated by the models as being the most

important for the prediction of FS indicators come from multiple domains,

which confirms the need to link FS with a large spectrum of related domains

to obtain the most comprehensive picture possible of this complex and mul-

tifactorial concept. Future work will consist of improving the architecture

of deep learning models and integrating other types of data such as textual

data (social networks, journals, etc.) to better take into account all factors

of FS. We will also focus on the explanatory aspect of the models, made

difficult by the black box effect of neural networks. For this, we are currently

working on the integration of textual data with high explicative potential.

We finally expect close collaborations with researchers from other disciplines

to enable us to obtain a qualitative evaluation protocol. Data mining ap-

proaches only find their relevance in a close partnership with the various

stakeholders, whether at the level of data production and preprocessing or at

the level of validation of the knowledge that has been extracted. A project

of this scale can only be fully realized in a close disciplinary partnership, in

which scientists, researchers and users collaborate in a permanent mutual

listening exercise.
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Appendix A. Datasets

Time series data

Monthly smoothed brightness temperature (SMT) (May to November)

Monthly total rainfall (May to November)

Monthly average minimum temperature (°C) (May to November)

Monthly average maximum temperature (°C) (May to November)

Monthly maize price (May to November)

Meteorological data

Average sunlight duration per day

Maximum relative humidity

Minimum relative humidity

Average maximum temperature per day

Average minimum temperature per day

Evaporation (mm)

Annual precipitation (mm)

Population density data

2 km spatial autocorrelation

5 km spatial autocorrelation

Gini index

Differential entropy

World Bank Economic data

Foreign direct investment net inflows (% of GDP)

Foreign direct investment net outflows (% of GDP)

Gross national expenditure (% of GDP)

Households and NPISH final consumption expenditure (% of GDP)

Military expenditure (% of GDP)

Merchandise trade (% of GDP)

GDP per capita growth (% per annum)

Normalized difference vegetation index (NDVI)

Average NDVI from May to November of the year in which the response variable was collected

Average NDVI from May to November of the year preceding the collection of the response variable

Hospitals and schools

Number of hospitals per 1,000 inhabitants

Number of schools per 1,000 inhabitants

Violent events

Total number of violent events per 1,000 inhabitants

Number of protests per 1,000 inhabitants

Number of riots per 1,000 inhabitants

Number of violent events against civilians per 1000 inhabitants

Soil quality

Nutrient retention capacity

Rooting conditions

Oxygen availability to roots

Waterways

Number of waterways

Total length of waterways per km2

Elevation

Maximum elevation

Variance of elevation

High spatial resolution data

Population density 10x10 100 m patches

Land cover - crops 10x10 100 m patches

Land cover - forests 10x10 100 m patches

Land cover - building areas 10x10 100 m patches
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 The analysis of Food Security related phenomena poses several research  

challenges 

 

 We focus on the Food Consumption Score and Household Dietary Diversity  

Score indicators 

 

 We propose the FSPHD machine learning framework for the prediction of  

such indicators 

 

 We use a large set of input data heterogeneous in terms of format and domain 

 

 The results show promising performances that outperform competing methods 
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