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Abstract 13 

Intermittent rivers and ephemeral streams (IRES), those watercourses that periodically cease 14 

to flow or dry, are the world’s most widespread type of river ecosystem. Our understanding 15 

of the natural hydrology and ecology of IRES has greatly improved, but their responses to 16 

extreme events such as drought remains a research frontier. In this review, we present the 17 

state of the art, knowledge gaps, and research directions on droughts in IRES from an 18 

ecohydrological perspective. We clarify the definition of droughts in IRES, giving 19 

recommendations to promote transferability in how ecohydrological studies characterize 20 

droughts in non-perennial stream networks. Based on a systematic search of the literature, we 21 

also identify common patterns and sources of variation in the ecological responses of IRES to 22 

droughts and provide a roadmap for further research to enable improved understanding and 23 

management of IRES during those extreme hydrological events. Confusion in the 24 

terminology and the lack of tools to assess the hydrological responses of IRES to drought 25 

may have hindered the development of drought research in IRES. We found that 44% of 26 

studies confused the term drought with seasonal drying and that those that measure droughts 27 
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in a transferable way are a minority. Studies on ecological responses to drought in IRES 28 

networks are still rare and limited to a few climatic zones, organisms and mainly explored in 29 

perennial sections. Our review highlights the need for additional research on this topic to 30 

inform IRES management and conservation. 31 

Keywords: fragmentation, extreme events, non-perennial rivers, population, 32 

communities, hydrology 33 

Significance Statement 34 

Drought severity and frequency is increasing due to climate change, affecting river 35 

ecosystems around the world. Here, we review the current understanding, knowledge gaps, 36 

and research directions for investigating ecohydrological responses to droughts in intermittent 37 

rivers and ephemeral streams, i.e., those streams that naturally cease to flow at some point in 38 

time. Studies assessing the effects of droughts in IRES networks are still limited to a few 39 

climatic zones, countries and organisms, most probably because disentangling ecological 40 

responses from natural flow intermittence to those from drought remains a challenge.  41 

  42 
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1. Introduction 43 

Intermittent rivers and ephemeral streams (IRES), those watercourses that periodically cease 44 

to flow or dry, are the world’s most widespread type of river ecosystem (Thibault Datry, 45 

Bonada, & Boulton, 2017; Messager et al., 2021). IRES comprise 51-60% of the global river 46 

and stream network by length (Thibault. Datry, Larned, & Tockner, 2014; Messager et al., 47 

2021), and range from ephemeral streams that occasionally flow for a few days after heavy 48 

rain to intermittent rivers that may recede to isolated pools or dry out completely. While most 49 

prevalent in arid and semi-arid regions, IRES naturally occur in all climates, biomes, and 50 

continents, including in the humid tropics and polar regions (Thibault Datry et al., 2017; 51 

Messager et al., 2021; Stubbington, England, Wood, & Sefton, 2017).  52 

Anthropogenic global change has affected the hydrology of IRES (Hammond et al., 2021; 53 

Sauquet et al., 2021; Tramblay, Llasat, Randin, & Coppola, 2020). The duration, frequency, 54 

timing, and spatial extent of flow cessation is changing in many IRES globally due to climate 55 

change, water abstraction and land-use changes (de Graaf, Gleeson, van Beek, Sutanudjaja, & 56 

Bierkens, 2019; Larned, Datry, Arscott, & Tockner, 2010). While climate-driven shifts from 57 

perennial to intermittent flow are predicted to increase in the next decades for streams and 58 

rivers across global regions (Döll & Schmied, 2012), naturally intermittent watercourses have 59 

also become perennial due to flow regulation and effluent recharge (Halaburka et al., 2013; 60 

Hamdhani, Eppehimer, & Bogan, 2020). Our understanding of the natural hydrology and 61 

ecology of IRES has greatly improved in the past decade, but their responses to extreme 62 

events such as drought and to climate change remains a research frontier.  63 

Contrasting with the predictable cycles of flow cessation and resumption that are typical of 64 

most IRES, hydrological droughts are unpredictable and severe events characterized by long-65 

lasting and spatially extended deficit in surface water (Tallaksen & Van Lanen, 2004). 66 

During droughts, water discharge decreases and aquatic habitats contract beyond their long-67 

term seasonal averages (Boulton, 2003). Droughts can cause drying conditions to extend 68 

temporally and spatially within IRES networks (Jaeger, Olden, & Pelland, 2014). During 69 

such events, perennial or near-perennial reaches may dry out partially or completely and 70 

intermittent reaches may experience longer and more severe dry periods (Lake, 2011).  71 

Hydrological droughts lead to a cascade of abiotic changes that alter the ecological and 72 

biogeochemical functioning of IRES networks. For instance, increasing drying extent can 73 
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increase river network fragmentation, which decreases dispersal capacities and thus 74 

compromises the resilience and survival of aquatic organisms (Jaeger et al., 2014). The biotic 75 

communities of IRES are typically hypothesized to be more resistant and resilient to droughts 76 

than perennial communities based on the assumption that species adaptations to regular 77 

drying provide advantages under drought conditions (Hill et al., 2019). However, there is 78 

limited evidence to date for such subdued responses to drought in IRES (Bogan & Lytle, 79 

2011), as unpredictable and severe drying events may overcome any seasonal adaptations.  80 

Until recently, the ecohydrology of droughts in IRES has received little attention (Hill et al., 81 

2019; Lake, 2011). Most research on IRES has focused on understanding how seasonal 82 

drying influences ecological processes and patterns in river networks (Thibault Datry et al., 83 

2017; Leigh & Datry, 2017; Vander Vorste, Sarremejane, & Datry, 2020). While Lake (2011) 84 

provided an extensive overview of the ecological literature of droughts in IRES, little 85 

distinction was made between studies that focus on regular flow intermittence from those on 86 

anomalous drying. Since then, a growing body of literature has documented ecological 87 

responses to droughts at individual sites or for individual ecosystem components, yet a global 88 

overview of the ecohydrology of droughts in IRES is still lacking.  89 

Here, we review the current understanding, knowledge gaps, and research directions for 90 

investigating droughts in intermittent rivers and ephemeral streams from an ecohydrological 91 

perspective. Based on a systematic search of the literature, we first identify trends and gaps in 92 

the ecohydrology of IRES during droughts. Second, we define droughts in IRES and give 93 

recommendations to promote transferability in how ecohydrological studies characterize 94 

droughts in non-perennial stream networks. Third, we summarize knowledge on the 95 

ecohydrology of IRES, focusing on how physical, biological and ecological processes are 96 

naturally and seasonally affected by varying spatial and temporal drying patterns. Fourth, we 97 

review the ecological consequences of droughts on riverine biotic communities as well as the 98 

impact of anthropogenic stressors on ecosystem responses to droughts in IRES. Last, we 99 

provide a roadmap for further research to enable improved understanding and management of 100 

IRES during droughts. Our review highlights the need for additional research on this topic to 101 

inform conservation of  IRES in the Anthropocene given the ongoing increase in frequency 102 

and severity of droughts (Cook et al., 2020; Lehner et al., 2017; Pokhrel et al., 2021; Spinoni, 103 

Vogt, Naumann, Barbosa, & Dosio, 2018) . 104 
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We performed a systematic search on Web of Science to identify literature on 105 

ecohydrological responses in IRES during droughts (see Appendix 1 for the search terms). 106 

This search combined a term related to intermittence (e.g. temporary, intermittent), a 107 

descriptor of a lotic waterbody (e.g. river, stream) and the word drought. Our word list was 108 

limited to the most specific terms used to refer to IRES to avoid collecting unspecific 109 

literature (but see Bush et al. 2020 for a more exhaustive list of terms). Whereas we obtained 110 

12206 hits when searching for a waterbody term and drought, we only received 904 hits (i.e., 111 

7.4% of the former) when searching for literature specifically addressing IRES and drought 112 

(Appendix 1). Of these 904 articles, 109 addressed ecohydrological responses to drought in 113 

IRES, of which 43% (n=46) used the term “drought” to refer to seasonal drying and were 114 

thus excluded from further analysis. Of the 63 remaining studies, 3 were reviews, 4 were 115 

experiments and the rest were field studies that looked at community (73%), population 116 

(23%), and/or hydro-biogeochemical processes and ecosystem function (9%) responses to 117 

drought in IRES (some studies investigated multiple types of responses, organisms, and 118 

climates). Most experiments and field studies looked at macroinvertebrate (57%) or fish 119 

(32%) responses, and 85% of studies focused on Mediterranean and semi-arid to arid climates 120 

even though 53% of IRES, by length, occur outside of those climates (Figure 1; see 121 

