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Abstract
Aim of study: To validate two existing single nucleotide polymorphism (SNP) panels for parentage assignment in sheep, and develop a 

cost effective genotyping system to use in some North-Eastern Spanish meat sheep populations for accurate pedigree assignment.
Area of study: Spain
Material and methods: Nine sheep breeds were sampled: Rasa Aragonesa (n=38), Navarra (n=39), Ansotana (n=41), Xisqueta (n=41), 

Churra Tensina (n=38), Maellana (39), Roya Bilbilitana (n=24), Ojinegra (n=36) and Cartera (n=39), and these animals were genotyped 
with the Illumina OvineSNP50 BeadChip array. Genotypes were extracted from the sets of 249 SNPs and 163 SNPs for parentage assign-
ment designed in France and North America, respectively. Validation of a selected cost-effective genotyping panel of 158 SNPs from the 
French panel were performed by Kompetitive allele specific PCR (KASP). Additionally, some functional SNPs (n=15) were also genotyped.

Main Results:  The set of 249 SNPs for parentage assignment showed better diversity, probability of identity, and exclusion probabilities 
than the set of 163 SNPs. The average minor allele frequency for the set of 249, 163 and 158 SNPs were 0.41 + 0.01, 0.39 + 0.01 and 0.42 
+ 0.01, respectively. The parentage assignment rate was highly dependent to the percentage of putative sires genotyped.

Research highlights: The described method is a cost-effective genotyping system combining the genotyping of SNPs for the parentage 
assignment with some functional SNPs, which was successfully used in some Spanish meat sheep breeds.
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Abbreviations used: AI (artificial insemination); EBV (estimated breeding value); ISAG (International Society for Animal Genetics); 
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bability of identity); SNP (single nucleotide polymorphism)
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Introduction
Breeding programs have the purpose to get sustai-

nable genetic gains in one or several traits while con-
trolling the loss of genetic variation. Traditional pedigree 

based-BLUP (Best linear unbiased prediction) selection 
(Henderson, 1984) is used to calculate estimated breeding 
values (EBVs) obtained from performance records and 
pedigree information. However, the success of genetic 
evaluations systems is directly affected by the accuracy 
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of pedigrees. Complete pedigree information is a prere-
quisite to get accurate EBVs, correctly rank parents and 
offspring and maximize the genetic gain (Israel & Weller, 
2000; Raoul et al., 2016). In this sense, the proportion 
of known sires is very low in Spanish meat sheep popu-
lations because the management (extensive or semi-ex-
tensive farming) relies very little on artificial insemina-
tion (AI) or natural mating with a single ram per group 
of ewes. Moreover, a number of these populations are 
considered as endangered breeds with reduced effective 
population size, and reared in small-sized flocks. Therefo-
re, the implementation of a mating scheme based in pedi-
gree information can control the inbreeding that is greatly 
affected by population structure (Gutiérrez et al., 2008).

In this situation, the number of ewes belonging to a 
breeding program nucleus remains limited, because only 
some of them are inseminated by or mated to a single 
identified ram. Furthermore, another source of incorrect 
pedigree record information is usually due to ewes failing 
to keep their litter together, or lamb desertion, that may 
lead to limit the selection response (Barnett et al., 1999; 
Visscher et al., 2002). 

Therefore, genomic information like DNA markers 
can contribute to reconstruct the phylogenetic relations-
hips of populations. Microsatellite markers have been 
used extensively for parentage control in sheep (Arruga 
et al., 2001; Glowatzki-Mullis et al., 2007; Saberivand et 
al., 2011; Visser et al., 2011; Souza et al., 2012; da Silva 
et al., 2014) and are recommended by the International 
Society for Animal Genetics (ISAG) as they are highly 
abundant and informative, relatively inexpensive to use, 
and generate satisfactory results in tests for paternity ex-
clusion. However, as DNA markers in genomic selection 
studies (Meuwissen et al., 2013), single nucleotide poly-
morphisms (SNPs) are now largely developed on SNPs 
chip arrays allowing high throughput genotyping (Heaton 
et al., 2002; Werner et al., 2004; Hayes, 2011). Recent-
ly, various SNP panels have been developed for sheep of 
different international breeds specifically for parentage 
assignment (Bell et al., 2013; Clarke et al., 2014; Hea-
ton et al., 2014; Tortereau et al., 2017). The SNPs panel 
developed from French breeds was the first panel based 
on European sheep breeds (Tortereau et al., 2017). The-
se authors pointed out that four Spanish breeds (Churra, 
Ojalada, Castellana and Rasa aragonesa) belonging to the 
Sheep HapMap breeds of the International Sheep Geno-
mics Consortium (Kijas et al., 2012a) had similar minor 
allele frequency (MAF) values for the selected SNPs to 
that described in the French breeds, suggesting that this 
panel should perform well in these Spanish breeds. 