Appendix 1, Fig. S1 for a map of climate zones). Knowledge on the ecohydrology of IRES 122 

during drought is thus limited. In this review, we summarize available evidence when 123 

possible but present hypotheses for those processes and scales for which little information 124 

exists. 125 

 126 

2. Defining and describing droughts in IRES 127 

 128 

2.1. Common definitions of drought 129 

A drought can be most concisely defined as “a deficit of water relative to normal conditions” 130 

(Sheffield & Wood, 2011). Droughts are classified into four major types based on the 131 

impacted system of interest (Wilhite & Glantz, 1985): (1) a meteorological drought (also 132 

called climatological drought) is a deficiency in precipitation, sometimes together with 133 

increased potential evapotranspiration, that is long-lasting and spans a large area; (2) an 134 

agricultural drought (also called soil moisture drought) is a deficit in plant-available water, 135 

usually impacting crops; (3) a hydrological drought is a deficit in surface or subsurface water 136 

levels or flows (see Van Loon, 2015 for a recent review); and (4) a socio-economic drought 137 
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expresses a failure of water resources systems to meet water demands by society, often 138 

combining the three other types of droughts (Mishra & Singh, 2010). A fifth kind of drought 139 

has long been subsumed under the socio-economic category but is increasingly recognized as 140 

a distinct category: ecological drought (Crausbay et al., 2017; Tallaksen & Van Lanen, 2004). 141 

An ecological drought is “an episodic deficit in water availability that drives ecosystems 142 

beyond thresholds of vulnerability, impacts ecosystem services, and triggers feedbacks in 143 

natural and/or human systems” (Crausbay et al., 2017).  144 

 145 

The reason for such specificity in defining droughts is that management actions and policies  146 

are influenced by which type of drought is defined and how (Lloyd-Hughes, 2014). Drought 147 

response strategies vary according to the severity and extent of water deficit, and must be 148 

adapted to the differences in temporal and spatial characteristics among drought types (e.g., 149 

hydrological droughts are spatially more heterogeneous than meteorological droughts; 150 

(Changnon, 1987; Eltahir & Yeh, 1999; Van Loon, 2015). Defining drought is also needed to 151 

avoid conflation between meteorological droughts and climatic aridity (Wilhite, 1992). A 152 

meteorological drought is a finite event, an anomalous precipitation deficit, whereas aridity is 153 

a climate normal expressing a continual negative water balance due to evapotranspiration 154 

exceeding precipitation. As such, these two phenomena require distinct policies and water 155 

resource management actions. In this section, our aim is first to assess the usage of the term 156 

drought in IRES research, thus focusing mostly on meteorological and hydrological droughts, 157 

and second, to better define hydrological droughts in IRES.  158 

 159 

2.2. Limitations of current definitions of droughts in IRES 160 

The term drought is loosely handled in freshwater ecology. Few studies in this field define 161 

their use of the term or quantitatively describe the drought at hand (Humphries & Baldwin, 162 

2003; Lake, 2011). Those studies that mention a type of drought usually do so by 163 

distinguishing between seasonal and supra-seasonal types of hydrological droughts (Lake 164 

2003; Kovach et al., 2019). Seasonal droughts are seen as predictable, periodic and of limited 165 

severity, while supra-seasonal droughts are unpredictable, aseasonal or extending beyond one 166 

season, with greater magnitude and severity (Boulton, 2003; Humphries & Baldwin, 2003; 167 

Lake, 2003). Lake (2003) differentiated seasonal droughts as “press” disturbances (i.e., 168 

arising sharply, and rapidly reaching a level that is maintained constant over time; (Lake, 169 
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2000) from supra-seasonal droughts that he conceptualized as “ramp” disturbances (i.e., 170 

progressively and steadily increasing over time; Lake, 2000).  171 

 172 

Here we contend that the use of the term “seasonal drought” is not beneficial to the 173 

scholarship of freshwater ecology, particularly as it relates to IRES. Just as meteorological 174 

droughts must be distinguished from aridity, hydrological droughts must be distinguished 175 

from natural flow intermittence in IRES. Flow cessation by itself is not an anomaly in IRES. 176 

On the contrary, water flows for only a few weeks or days every year in many non-perennial 177 

rivers (Vidal-Abarca et al., 2020). Dryland stream catchments typically exhibit great intra- 178 

and inter-annual variability in rainfall (Tooth, 2000), so flow does not necessarily follow 179 

regular seasonal patterns in non-perennial rivers — further invalidating the relevance of the 180 

term seasonal drought. Whether seasonal drought is a legitimate term is not a new debate in 181 

hydrology and meteorology (e.g., McBryde, 1982; Steila, 1981), yet we believe that its usage 182 

is particularly counter-productive to the study and conservation of IRES. Of the 109 studies 183 

returned by our initial literature search (Appendix 1), nearly half used the term drought 184 

synonymously with flow intermittence or called it only ‘drought’ rather than ‘seasonal 185 

drought’. Its usage muddles the literature on droughts in IRES (as exemplified in this review), 186 

but also harms public perception of IRES by perpetuating negative connotations associated 187 

with flow intermittence (Leigh, Boersma, Galatowitsch, Milner, & Stubbington, 2019; 188 

Rodríguez-Lozano, Woelfle-Erskine, Bogan, & Carlson, 2020). 189 

 190 

Beyond definitions, we found that few studies characterized the droughts that they 191 

investigated in hydrological terms. Of the 55 articles we reviewed that examined a specific 192 

drought in IRES, 5 omitted to describe it altogether, 20 only provided a description of the 193 

associated meteorological drought, 22 only described the drought hydrologically, and 8 194 

provided both meteorological and hydrological descriptors of the drought. Describing the 195 

flow conditions of a system under drought is an important first step. However, transferable 196 

measures of the attributes of droughts are also needed to enable comparison across studies, 197 

time periods, regions and watersheds — such attributes include the severity (or intensity), 198 

timing, duration, and spatial extent of the drought. In Table 1, we provide definitions of 199 

common flow regime and drought attributes (and see the following Section 2.3 on 200 

quantitative indices used in deriving these attributes). Of those studies that described the 201 

drought meteorologically, 64% relied on established, transferable indices (e.g., Standardized 202 

Precipitation Index, Palmer Drought Severity Index). By contrast, only 4 studies in total 203 
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provided an established, transferable measure of the hydrological drought under study (e.g., 204 

hydrological return period of annual flow, Palmer Hydrological Drought Index). This lack of 205 

description of droughts by ecological studies is a long-standing issue which limits the 206 

generalizability of their findings and impedes comparative analyses (Lake, 2011). And while 207 

reporting the characteristics of the meteorological drought associated with the hydrological 208 

drought under study provides valuable information, it does not enable a standardized 209 

comparison across localities because identical meteorological droughts can result in 210 

significantly different hydrological conditions across regions and watersheds.  211 

 212 

How meteorological anomalies translate to hydrological droughts is a complex phenomenon 213 

that depends on climate, each river’s flow regime, catchment characteristics, streambed 214 

substrate, reach geomorphology, antecedent conditions, and human responses to droughts 215 

(Van Loon, 2015; Figure 2). Hydrological droughts tend to be spatially much patchier than 216 

meteorological droughts, which are driven by large-scale atmospheric processes (Tallaksen, 217 

Hisdal, & Lanen, 2009). Woelfle-Erskine, Larsen, & Carlson (2017) documented 218 

considerable variability in flow intermittence between stream sections less than one kilometre 219 

apart on Fay Creek, California in response to the drought of 2011-2017; these observed 220 

differences had population-level consequences on the viability of salmon habitat. Flow 221 

intermittence in IRES is also strongly linked to groundwater dynamics, whose response to 222 

droughts is mediated by additional local characteristics, so that these watercourses exhibit 223 

even greater variability in their responses to precipitation deficits (Fennell, Geris, Wilkinson, 224 

Daalmans, & Soulsby, 2020; Lovill, Hahm, & Dietrich, 2018; Shanafield, Bourke, Zimmer, 225 

& Costigan, 2021). As such, the recovery of normal baseflow is not only slow but also 226 

notoriously difficult to predict; discharge often returns to pre-drought levels years after 227 

precipitation resumes following supra-seasonal droughts (Deitch, van Docto, Obedzinski, 228 

Nossaman, & Bartshire, 2018). In about one third of unregulated watersheds across south-229 

eastern Australia, runoff had not returned to pre-drought levels seven years after the end of 230 

the Millennium Drought, indicating a shift to an alternative stable state (Peterson, Saft, Peel, 231 

& John, 2021). In human-impacted systems, reactive over-withdrawal for irrigation and 232 

domestic uses can aggravate the effects of a mild meteorological drought into a severe 233 

hydrological drought (Van Loon et al., 2016). Given that meteorological drought attributes 234 

cannot be consistently translated to hydrological terms, descriptions of the hydrological 235 

character of droughts in case studies are needed to promote a broader understanding of the 236 

ecohydrology of droughts in IRES.  237 
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 238 

2.3. Quantitative hydrological drought indices for IRES 239 

Hydrological anomalies are rarely quantified in IRES studies partly because existing drought 240 

indices are ill-fitted to intermittent flow regimes. More than 150 indices have been developed 241 

to describe the magnitude, duration, intensity, severity, frequency, and geographic extent of 242 

droughts (Haile, Tang, Li, Liu, & Zhang, 2020; Van Loon, 2015; Zargar, Sadiq, Naser, & 243 

Khan, 2011). These metrics can be broadly categorized between threshold level methods and 244 

standardized indices (Van Loon, 2015).  245 

 246 

Threshold level methods rely on the establishment of a specific value for a 247 

hydrometeorological variable below which the system is considered to be in a drought 248 

(Zelenhasić & Salvai, 1987; Hisdal et al. 2004). Flow duration curves displaying the 249 

relationship between any discharge value and the percentage of time (frequency) that this 250 

discharge is equalled or exceeded form the basis of threshold indices (Smakhtin, 2001; 251 

Yevjevich, 1967). Based on this curve, a threshold discharge is picked below which a drought 252 

is deemed to occur. The threshold frequency usually ranges between Q70 and Q95 (the 253 

discharges that are exceeded 70% and 95% of the time respectively) for perennial rivers 254 

(Smakhtin, 2001; Van Loon, 2015). Additional refinements exist, including the use of 255 

temporally varying thresholds (Hisdal et al. 2004). Threshold indices enable the calculation 256 

of drought duration, severity, and frequency, and do not require that a parametric distribution 257 

be fit to the data. However, drought statistics cannot easily be transferred across geographies 258 

because there is no standard threshold in use (Van Loon 2015). 259 

 260 

Standardized drought indices represent anomalies from a normal situation in a standardized 261 

way, thus enabling comparison across regions (Mishra & Singh, 2010). The most widely used 262 

meteorological drought index is the Standardized Precipitation Index (SPI). SPI fits long-term 263 

precipitation records to a probability distribution that is subsequently transformed to a normal 264 

distribution with zero mean and unit standard deviation (Mckee, Doesken, & Kleist, 1993). 265 

SPI can be computed over different time periods (e.g., 1, 6, 24 months), but its interpretation 266 

remains invariant to temporal and spatial scales, geographic regions, and climates. For 267 

instance, SPI12 month < -2 reflects a deficit in precipitation over 12 months that is more than 268 

two standard deviations below the long-term mean. Such a drought should theoretically occur 269 

only a handful of times every 100 years (< 5% of the time) and is usually labelled as 270 
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“extremely dry” (Hayes, Svoboda, Wiihite, & Vanyarkho, 1999). The hydrological 271 

equivalent to SPI is the Standardized Streamflow Index (SSI), calculated from observed or 272 

simulated long-term discharge records (Vicente-Serrano et al., 2012). 273 

 274 

Common drought indices, whether standardized or threshold-based, imperfectly quantify the 275 

hydrological disturbances that drive ecological responses to drought in IRES (Figure 3). 276 

Threshold-based methods as currently implemented are even less relevant than standardized 277 

drought indices for studying IRES because thresholds between Q70 and Q95 would result in 278 

considering any zero-flow event as a drought (Figure 3a, Lake, 2011; Van Loon, 2015). 279 

Higher thresholds have been proposed, between Q5 and Q20, to describe droughts in IRES 280 

(Gustard & Demuth 2008; Ko & Tarhule, 1994; Tate & Freeman, 2000), but their relevance 281 

to ecohydrological studies is questionable. In terms of standardized indices, the SPI only 282 

characterizes meteorological droughts, and the SSI cannot fully characterize the fundamental 283 

shift that occurs when a watercourse falls dry for abnormally long periods of time (Figure 284 

3b). Due to this shortcoming, several global drought studies have altogether excluded arid 285 

regions from their analysis (e.g., Prudhomme et al., 2014; Wanders & Wada, 2015). While 286 

adaptations to standardized indices exist (Stagge, Tallaksen, Gudmundsson, Van Loon, & 287 

Stahl, 2015), a single index, to our knowledge, adequately characterizes hydrological 288 

droughts in IRES. Developed by Van Huijgevoort, Hazenberg, Van Lanen, & Uijlenhoet 289 

(2012), this approach combines i) a temporally variable threshold-level method, with ii) 290 

thresholding based on consecutive zero-flow days, to identify droughts that span across 291 

periods of zero and non-zero discharge, and exceed natural flow intermittence (Figure 3).  292 

 293 

We propose that a new set of indices be used to improve our understanding of the linkages 294 

between hydrological disturbance and ecological responses during droughts in IRES. We 295 

briefly present three possible indices: the threshold-level method developed by (Van 296 

Huijgevoort et al., 2012), a standardized index, and a spatially-explicit index. The first two 297 

methods require long-term streamflow records while the last one is more appropriate for 298 

intensively monitored catchments. These indices could complement existing composite 299 

hydrological drought indices (Hayes, Svoboda, Wall, & Widhalm, 2011) to improve our 300 

accounting of the effect of droughts on IRES. 301 

 302 

The threshold-level method by Van Huijgevoort et al. (2012) yields a continuous time series 303 

of estimated percentiles for both flowing and non-flowing conditions. Periods with percentile 304 
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values below or equal to a defined threshold (e.g., 10th or 20th percentile) are then considered 305 

to be droughts, from which start- and end-dates can be computed as well as the magnitude, 306 

severity, and duration of the drought. See Appendix 1 for details on how to calculate this 307 

index.  308 

 309 

A standardized drought index for IRES only requires adapting the SSI by using flow 310 

intermittence (i.e., the number of zero-flow days) instead of mean discharge over the period 311 

of interest (see calculation in Appendix 1). The resulting time series could complement the 312 

SPI or SSI with, for example, values under -1.5 being considered severe droughts. Compared 313 

to the threshold-level method by (Van Huijgevoort et al., 2012), this approach is more 314 

comparable across regions and enables analysis at multiple time scales. However, it is likely 315 

sensitive to the choice of probability distribution and fitting method, similarly to SSI 316 

(Tijdeman, Stahl, & Tallaksen, 2020; Vicente-Serrano et al., 2012), and does not account for 317 

depressed peak and average flow. The same procedure could also be applied to describe 318 

hydrological droughts in terms of aquatic phases beyond flow cessation by instead using the 319 

proportion of days with flowing water, non-flowing water and connected pools, disconnected 320 

pools, or a dry channel (when this information is available, e.g., Sefton, Parry, England, & 321 

Angell, 2019).  322 

 323 

Considering the importance of the spatial dynamics of wetting and rewetting in IRES 324 

networks, droughts should ideally also be described with spatially explicit indices at the 325 

catchment scale. Similarly to indices based on discharge or flow intermittence, spatial 326 

drought indices for IRES can rely on the probability of exceedance of landscape metrics 327 

computed at regular intervals. An example landscape metric is the Dendritic Connectivity 328 

Index (DCI). DCI is a network-wide indicator of longitudinal connectivity based on the 329 

expected probability of an organism being able to move freely between two random points in 330 

the network (Cote, Kehler, Bourne, & Wiersma, 2009). Reaches are considered to be 331 

disconnected from the rest of the network when pools become disconnected or dry, or 332 

because of physical barriers (e.g., waterfalls, weirds, dams). DCI was used by Jaeger et al., 333 

(2014) to quantify watershed-scale changes in connectivity resulting from increased flow 334 

intermittence under climate change in the Verde River Basin, United States. Aside from DCI, 335 

ecologically-scaled landscape indices tailored to IRES, like the average patch carrying 336 

capacity and connectivity, can also be employed to express the potential effect of droughts on 337 

network structure for a specific group of species of interest (Cid et al., 2020; Thibault Datry, 338 
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Bonada, & Heino, 2016; Vos, Verboom, Opdam, & Ter Braak, 2001). Monitoring data on the 339 

aquatic state of all reaches within an IRES network can be acquired from sensor arrays (e.g., 340 

electrical resistance sensors; Jaeger & Olden, 2012), field observations by the general public 341 

and scientists (Allen et al., 2019; Gallart et al., 2017; Sefton et al., 2019; van Meerveld, 342 

Kirchner, Vis, Assendelft, & Seibert, 2019), or remote sensing (for larger streams and 343 

watercourses with limited riparian vegetation, e.g., Bishop-Taylor, Tulbure, & Broich, 2018), 344 

all of which can be complemented by spatiotemporal infilling procedures (Eastman, Parry, 345 