In addition, in Spain, a national breeding program for 
resistance to classical scrapie was implemented. In the 
breeding programs, animals are genotyped, and those  
carrying favorable Prnp alleles for resistance are used as 
breeding animals (Hunter et al., 1997; Acín et al., 2004). 

In the same way, a selection program for prolificacy in 
Rasa Aragonesa breed implements the genotyping of re-
producers for alleles associated to prolificacy (Calvo et 
al., 2020), as well as that related to reproductive seaso-
nality (Calvo et al., 2018). Apart from these SNPs, some 
other SNPs are of interest to genotype for validation of 
their effects in these Spanish breeds, such as atypical scra-
pie susceptibility (Moum et al., 2005), lentivirus suscepti-
bility infection (Heaton et al., 2012; Sider et al., 2013), or 
other alleles found in other breeds and related to prolifica-
cy (Bodin et al., 2007; Drouilhet et al., 2013).

The objective of this study was to validate two exis-
ting SNP panels for parentage assignment in sheep, in-
cluding the French panel, and develop a cost-effective 
genotyping system of a reduced set of SNPs in an open 
platform to use in some North-Eastern Spanish meat 
sheep populations for accurate pedigree assignment. In a 
second stage, we tested and validated the performance of 
the cost-effective genotyping system together with some 
functional SNPs in replacements lambs from different 
farms and breeds. 

Material and methods
Samples and genotyping

OvineSNP50 BeadChip array genotyping 

Three hundred and thirty-five ewes from nine Spa-
nish sheep breeds were sampled: Rasa Aragonesa (n=38), 
Navarra (n=39), Ansotana (n=41), Xisqueta (n=41), 
Churra Tensina (n=38), Maellana (n=39), Roya Bil-
bilitana (n=24), Ojinegra (n=36) and Cartera (n=39). 
Sheep breeds considered in the current work are specia-
lized in meat production. The Churra Tensina, Ansotana,  
Maellana, Roya bilbilitana, Xisqueta and Cartera are con-
sidered endangered sheep breeds, having the first four a 
very low census ranging between 8,000 and 13,000 heads  
(https://www.mapa.gob.es/es/ganaderia/temas/zootecnia/
razas-ganaderas/razas/catalogo/ ). Animals were selected 
as unrelated as possible. In this sense, the maximum num-
ber of animals selected from each flock was 4, and they 
were unrelated based on their pedigree records. Further-
more, to check Mendelian inherence 11 duos (2, 1, 2, 2, 2 
and 2 from Rasa aragonesa, Navarra, Ansotana, Xisqueta, 
Churra Tensina, and Cartera, respectively) and 3 trios (2 
and 1 from Navarra and Rasa Aragonesa sheep breeds, 
respectively) were also selected. 

Genomic DNA was extracted from blood samples of 
the 335 ewes using the FlavorPrep Genomic DNA mini 
kit (Flavorgen, Ibian, Zaragoza, Spain). DNA samples 
were genotyped with the Illumina (San Diego, Califor-
nia, USA) OvineSNP50 BeadChip array designed by the 
International Sheep Genome Consortium (Kijas et al., 

https://www.mapa.gob.es/es/ganaderia/temas/zootecnia/razas-ganaderas/razas/catalogo/
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2012b). SNP genotyping services were provided by the 
"Xenetica Fontao” company (www.xeneticafontao.com).