Sefton, Park, & England, 2021).  346 

 347 

Long-term data are essential for all drought indices to determine what constitutes normal 348 

versus anomalous water levels (Van Loon, 2015). However, streamflow gauging data for 349 

IRES are scarce and their interpretation is error-prone (van Meerveld et al., 2020; Zimmer et 350 

al., 2020). IRES in semi-arid and arid zones are difficult to gauge, while in wetter climates, 351 

flow intermittence occurs mostly in under-monitored low-order streams (Zimmer et al., 352 

2020). Although IRES comprise more than half of the global river network (Messager et al., 353 

2021), less than a fifth of gauging stations monitor flow in IRES (based on the Global 354 

Streamflow Indices and Metadata archive; Do, Gudmundsson, Leonard, & Westra, 2018; 355 

Gudmundsson, Do, Leonard, & Westra, 2018). The average record length for IRES gauging 356 

stations is also 7 years shorter than for stations on perennial water courses globally (25 and 357 

32 years for IRES and perennial stations, respectively). In comparison, drought indices 358 

usually require a minimum of 30 years of continuous data (Jain, Jain, & Pandey, 2014; Link, 359 

Wild, Snyder, Hejazi, & Vernon, 2020). Synthetic time series of historical flow intermittence 360 

can be generated (e.g., Jaeger et al., 2019; Yu, Bond, Bunn, Xu, & Kennard, 2018) but come 361 

with significant uncertainty, especially given the intrinsically anomalous nature of droughts. 362 

Further improvements in hydrometric monitoring, remote sensing, and hydrological 363 

monitoring will thus be key to improve our ability to monitor droughts in IRES.  364 

3. The ‘typical’ ecohydrology of IRES  365 

3.1. Temporal patterns of flow intermittence and ecological responses. 366 

During a typical drying-rewetting cycle, IRES shift from flowing conditions to pool and dry 367 

riverbed phases. Whereas some IRES remain under a non-flowing pool phase throughout the 368 

flow cessation event (e.g. Anna, Yorgos, Konstantinos, & Maria, 2009), others shift directly 369 

from flowing to dry phases (e.g. Datry, 2012). During dry phases, some IRES maintain an 370 
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active underlying hyporheic zone (Boulton & Lake, 1992), while in others, the water level of 371 

the hyporheic zone decreases quickly and becomes dry as well (Thibault Datry, 2012). Flow 372 

resumption can happen as a sudden rewetting event with an advancing wetted front driven by 373 

high discharge following rainfall (Cohen & Laronne, 2005; Corti & Datry, 2012), instigating 374 

a rapid reversal of the sequence from dry to flowing phases. But rewetting can also occur 375 

more steadily, when rainfall is localised to headwaters or when rewetting is driven by rising 376 

groundwater levels (Stanley, Fisher, & Grimm, 1997; Tockner, Malard, & Ward, 2000). 377 

During these temporal sequences of phases, strong environmental constraints occur on 378 

aquatic organisms with typical steps (Thibault Datry et al., 2017). When flow recedes in 379 

flowing channels, lateral aquatic habitats with fringing vegetation in the riparian zone 380 

become isolated, which removes key habitats for animals that feed, shelter, spawn or emerge 381 

in these areas (Figure 4). When drying continues, riffles are the first in-stream habitats to 382 

disappear as pools become isolated in the channel. This represents an important step because 383 

it virtually eliminates most rheophilic fish and invertebrates from local communities (Anna et 384 

al., 2009). When a channel shifts from lotic to lentic conditions, biological communities also 385 

change abruptly towards pond-like communities (Anna et al., 2009; Bonada et al., 2020; Hill 386 

& Milner, 2018). However, if pools remain disconnected, many can become unviable for 387 

most organisms due to high temperatures, low dissolved oxygen and concentrated nutrients 388 

(Thibault Datry, 2017; Woelfle-Erskine et al., 2017). In some cases, active hyporheic inflow 389 

can replenish pools with cool and oxygenated water (Anna et al., 2009; Bonada et al., 2020). 390 

When drying continues, pools dry up and the complete disappearance of surface water is 391 

clearly the most critical stage for most aquatic organisms, from microbes to fish (Figure 4). 392 

Many organisms die, providing considerable pulses of food for terrestrial scavengers and 393 

predators (Corti, Larned, & Datry, 2013; Steward, von Schiller, Tockner, Marshall, & Bunn, 394 

2012). A subset of species have developed physiological adaptation to cope with desiccation 395 

and can form a “seedbank” in the moist sediments, awaiting flow resumption to become 396 

active again (Stubbington & Datry, 2013). Last, some organisms can seek refuge in the 397 

underlying hyporheic zone (Stubbington, 2012; Vander Vorste, Malard, & Datry, 2016). 398 

However, this is true only for hyporheic zones which do not desiccate completely as the dry 399 

period persists (Pařil, Polášek, et al., 2019).  400 

Hydrological signatures of flow cessation in IRES are strong and universal determinants of 401 

aquatic biodiversity (Arscott, Larned, Scarsbrook, & Lambert, 2010; Bonada, Rieradevall, & 402 
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Prat, 2007; Leigh & Datry, 2017). This is particularly the case for flow intermittence, defined 403 

as the proportion of the year without surface water flow. Flow intermittence has been shown 404 

to be the main driver of invertebrate taxonomic richness in rivers and streams across different 405 

continents and climate zones (Thibault. Datry, Larned, Fritz, et al., 2014). More generally, 406 

the taxonomic richness of many aquatic phyla linearly decreases with increasing flow 407 

intermittence (Thibault. Datry, Larned, & Tockner, 2014). At a given site, the duration of 408 

drying events controls the survival of stranded aquatic organisms during dry phases (Pařil, 409 

Polášek, et al., 2019) and the ability of the invertebrate seedbank to contribute to the 410 

resilience of aquatic communities upon rewetting (Stubbington & Datry, 2013).  411 

3.2. Spatial patterns of flow intermittence and ecological responses. 412 

The spatial organisation of habitats has critical roles for biodiversity dynamics in IRES 413 

networks. Notably, the co-occurrence at the network scale of flowing, non-flowing and dry 414 

reaches leads to the simultaneous presence of lotic, lentic, and terrestrial communities in the 415 

landscape (Thibault. Datry, Larned, & Tockner, 2014). The spatial arrangement, temporal 416 

turnover, and connectivity of these three habitat conditions constantly vary with surface water 417 

discharge and groundwater level fluctuations, in turn generating multiple colonisation and 418 

extinction events in the landscape (Crabot, Heino, Launay, & Datry, 2020). Theoretical work 419 

indicates that the distance between adjacent flowing sections within a river network is a 420 

pivotal determinant of the distribution of aquatic organisms with low dispersal abilities 421 

(Thibault Datry, Pella, Leigh, Bonada, & Hugueny, 2016). Recent empirical studies further 422 

demonstrated that network fragmentation by drying influences invertebrate community 423 

diversity and composition (Gauthier et al., 2020; Sarremejane et al., 2020). For example, 424 

Gauthier et al. 2020 showed that physical distances among habitat patches that accounted for 425 

drying better explained metacommunity dynamics in a set of ten intermittent river networks 426 

than environmental distances. 427 

More recently, research has explored the influence of the longitudinal configuration and 428 

extent of drying on the aquatic biodiversity of river networks (Crabot et al., 2020; 429 

Sarremejane et al., 2020; Sarremejane, Stubbington, et al., 2021). The dynamics of aquatic 430 

invertebrate communities in river networks where drying occurs in headwaters, for example, 431 

is very different from those in rivers in which drying occurs in downstream sections (Crabot 432 

et al., 2020). Higher connectivity and refuge availability in downstream river sections may 433 

promote a higher local richness, but lower beta diversity, in river networks where drying 434 
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occurs primarily in downstream sections compared to those where drying is predominantly 435 

constrained to headwaters (Crabot et al., 2020). This is because connectivity to colonisation 436 

sources such as refuges is higher in mainstems than in isolated headwaters (Brown and Swan 437 

2010). Passive downstream drift from upstream habitats is more likely if drying occurs in the 438 

downstream sections of a river network (Vander Vorste, Malard, et al., 2016). In contrast, 439 

drying headwaters may only be recolonized through active upstream dispersal, which is rare 440 

and ineffective for most aquatic taxa. Insect species with strong aerial dispersal capacities can 441 

however overcome dispersal limitations among isolated headwaters (Sarremejane, Mykrä, 442 

Bonada, Aroviita, & Muotka, 2017) and their assembly may not be impacted by the 443 

configuration of drying (Cañedo-Argüelles et al., 2015). The presence of refuges such as 444 

pools and hyporheic zones also tends to increase downstream, due to increased 445 

geomorphological complexity (Jaeger, Sutfin, Tooth, Michaelides, & Singer, 2017), 446 

increased mean annual discharge (Messager et al., 2021) and enhanced surface water-447 

groundwater interactions (Malard, Tockner, Dole-Olivier, & Ward, 2002).  448 

4. Ecohydrological interactions in IRES during droughts 449 

4.1. Abiotic implications of hydrological droughts 450 

The effects of droughts on river ecosystems, including flow cessation and riverbed drying can 451 

be comparable to those occurring seasonally in intermittent rivers (Bogan, Boersma, & Lytle, 452 

2015; Boulton, 2003). However, droughts increase the severity, duration, and spatial extent of 453 

drying beyond usual seasonal drying conditions in IRES (Lake, 2011). During droughts, 454 

rivers that typically stop to flow in scattered reaches for a few weeks per year may shrink to 455 

disconnected pools or dry across their entire length for months (Figures 5 & 6; e.g., Hill et 456 

al., 2019); reaches that normally recede into isolated pools from mid-summer until early 457 

autumn may fully dry by early summer, rewetting only in winter; and ephemeral streams may 458 

not flow for multiple years (e.g., 620 days; De Soyza, Killingbeck, & Whitford, 2004). 459 

During a drought, the proportion of pools that dry and the distance between pools increase 460 

compared to normal years, the size of remaining pools decreases (Vander et al., 2020), 461 

sediment and litter desiccate further and deeper, and perennial springs may dry out as the 462 

groundwater table falls. 463 

The ecological response to drying during drought follows a ‘stepped’ pattern (Boulton, 2003) 464 

whereby periods of gradual change are punctuated by rapid transitions as each shift of state 465 

leads to the abrupt loss or fragmentation of a habitat (Boulton, 2003). During droughts, IRES 466 
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may reach new states in which ecosystems are pushed past additional steps, potentially 467 

crossing irreversible thresholds. 468 

Between shifts in aquatic states, the degradation of water quality is the primary driver of 469 

ecological responses (Lake, 2011). Prolonged water deficit during a drought induces a suite 470 

of physicochemical changes (Gómez, Arce, Baldwin, & Dahm, 2017) that occur faster and 471 

are more severe than during regular flow cessation events, thus exposing the biota to extreme 472 

conditions compared to normal years. For example, during a drought, temperature rose from 473 

14 to 25°C and dissolved oxygen decreased from 12 to 4 mg L-1 in 2 weeks in three pools of 474 

the Albarine river in France (Datry, 2017), exceeding physiological thresholds for many 475 

aquatic species (Vander Vorste, Mermillod-Blondin, Hervant, Mons, & Datry, 2016a). 476 

Typically, dissolved oxygen, sediment size, and pool volume quickly decrease once riffle 477 

become disconnected while temperature and conductivity increase, with salinity sometimes 478 

reaching exceptionally high levels (Bae & Park, 2019; Golladay, Gagnon, Kearns, Battle, & 479 

Hicks, 2004; Lind, Robson, & Mitchell, 2006; Obedzinski, Nossaman Pierce, Horton, & 480 

Deitch, 2018; Woelfle-Erskine et al., 2017). As a supra-seasonal drought progressed in the 481 

Wimmera River (Australia), for example, electrical conductivity in downstream reaches 482 

increased from 4 x 103 µS cm-1 during the summer of the first year to 35 x 103 µS cm-1 the 483 

third year (Lind et al. 2006; typical sea water conductivity: ~50 x 103 µS cm-1). Dissolved 484 

oxygen may initially increase due to higher light penetration conditions (e.g., Kalogianni, 485 

Vourka, Karaouzas, Vardakas, & Skoulikidis, 2017), but rising water temperature, 486 

stratification, and the accumulation of organic matter and nutrients in stagnant pools 487 

eventually lead to hypoxic events beyond the tolerance of species adapted to shorter flow 488 

cessation events (Larimore, Childers, & Heckrotte, 1959; Woelfle-Erskine et al., 2017). In 489 

Fay Creek in California, pools remained disconnected nearly twice as long during the third 490 

year of the drought (2014) compared to the first year, pushing minimum dissolved oxygen in 491 

several pools below 2 ppm, the lethal limit for resident salmonids (Woelfle-Erskine et al., 492 

2017). Animal-mediated nutrient cycling changes over time, P and N excretion steeply 493 

declining owing to large reductions in biomass and shifts in assemblage structure of 494 

macroconsumers (Hopper, Gido, Pennock, Hedden, Guinnip, et al., 2020). The concentration 495 

of organic pollutants and toxicants increases (Boulton, 2003). Pools can also become filled 496 

with exceptional amounts of terrestrial leaf litter during longer periods of flow disconnection 497 

lasting into Autumn or if riparian plants become water stressed, further lowering oxygen 498 

levels and causing ‘blackwater’ conditions when the water turns a deep brown colour from 499 
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leached dissolved organic carbon (Larimore et al., 1959; McMaster & Bond, 2008). Under 500 

drought conditions, habitat availability, dissolved oxygen levels, temperature, groundwater 501 

depth, and salinity may cross lethal thresholds for an increasing number of animal and plant 502 

species (Aspin, Hart, et al., 2019; Garssen, Verhoeven, & Soons, 2014; Gough, Landis, & 503 

Stoeckel, 2012; Hopper, Gido, Pennock, Hedden, Frenette, et al., 2020; Woelfle-Erskine et 504 

al., 2017).  505 

As a drought continues and pools shrink to abnormally low levels, the distribution and 506 

physicochemical properties of groundwater sources increasingly drive abiotic conditions 507 

(Larsen & Woelfle-Erskine, 2018; Schlief & Mutz, 2011). Pool temperature can remain 508 

stable throughout the drought, or may even decrease as cold groundwater inflow becomes a 509 

dominant source (Larsen & Woelfle-Erskine, 2018; Schlief & Mutz, 2011). Most critical for 510 

the survival of resident organisms, however, is the contribution of groundwater to dissolved 511 

oxygen levels. Groundwater typically contributes low-oxygen water to watercourses (Hansen, 512 

1975; Malard & Hervant, 1999). In a German lowland IRES under drought, Schlief & Mutz 513 

(2011) attributed severe reductions in oxygen concentrations following pool disconnection to 514 

the inflow of deoxygenated groundwater. However, temperature, oxygen, and conductivity 515 

are highly variable across groundwater sources. For instance, inflows of young groundwater 516 

(with DO > 5 mg L-1) maintained relatively high dissolved oxygen in pools and promoted 517 

water movement in salmon-bearing IRES during the great California drought (2011-2017), 518 

potentially enhancing gas exchange across the air-water interface and preventing stratification 519 

(Larsen & Woelfle-Erskine, 2018). Groundwater seeps have also been shown to provide the 520 

only available habitat for rheophilic taxa after flow cessation (Bogan, Leidy, Neuhaus, 521 

Hernandez, & Carlson, 2019). Groundwater sources that maintain tolerable habitat conditions 522 

during regular flow cessation events and in the early stages of a drought may, however, 523 

disappear as a drought slowly propagates from surface water to groundwater (Van Loon, 524 

2015). 525 

Once pools have dried, and without flow resumption, sediment moisture decreases and 526 

temperature increases as drought condition persist. Gough, Landis, & Stoeckel (2012) 527 

recorded daily peaks in dry streambed temperature of 45°C to 50°C in Opintlocco Creek, 528 

Alabama (U.S.). Deeper sediment is characterized by lower temperatures and greater thermal 529 

inertia, buffering organisms from large diel variations in temperature (Gough et al., 2012). 530 
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Eventually, however, even deeper sediment, litter, and cavities that usually provide perennial 531 

refuge during regular flow intermittence become fully dry.  532 

Abiotic conditions generally follow typical trajectories after flow cessation in normal years, 533 

but during droughts, contrasting responses can be observed from year to year, between 534 

neighbouring catchments, among reaches within a catchment, and even from pool to pool. In 535 

constrained river reaches with impervious substrate, overhanging vegetation, and upstream 536 

influx of groundwater, pools may subsist for much longer, while other sections may fully dry 537 

out (Obedzinski et al., 2018). As a drought progresses, heterogeneity in abiotic conditions 538 

first increases among habitat patches when flow ceases and pools become disconnected. Each 539 

pool follows a different trajectory that is contingent on microhabitats (e.g., pool geometry, 540 

shading, groundwater influx) and community assemblage (Hopper, Gido, Pennock, Hedden, 541 