Validation by kompetitive allele specific PCR (KASP)

A total of 2,018 replacement ewe lambs from 12 farms 
and 3 breeds, and their putative fathers were sampled (428 
sires). Only the candidate parents and their offspring were 
genotyped to perform paternity assignment. Furthermore, 
the 11 duos, the 3 trios, and 5 randomly selected samples 
from each breed (45 samples in total) were also genotyped 
to check the consistency between both genotyping approa-
ches: OvineSNP50 BeadChip array and KASP (design and 
assays were performed by the LGC company, Biotools, 
Madrid, Spain). Validation of a selected cost-effective ge-
notyping panel of SNPs from the French panel was perfor-
med by KASP. Additionally, some functional SNPs (n=15) 
were also genotyped located in BMP15 (n=3; Bodin et al., 
2007; Martinez-Royo et al., 2008; Demars et al., 2013), 
B4GALNT2 (n=1; Drouilhet et al., 2013), MTNR1A (n=1; 
Calvo et al., 2018), PRNP (n=7; Hunter et al., 1997; Acín 
et al., 2004; Moum et al., 2005), TMEM154 (n=2; Hea-
ton et al., 2012; Sider et al., 2013) and HSP90AA1 (n=1; 
Salces-Ortiz et al., 2015). The functional SNP coordinates 
and affected traits are indicated in the Table 1. Results were 

visualized with SNP Viewer 2 software version 4.0 (LGC, 
2013). Genotype data for each animal were exported for the 
statistical analysis. 

Analysis of genotypic data

Selection of the SNP panel for parentage assignment

Firstly, we applied the quality control (QC) criteria 
on the raw genotypes obtained from the OvineSNP50 
BeadChip array using PLINK 1.9 (Chang et al., 2015) 
as follows: i) Individuals with low call rate (< 0.97) 
were excluded from additional analysis; ii) SNPs with 
unknown location of the marker in the ovine chromo-
somes were excluded; iii) SNPs were also excluded if 
they showed a low call rate (< 0.97), a MAF < 0.05, or 
significant deviations from Hardy-Weinberg equilibrium 
(HWE) (p-value < 0.001) within breed. The subsequent 
analysis focused on two sets of SNPs; a first set of 249 
SNPs published from the French panel for parentage 
assignment (Tortereau et al., 2017) and the 163 SNPs 
panel described in Heaton et al. (2014) used in the North 
American and globally diverse breeds. Paternity assign-
ment effectiveness does not only depend on the number 
of SNPs used but also on the level of informativeness 

CHR SNP position in Oar3.1 and allele variation dbSNP name Gene Phenotype

11 11: g.36938224T>A rs588626728 B4GALNT2 Prolificacy/FecLL [1]

13 13:g.46225659G>A rs601660229 PRNP Classical scrapie susceptibility [2,3]

13 13:g.46225660C>T rs591379086 PRNP Classical scrapie susceptibility [2,3]

13 13:g.46225674C>T rs598580733 PRNP Atypical scrapie susceptibility [4]

13 13:g.46225714G>A rs605048948 PRNP Classical scrapie susceptibility [2,3]

13 13:g.46225764A>C NA PRNP Classical scrapie susceptibility [2,3]

13 13:g.46225765G>A rs160575103 PRNP Classical scrapie susceptibility [2,3]

13 13:g.46225766G>T rs400844237 PRNP Classical scrapie susceptibility [2,3]

17 17:g.4857244 G>A rs408593969 TMEM154 Lentivirus susceptibility [5,6]

17 17:g.4857350 T>A rs427737740 TMEM154 Lentivirus susceptibility [5,6]

19 19:g.65645462C>G rs397514116 HSP90AA1 Sperm DNA fragmentation [7]

26 26:g.15118464 G>A rs403212791 MTNR1A Reproductive seasonality [8]

X X:g.50971644-50971660indel rs421419167 BMP15 Prolificacy/FecXR [9]

X X: g. 50971170C>T NA BMP15 Prolificacy/FecXGR [10]

X 50971158C>T NA BMP15 Prolificacy/FecXL [11]

Table 1. Functional SNPs jointly genotyped with the subset of 158 SNPs from the French panel for the validation by Kompetitive 
allele specific PCR (KASP). Information about the location, dbSNP name in Ensembl variation database, gene, and associated phe-
notype. References associated to these genes and phenotypes are indicated by using a superscript.