Guinnip, et al., 2020). Woelfle-Erskine et al. (2017) documented lethal dissolved oxygen 542 

levels together with high conductivity in most pools, yet some pools maintained relatively 543 

high dissolved oxygen despite high conductivity. The bottom of pools may be microsites of 544 

high dissolved oxygen (Woelfle-Erskine et al., 2017) or completely anoxic and stratified 545 

(Schlief & Mutz, 2011). Owing to this heterogeneity in site responses, reaches and pools 546 

whose usual trajectory in abiotic conditions makes them refuges during periods of seasonal 547 

flow intermittence may become ecological traps during droughts (Vander et al., 2020).  548 

 549 

4.2. Ecological resistance and local processes  550 

 551 

As drought progresses, discharge, water level and aquatic habitat size and connectivity 552 

decrease, leading to successions of habitat losses that may lead to changes in community 553 

composition in both perennial and intermittent reaches of a river network (Chadd et al., 2017; 554 

Herbst, Cooper, Medhurst, Wiseman, & Hunsaker, 2019). The responses of IRES-inhabiting 555 

organisms to droughts depend on their traits and ability to withstand or avoid severe drying 556 

conditions (Robson, Chester, & Austin, 2011). Traits promoting resistance to predictable 557 

drying events may include strategies such as aerial respiration, low-oxygen and high-558 

temperature tolerances, desiccation-resistances, and short life-cycle (Bonada et al., 2007; 559 

Matthews & Marsh-Matthews, 2003; Richards, 2010). Typically, these traits have been found 560 

in greater abundances in communities exposed to drought (Aspin, Khamis, et al., 2019; 561 

Bêche & Resh, 2007; Herbst et al., 2019) and in greater proportion in IRES than perennial 562 

communities (Leigh et al., 2016; Timoner, Colls, Acuña, & Sabater, 2019). Therefore, IRES 563 

communities are sometimes thought to be more resistant and/or resilient to drought than 564 
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perennial communities because adaptations to drying could confer advantages during 565 

droughts (Hill et al., 2019; Sarremejane et al., 2020). However, aquatic communities in IRES 566 

are assembled depending on species capacity to persist during, or recolonize between, drying 567 

phases of given characteristics, including severity, duration, timing and frequency. Droughts, 568 

by modifying intermittent phase characteristics, could strongly alter IRES communities 569 

adapted to such a predictable drying regime (Bogan & Lytle, 2011; Jaeger et al., 2014).  570 

 571 

In IRES, the duration of the dry phase is a key driver of organism persistence (Colls, 572 

Timoner, Font, & Sabater, 2020; Pařil, Polášek, et al., 2019; Pernecker, Mauchart, & Csabai, 573 

2020; Vadher, Millett, Stubbington, & Wood, 2018). How much a drought extends this phase 574 

therefore strongly determines organism survival and post-drying community composition in 575 

IRES. Desiccation-resistance strategies can allow organism persistence during dry phases of 576 

several months to years. These strategies include dormancy at different life stage for insects 577 

(e.g. Stoneflies: Bogan, 2017; fishflies: Cover, Seo, & Resh, 2015, caddisflies: Salavert, 578 

Zamora-Muñoz, Ruiz-RodríGuez, Fernández-Cortés, & Soler, 2008) or fish (African 579 

lungfish; Fishman, Pack, Delaney, & Galante, 1986) or protective pigment and cell structures 580 

in algal and bacterial biofilms (Colls et al., 2019; Gionchetta, Oliva, Menéndez, Lopez, & 581 

Anna, 2019; Robson, 2000). For example, Jenkins & Boulton (2007) showed that 582 

microorganisms such as Rotifers and Cladoceran could be found in sediments rewetted after a 583 

20-yr dry phase, but Cladoceran abundances decreased drastically between their 6-yr and 20-584 

yr dry phase treatments. These strategies, conceptualized as temporal dispersal (Buoro & 585 

Carlson, 2014), allow organisms to persist locally and recolonize quickly at rewetting, but 586 

strongly depend on the duration of the dry period. Some organisms with no specific 587 

dormancy forms such as fishes (Kawanishi, Inoue, Dohi, Fujii, & Miyake, 2013; Rodríguez-588 

Lozano, Leidy, & Carlson, 2019) and invertebrates (Golladay et al., 2004; Gough et al., 2012; 589 

Pařil, Polášek, et al., 2019; Pernecker et al., 2020; Stubbington, Gunn, Little, Worrall, & 590 

Wood, 2016; Stubbington, Sarremejane, & Datry, 2019) may find refuge in the humid 591 

subsurface sediment where they can subsist for a few days to months. For example, Pařil et 592 

al., (2019) showed that 80% of the invertebrate species of an intermittent river community 593 

could persist in dry sediments but richness decreased exponentially with the duration of the 594 

dry phase and half of the species died within the first 60 days of drying. Similarly, small 595 

benthic fishes of the genus Cobitis sp. can survive up to 40 days in dry sediments (Kawanishi 596 

et al., 2013) and Uniomerus tetralasmus mussels up to 30 weeks in moist sediment (Gough et 597 

al., 2012). If the dry phase extends beyond these thresholds, mass mortality events are likely. 598 
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Droughts could thus induce important community and population changes in IRES if drying 599 

exceeds the duration or intensity that organisms experience seasonally and have developed 600 

adaptation for (Figure 7, Aspin, Hart, et al., 2019; Aspin, Khamis, et al., 2019). Crossing 601 

these critical thresholds could lead to long-term and irreversible changes in population 602 

dynamics and community composition, particularly if negative responses are synchronized 603 

within the river network (Sarremejane, Stubbington, et al., 2021). Such changes can be 604 

sudden, and few instances have been documented. Identifying thresholds after which 605 

communities or population dynamics shift is therefore a pressing research need. 606 

 607 

Survival during a drought also depends on the severity of drying, which usually increases 608 

with drought duration. Remnant pools serve as refuge for many invertebrates (Burk & 609 

Kennedy, 2013), fishes (Vander et al., 2020) and amphibians (Zylstra, Swann, & Steidl, 610 

2019), whose populations rely on the persistence of these habitats to survive as the river 611 

network contracts. During severe droughts, pools may fully dry, after which the only in situ 612 

refugia left for aquatic animals are damp sediment and litter, crayfish burrows, and the 613 

hyporheic zone (Chester & Robson, 2011). Sediment moisture can be an important factor 614 

determining organism persistence in the substrate during a dry phase for biofilms (Gionchetta 615 

et al., 2019), invertebrates (Stubbington & Datry, 2013) and fishes (Coleman, Raadik, 616 

Pettigrove, & Hoffmann, 2017). During droughts the water table may recede below the 617 

hyporheic zone, leading to increased mortality of invertebrates that typically find refuge in 618 

the subsurface (Pernecker et al., 2020; Vadher et al., 2018; Vander Vorste, Mermillod-619 

Blondin, et al., 2016b). For example, Vander Vorste, Mermillod-Blondin, et al. (2016) 620 

showed in a mesocosm experiment that the survival of Gammarids decreased by 39% as the 621 

water table decreased below 30 cm. Riparian vegetation also plays a key role in preserving 622 

streambed moisture through shading, which promotes invertebrate (Lymbery et al., 2021) and 623 

biofilm (Colls et al., 2019) survival during dry periods. Intense droughts can lead to earlier 624 

riparian tree defoliation and mortality, which increase streambed solar exposition and drying 625 

severity, causing higher mortalities of the stream biota. As groundwater levels decrease 626 

beyond the reach of roots during severe drought, the mortality of riparian trees may increase 627 

(Zhou et al., 2020).  628 

 629 

The success of desiccation-resistance strategies may also depend on the timing of a drying 630 

event. Life cycles of IRES-inhabiting organisms are often synchronized with a predictable 631 

drying phase (Williams, 1996). The earlier onsets of drying during drought could hence affect 632 
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species with specific phenology, leading for example to earlier insect emergence and 633 

shortened aquatic life cycles (Leberfinger, Bohman, & Herrmann, 2010). In the 634 

Mediterranean climate, where dry phases are considered highly seasonal and predictable 635 

(Tonkin, Bogan, Bonada, Rios-Touma, & Lytle, 2017), caddisflies of the genus Mesophylax 636 

sp. emerge before the onset of the drying phase, aestivate as adults in karstic caves and then 637 

recolonize intermittent streams at rewetting in autumn (Salavert et al., 2008). The success of 638 

such strategies could be compromised if drought induces earlier drying events, not allowing 639 

species to complete their aquatic larval stages. Similarly, Demosgnathus fuscus salamander 640 

larvae (North Carolina, U.S.A.) are strictly aquatic from the time they hatch (August to 641 

October) until metamorphosis the following spring, such that free-flowing water is critical for 642 

larval survival during this period of the year (Price, Browne, & Dorcas, 2012). Finally, by 643 

altering river network connectivity earlier in the year, droughts can also prevent longitudinal 644 

migration, stopping fish from reaching in-stream refugia and resulting in reproductive failure 645 

(e.g., anadromous Oncorhynchus kisutch coho salmon, Woelfle-Erskine et al., 2017; 646 

potamodromous Chasmistes cujus Cui-ui, Scoppettone et al., 2015).  647 

 648 

The indirect role of biotic interactions like predation and competition in shaping the 649 

ecological impacts of drought in IRES is poorly studied (Bond, Lake, & Arthington, 2008; 650 

Boulton, 2003). While the relative role of local and regional processes in shaping community 651 

assembly is increasingly well-studied in IRES (Cañedo-Argüelles et al., 2020; Rolls, Heino, 652 

& Chessman, 2016), the relative strength of environmental filters versus biotic interactions in 653 

determining population and community responses to drying has received comparatively little 654 

attention. As habitats shrink, animal densities increase in remnant pools and refugia, leading 655 

to crowding, increased predation and competition (Matthews & Marsh-Matthews 2003). 656 

Competition and predation may even prevent species from accessing refuges (Magoulick & 657 

Kobza, 2003). For instance, competitive exclusion of steelhead salmon (Oncorhynchus 658 

mykiss) from deeper pools by coho salmon may drive differences in response to drought 659 

among these two species in intermittent streams of California (Woelfle-Erskine et al. 2017). 660 

This phenomenon is also evidenced by shifts in dominance between native and non-native 661 

species after droughts (see Section 4.5). As the ratio of aquatic to terrestrial habitat decreases 662 

in the channel, aquatic organisms become increasingly vulnerable to terrestrial predation as 663 

well (Magoulick & Kobza, 2003). Terrestrial predation of smaller freshwater mussels was an 664 

important driver of mortality in Westralunio carteri after emersion and may explain size-665 

based differences in burrowing behavior observed during a drought in south-western 666 
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Australia (Lymbery et al., 2021). We expect that shifts in biotic interactions observed during 667 

seasonal drying are amplified by more intense and prolonged drying, yet the potential 668 

crossing of tipping points during droughts (e.g., local extirpation of a predator or competitor) 669 

may lead to a deeper reshuffling of interspecific relationships.  670 

 671 

4.3. Ecological resilience and regional processes 672 

 673 

Droughts are spatially extended events that impact entire river networks, inducing extended 674 

changes in aquatic habitat configurations and increased fragmentation (Figure 6, Allen et al., 675 

2019; Jaeger et al., 2014; Sefton et al., 2019). Such extended changes hinder organism 676 

resilience — i.e., their capacity to recolonize and re-establish viable populations post-drought 677 

(Chester & Robson, 2011) — by affecting survival in refuges and connectivity to potential 678 

recolonization sources. Organism resilience depends on functional attributes like dispersal 679 

capacity, life-cycles and reproductive strategies (Robson et al., 2011). For example, 680 

multivoltine organisms with strong dispersal capacity and/or high number of propagules may 681 

be able to recover from drought more quickly than long-lived organisms with weak dispersal 682 

capacity (Bogan et al., 2017; Robson et al., 2011). Algae and bacteria constituting biofilms 683 

can recover within a few days/weeks of water resumption from dormant forms and through 684 

drift (Romaní & Sabater, 1997). Aquatic invertebrate community recovery from drought in 685 

IRES typically takes from six months to a few years, longer than recovery from regular flow 686 

intermittence (Hill et al., 2019; Pařil, Polášek, et al., 2019). Recolonization by invertebrates 687 

may occur through drift, active aquatic migration (Eveleens, McIntosh, & Warburton, 2019; 688 

Pařil, Leigh, et al., 2019), and/or overland aerial dispersal (Bogan & Boersma, 2012; Cañedo-689 

Argüelles et al., 2015). Fish mainly recolonize from downstream or perennial pool refuges 690 

(Davey & Kelly, 2007), usually within a few days to months (Magalhães, Beja, Schlosser, & 691 

Collares-Pereira, 2007; Magoulick & Kobza, 2003). However, biological resilience to 692 

drought in IRES also depends on local resistance (see previous section), connectivity to and 693 

distance from regional refuges, and time between drought events (Jaeger et al., 2014; 694 

Sarremejane, Stubbington, et al., 2021).  695 

Increasing drying extent may reduce recovery potential by increasing the proportion of 696 

populations impacted by low flow and drying conditions across the river network and thus 697 

limiting rescue effects post-disturbance (Crabot et al., 2020; Sarremejane, Stubbington, et al., 698 

2021; Zelnik, Arnoldi, & Loreau, 2018). Sarremejane et al. (2021) showed that increasing 699 
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drying extent during drought could lead to synchronous declines in invertebrate populations 700 

across an intermittent river network, particularly for species with low resistance and/or 701 

resilience capacity. Such decline drastically increased population extinction risks after three 702 

drought years with 50% of the network fragmented by drying. Drought may particularly 703 

impede community and population recovery if perennial refuges become intermittent and 704 

disconnected (Bogan & Lytle, 2011; Hopper, Gido, Pennock, Hedden, Frenette, et al., 2020; 705 

Vander et al., 2020). Many mobile organisms such as amphibians, fish and insects may find 706 

refuge in specific perennial pools or perennial river sections, sometimes with strong fidelity, 707 

and recolonize intermittent sections post rewetting (Bogan et al., 2019; Chester & Robson, 708 

2011; Davey & Kelly, 2007). Thus, the contraction and loss of those habitats may have long 709 

term impacts on community and population structures at local and regional scales (Bêche, 710 

Connors, Resh, & Merenlender, 2009; Bogan et al., 2015; Bogan & Lytle, 2011; Sponseller, 711 

Grimm, Boulton, & Sabo, 2010).  712 

The connectivity and distance of a community to perennial refuge is an important driver of 713 

post-drying community composition (Bogan & Boersma, 2012; Bogan et al., 2015; 714 

Sarremejane et al., 2020; White et al., 2018). Community recovery from drying and drought 715 

therefore vary among sites within a network depending on their connectivity (Gauthier, Le 716 

Goff, Launay, Douady, & Datry, 2021; Sarremejane, Truchy, et al., 2021). Isolated 717 

headwaters, for instance, are likely to take longer to recover from disturbance than more 718 

connected downstream sections (Tornwall, Swan, & Brown, 2017). Whether a drought 719 

predominantly affects headwaters or downstream reaches may thus have contrasting 720 

outcomes on the composition of communities, their spatial variability (i.e. β diversity; Crabot 721 

et al., 2020) and resilience. Therefore, increasing drying extent during drought could affect 722 

regional processes, leading to important changes in metacommunities and metapopulation 723 

dynamics, particularly if refuges are lost or if drought is too extended or frequent to allow 724 

resilience.  725 

 726 

The frequency of drying and rewetting events can alter population and community 727 

persistence, by affecting the time between drying events and thus resilience capacity (Crabot 728 

et al., 2020; Leigh & Datry, 2017). If the frequency of drying events is high, many species 729 

may not have time to recover during short flowing phases, hence, diversity typically declines 730 

with increasing drying frequency (Leigh & Datry, 2017). The proportion of multivoltine 731 

organism abundances typically increases or remain constant compared to semivoltine insects 732 
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during droughts (Aspin, Khamis, et al., 2019; Herbst et al., 2019), indicating that organism 733 

with shorter and multiple cycles per year could be better able to cope with droughts, as they 734 

can recolonize and develop quickly between drying events. Short rewetting events during 735 

droughts often caused by precipitation could also allow the invertebrate seedbank 736 

(Stubbington & Datry, 2013) and biofilms (Gionchetta et al., 2019) to persist by maintaining 737 

moisture within the sediment (Figure 7).  More frequent droughts may however lead to long 738 

term changes in community compositions within IRES networks if the time between drought 739 

events is too short to allow long-lived organism populations to recover between drought 740 

events.  741 

 742 

4.4. Community responses across flow intermittence regimes 743 

 744 

Comparisons of stream community responses to drought across reaches with different 745 

intermittence regimes have yielded mixed evidence (Bêche et al., 2009; Cañedo-Argüelles et 746 

al., 2020; Herbst et al., 2019; Hill et al., 2019; Rolls et al., 2016; Sarremejane et al., 2020; 747 

Sarremejane, Stubbington, et al., 2021; Westwood, England, Johns, & Stubbington, 2020). 748 