CHR: chromosome. NA: not available. [1]Drouilhet et al., 2013; [2]Hunter et al., 1997; [3]Acín et al., 2004; [4]Moum et al., 2005; [5]

Heaton et al., 2012; [6]Sider et al., 2013; [7]Salcés-Ortiz et al., 2015; [8]Calvo et al., 2018; [9]Martinez-Royo et al., 2008; [10]Demars et 
al., 2013; [11] Bodin et al., 2007

http://www.xeneticafontao.com


4 Jorge H. Calvo, Magdalena Serrano, Flavie Tortereau  et al.

Spanish Journal of Agricultural Research December 2020 • Volume 18 • Issue 4 • e0406

that these markers provide. To study the informativeness 
of the SNPs included in this work, three informative in-
dexes were calculated for both sets of SNPs and for each 
population included in this study: the MAF, the exclu-
sion probability (PE), and the probability of identity (PI) 
(Schütz & Brenig, 2015; Tortereau et al., 2017). PE is 
the probability to exclude one (PE1) or two (PE2) rando-
mly sampled parent(s) from the parentage of an indivi-
dual which is truly unrelated to them. PE1 assumes that 
genotypes are known for the offspring and a putative pa-
rent, but genotypes are not available for a known parent 
(one parent missing). PE2 assumes genotypes are known 
for the offspring, one confirmed parent, and one putati-
ve parent (both parents genotyped). PI is the probability 
that two randomly selected individuals in a population 
have identical genotypes for all the SNPs genotyped.

A reduced panel of 158 SNPs from the French panel 
was chosen to use in an open platform for a cost-effec-
tive genotyping for parentage assignment. Only SNPs 
with a MAF >0.3 and a call rate >0.97 in the 9 breeds  
were selected.

A reduced panel of 158 SNPs from the French panel 
was chosen to use in an open platform for a cost-effec-
tive genotyping for parentage assignment. Only SNPs 
with a MAF >0.3 and a call rate >0.97 in the 9 breeds  
were selected.

Parentage assignment validation 

We carried out the paternity assignment in each of the 
ten farms by using the CERVUS software (Kalinowski et 

al., 2007). CERVUS uses a simulation procedure to deter-
mine the distribution of the critical values of logarithm of 
the odds (LOD) or Delta score for 80% and 95% confiden-
ce levels for the candidate father–offspring pairs. LOD sco-
re was used for paternity assignment. The simulation pa-
rameters were as follows: 10,000 simulated offspring, the 
number of candidate parents and the sampled sires was pro-
vided by the breeders’ association (varying between 50% 
and 100%), at least 90% loci having allele calls, with an 
estimated 5% genotyping error rate. We allowed one SNP 
genotype mismatch between offspring and its assigned sire 
because of technical genotyping failures.

Results and discussion
We selected two sets of SNPs for parentage assign-

ment described in sheep. All SNPs from these panels ful-
fill the QC criteria. Tortereau et al. (2017) reported that 
the panel of 249 SNPs used for parentage assignment 
in the French breeds had similar medium MAF values 
in four Spanish breeds (Churra, Ojalada, Castellana and 
Rasa Aragonesa) belonging to the Sheep HapMap breeds 
(Kijas et al., 2012a), suggesting that this set of SNPs 
should perform well in these breeds. Furthermore, the 
North American panel of 163 SNPs for parentage testing 
(Heaton et al., 2014) also found that the Rasa Arago-
nesa sheep breed had the highest MAF value (0.40) of  
all breeds.

In the nine North-Eastern Spanish meat sheep popu-
lations included in this study, no mendelian inheritance 
errors were detected in verified family trios or duos for 

Breeds
French panel (249 SNPs)

North American and globally diverse 
breeds (163 SNPs)

French panel subset (158 SNPs)

MAF PI 1-PE1 1-PE2 MAF PI 1-PE1 1-PE2 MAF PI 1-PE1 1-PE2

Ansotana 0.42 2.36E-102 4.28E-14 1.53E-35 0.40 7.88E-65 4.96E-09 6.70E-23 0.43 1.09E-64 2.38E-09 5.90E-23

Churra Tensina 0.39 5.02E-102 3.29E-14 1.17E-35 0.37 2.11E-63 1.95E-08 2.75E-22 0.41 3.38E-65 4.62E-09 1.03E-22

Xisqueta 0.43 1.07E-100 4.62E-14 1.63E-35 0.40 1.14E-64 6.13E-09 7.83E-23 0.44 2.57E-66 2.20E-09 5.58E-23

Navarra 0.43 1.23E-98 1.34E-13 4.18E-35 0.40 8.88E-65 5.68E-09 7.02E-23 0.44 2.01E-65 1.98E-09 5.08E-23

Rasa Aragonesa 0.42 2.75E-100 1.38E-13 4.61E-35 0.40 9.57E-66 4.79E-09 6.08E-23 0.43 1.22E-64 2.44E-09 6.06E-23

Roya Bilbilitana 0.40 1.44E-100 9.67E-14 3.27E-35 0.38 4.60E-62 1.35E-08 1.67E-22 0.42 4.94E-64 3.84E-09 8.85E-23

Maellana 0.40 2.75E-100 1.38E-13 4.61E-35 0.38 7.39E-63 1.65E-08 2.26E-22 0.42 1.58E-64 3.24E-09 7.66E-23

Ojinegra 0.41 1.44E-100 9.67E-14 3.27E-35 0.39 7.82E-64 1.01E-08 1.33E-22 0.42 3.50E-65 2.79E-09 6.76E-23

Cartera 0.41 2.61E-102 9.58E-14 3.26E-35 0.39 2.98E-64 1.01E-08 1.38E-22 0.43 2.38E-66 2.67E-09 6.56E-23

Table 2. Major statistics for two parentage panels (French, North American and globally diverse breeds), and a subset of 158 SNPs 
from the French panel on the 9 Spanish populations: MAF, PI (Probability of identity), PE1 and PE2 (exclusion probabilities consi-
dering the exclusion of one or the two parents respectively).
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both panels. SNPs were in Hardy-Weinberg equilibrium. 
There were not any uninformative SNPs in each breed 
group (MAF=0) in any breed group. The average MAF 
for the sets of 249 and 163 SNPs were 0.41 + 0.01, and 
0.39 + 0.01, respectively. The set of 249 SNPs had bet-
ter diversity, PI, PE1 and PE2 values than the set of 163 
SNPs (Table 2). PI, PE1 and PE2 values are highly depen-
dent on the number of SNPs (Jamieson & Taylor, 1997), 
but Tortereau et al. (2017) demonstrated that these values 
were better on these populations with 150 SNPs randomly 
selected from the French panel than those of the North 
American panel. 

For the reasons described above, we decided to select 
a reduced panel of 158 SNPs from the French panel for a 
cost-effective genotyping. Only, SNPs with a MAF value 
greater than 0.3 and with a call rate > 0.97 in all the nine 
populations were retained. The SNPs were distributed 
over the 26 autosomes. The major statistics for this panel 
of 158 SNPs (MAF, PI, PE1 and PE2) are shown in Table 
2. The names, MAFs, and other features of the SNPs of 
each panel are shown in Tables S1-S3 [suppl]. The avera-
ge MAF for the set of 158 SNPs was 0.42 + 0.01, having 
better values than the other two sets of SNPs. Slightly  
better values were found for the reduced panel (158 SNPs) 
compared to the American one (163 SNPs) for the PI, PE1 
and PE2 values, although Ansotana and Rasa Aragonesa 
showed lower PI values with the set of 163 SNPs. At the 
population level, the lowest and greatest average MAF 
values were obtained respectively in Churra tensina, and 
in Xisqueta and Navarra breeds whatever the panel. In ge-
neral, all breeds showed good PI, PE1, and PE2 values. 
For the set of 158 SNPs, the probability (PI) that two ran-
domly selected individuals have identical genotypes wi-
thin breed was very low, reaching its lowest and highest 
values in the Cartera (2.38E-66) and the Roya Bilbilita-
na populations (4.94E-64), respectively. However, in the 
Rasa Aragonesa breed the lowest PI value was found with 
the set of 163 SNPs (9.57E-66) compared to the set of 158 
SNPs (1.22E-64).

The set of 158 SNPs was also used to perform paren-
tage assignment validation using KASP technology. Fur-
thermore, the 15 functional SNPs were also genotyped 
in conjunction with those used for parentage assignment 
for a total of 173 SNPs. KASP technology was chosen 
because is a very cost-effective genotyping platform. In 
this sense, the total cost per sample for a set of 192 SNPs 
assay (DNA extraction and genotyping a maximum of 
192 SNPs) was €9 when dealing with more than 1,500 
individuals (all-inclusive service from the LGC, Geno-
mics Hoddesdon, UK). The price goes down around €2 
when genotyping more than 3,000 samples. Five SNPs 
from the reduced panel failed or had a call rate <0.95 in 
KASP genotyping. However, MAF, PI, PE1 and PE2 had 
similar values (Table S4 [suppl]). Functional SNPs were 
genotyped successfully. For example, we could genoty-

pe efficiently for the numerous alleles of the PRNP gene 
(Table 1) at codons 136 (p.A136V,T), 141 (p.L141F), 
154 (p.R154H) and 171 (p.Q171R,H,K), identifying 
3, 2, 2, and 4 alleles for each codon, respectively. This 
validation was performed in 12 commercial farms from 
three different breeds. Farmers declared a proportion 
of putative sires sampled from the farm because not all 
the putative males were avalaible, mainly because some 
sires were dead. Table 3 shows the assignment rate in 
different farms from the three breeds. As expected when 
the list of putative sires was completely (or almost) ge-
notyped in a farm, a very high assignment rate was ob-
tained. In two farms, a 100% assignment rate was achie-
ved. In general, the assignment rate is highly dependent 
to the percentage of putative sires genotyped. We only 
found one out of 2,018 replacements ewes (farm G) 
with two possible parents, a father-offspring pair. This 
problem has been previously pointed by Tortereau et al. 
(2017) recommending to genotype at least 180 SNPs gi-
ven the number of false-positive results when the dam is 
not genotyped and the true sire is not among the candi-
date sires or are highly-related. Because this is an open 
genotyping platform we could complete the panel with 
more SNPs to increase the parentage assignment power; 
or add new validated functional SNPs.

The total cost per sample for this set of 173 SNPs for 
parentage assignment and genotyping some functional 
genes (the same price is for the genotyping a maximum 
of 192 SNPs) is similar to those used with microsa-
tellites. In this way, this panel is routinely used in Rasa 
Aragonesa and Ojinegra sheep breeds for parentage as-
signment and genotyping of functional SNPs by KASP. 
Marker-or gene-assisted selection (MAS/GAS) is been 
applied in these breeds for pre-selection of replacement 
animals for increasing frequency of favorable alleles 
of a major gene, for example PrnP alleles for scrapie 
resistance or BMP15 alleles for litter size. However, a 
balance over time between selection for polygenes and 
the major gene for a given trait is needed to avoid in-
breeding, and maintain the genetic variability within  
the breed.

In conclusion, the described method is successfully 
used in some meat Spanish sheep breeds, combining the 
genotyping of SNPs for the parentage assignment with 
some functional SNPs that can be used for pre-selection 
of replacement animals. The described method is a cost 
effective genotyping system, which is routinely used in 
Rasa Aragonesa and Ojinegra meat sheep breeds in their 
selection schemes by KASP genotyping technology. In 
addition, the SNPs for the parentage assignment could 
be genotyped using other genotyping platforms such as, 
for example, a custom low density array (these SNPs are 
included in the Illumina OvineSNP50 BeadChip array) 
or by Sequenom technology as described by Tortereau  
et al. (2017).
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