Several studies found congruent drought-induced changes in community composition across 749 

streams with different permanence regimes (Bêche et al., 2009; Herbst et al., 2019). For 750 

example, Bêche et al. (2009) showed that invertebrate community composition of perennial, 751 

intermittent and ephemeral streams in semi-arid California all shifted during a drought and 752 

had not returned to an initial (pre-drought) state even 8 years after the end of the drought. In 753 

the same study, fish populations were equally affected by drought across intermittence 754 

regimes but recovery differed; whereas fish populations recovered within 2 years in perennial 755 

sections, they took 5 years in ephemeral streams and did not recover in intermittent sites, 756 

likely due to differences in connectivity to refuges among sites. Elsewhere, responses to 757 

drought have been shown to vary across permanence regimes. Hill et al. (2019) and 758 

Sarremejane et al. (2019) observed that the responses of invertebrate communities to drought 759 

in English streams with different permanence regimes differed, and that near-perennial 760 

communities (i.e., experiencing drying only during drought events) took longer or did not 761 

completely recover by the end of their study compared to communities in more intermittent 762 

sites (which also showed variable recovery trajectories). These studies therefore suggest that 763 

intermittent river communities can, in some instances, be more resilient to droughts than 764 

those of perennial rivers. What drives these contrasts in long-term responses to drought 765 

among locations remains unresolved —  community resilience may depend on the studied 766 
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organism (e.g., fish vs. macroinvertebrate; Bêche et al., 2009) and their traits, the influence of 767 

additional stressors, or on the severity of the drought compared to that experienced over 768 

evolutionary times. Further research is needed to determine under which biotic and abiotic 769 

conditions community response to drought may differ along a gradient of intermittence.  770 

 771 

From a metacommunity perspective, variable responses among reaches of distinct 772 

permanence regimes across a river network may enhance recovery because asynchronous 773 

responses between communities promote rescue effects post-disturbance (Sarremejane, 774 

Stubbington, et al., 2021). Increasing variability among communities (i.e., beta diversity) may 775 

occur at the network scale during drought if habitat conditions become more heterogeneous 776 

and connectivity decreases (Rolls et al., 2016). Alternatively, extreme droughts may also 777 

induce declines in beta diversity if communities become spatially homogeneous due to the 778 

selection of a resistant subset of taxa from the regional species pool (γ diversity; Chase, 779 

2007).  780 

 781 

Most research on community response to drought in IRES networks have focussed on 782 

responses of perennial sections and refuges (Bogan & Lytle, 2011; Sponseller et al., 2010). 783 

For example, Bogan & Lytle (2011) showed that the drying of permanent pools in a formerly 784 

perennial river network during a supra-seasonal drought caused drastic shifts in invertebrate 785 

communities. Following the drought, community composition did not recover and instead 786 

reached a new stable state: large-bodied top predators present before the drought were 787 

replaced by more abundant and smaller meso-predators. Permanent shifts in the flow regime 788 

of river sections from perennial to intermittent following a drought are likely to have long-789 

term impacts on aquatic communities in IRES networks, particularly if perennial refuges run 790 

dry (Figure 7). Rapidly improving our understanding of these shifts from perennial to 791 

intermittent regimes is key as they become more common with climate change and increasing 792 

water demands.  793 

 794 

4.5. Droughts in interaction with anthropogenic stressors 795 

Droughts in IRES often co-occur with anthropogenic stressors (Thibault. Datry, Larned, & 796 

Tockner, 2014). These stressors include climate change, fragmentation by dams, biological 797 

invasions, water abstraction and pollution, and land-use alterations. The impacts of droughts 798 

on IRES are likely to accentuate — or be accentuated by — the effect of other anthropogenic 799 
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stressors as multiple interacting stressors may lead to synergistic impacts on the ecosystems 800 

(but see Jackson, Loewen, Vinebrooke, & Chimimba, 2016). However, while the multi-801 

stressor environments framework has bloomed in the past decade, particularly in freshwater 802 

ecosystems (Ormerod, Dobson, Hildrew, & Townsend, 2010), its application in IRES is still 803 

in its infancy (Marshall & Negus, 2018), so that there is a dearth of evidence on how drought 804 

interacts with other stressors in these ecosystems. 805 

 806 

As the climate is changing, droughts may not only become more frequent and severe, but also 807 

be more frequently associated with other extreme events, including floods and heatwaves 808 

(Derouin, 2021). For example, drought and floods are two extremes with contrasting 809 

characteristics, and traits conferring resistance to drought may differ from those conferring 810 

resistance to floods (Eveleens et al. 2019). The combined occurrence or succession of these 811 

contrasting extreme events may thus strongly impact freshwater ecosystems (Woodward, 812 

Bonada, Feeley, & Giller, 2015). Heatwaves may also accentuate the effect of droughts by 813 

leading to faster drying of — and increased temperatures in — aquatic habitats remaining 814 

after flow cessation (e.g., disconnected pools). Such warming may induce increased and 815 

premature organism mortality, as well as changes in microbial (Arias Font, Khamis, Milner, 816 

Smith, & Ledger, 2021) and fish activity (Mameri, Branco, Ferreira, & Santos, 2020). 817 

Drought can also trigger wildfires (Littell, Peterson, Riley, Liu, & Luce, 2016), which in turn 818 

can have deleterious effects on amphibians (Zylstra et al., 2019), fishes (Turner, Osborne, 819 

McPhee, & Kruse, 2015) and invertebrates (Robson, Chester, Matthews, & Johnston, 2018; 820 

Verkaik et al., 2015) populations and communities. For example, Zilsta et al. (2019) showed 821 

that Leopard frog populations declined during drought years and downstream of sites exposed 822 

to wildfires due to increased post-fire erosion. Robson et al. (2018) also found that fires and 823 

droughts could have antagonistic effects on the invertebrate communities of Australian 824 

streams. For example, the abundance of filter-feeder invertebrates increased with fire, which 825 

counterbalanced the negative effect of drought on this trophic guild. 826 

 827 

Combined alterations in flow and thermal regimes caused by drought can also favour 828 

establishment and dominance of non-native species of riparian plants (Glenn & Nagler, 2005; 829 

Scott, Reynolds, Shafroth, & Spence, 2018), fish (Bêche et al., 2009; Bernardo, Ilhéu, 830 

Matono, & Costa, 2003; Hopper, Gido, Pennock, Hedden, Frenette, et al., 2020; Jaeger et al., 831 

2014; Rogosch et al., 2019; Whiterod, Hammer, & Vilizzi, 2015) and invertebrates (Kouba et 832 

al., 2016; Larson, Magoulick, Turner, & Laycock, 2009) in IRES. Such invasions are 833 
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facilitated if invasive species are more resilient and resistant to drought than native species. 834 

For example, Kouba et al. (2016) found that non-native crayfish were able to survive longer 835 

than native European species during drought because of their capacity to burrow deeper into 836 

the sediment. Drought can also benefit non-native predators at the expense of small-bodied 837 

native species (Propst, Gido, & Stefferud, 2008), presumably owing to habitat contraction 838 

and increased biotic interactions (Magoulick & Kobza, 2003). Conversely, drought can limit 839 

the progression of invasive species by increasing their mortality or decreasing their dispersal 840 

through increasing fragmentation, the same way natural intermittence may prevent the 841 

establishment of non-native species (Bogan et al., 2019; Coleman et al., 2017). However, 842 

evidence of drought-induced stalling of non-native species establishment in IRES is lacking. 843 

Anecdotal observation of Asian clam (Corbicula fluminea) mortality due to hypoxia in 844 

drought-stricken stream reaches of southwestern Georgia (U.S.; Golladay et al., 2004), range 845 

expansion limitations of Brown trout (Salmo trutta) in the upper reaches of the Lerderderg 846 

River (Australia; Closs & Lake, 1996) and the extirpation of exotic common carp (Cyprinus 847 

carpio L.) populations from Granite Creeks in Victoria (Australia; Lake, 2003) are the only 848 

examples in IRES known to the authors. Therefore, it is likely that recurrent drought tends to 849 

accelerate rather than slow the progression of invasive species within IRES networks. 850 

 851 

Anthropogenic activities in IRES catchments, including agriculture or wastewater treatment, 852 

can induce increased concentrations of water pollutants or eutrophication, whose effects on 853 

IRES can be amplified when combined with drought. For example, as water recedes during 854 

drought, anoxia and the concentration of chemical compounds may increase to unsafe levels 855 

for aquatic biota taking refuge in pools (Palma et al., 2020). Overall, however, we know little 856 

about the interactions between droughts and human induced pollution, particularly in IRES. 857 

 858 

Finally, fragmentation caused by dams and weirs is likely to compound the effect of droughts 859 

by limiting recolonization capacity post-drought. Under non-drought conditions, biodiversity 860 

dynamics in an IRES networks were shown to be overwhelmingly driven by permanent 861 

fragmentation, including weirs and small retention ponds, rather than by temporary 862 

fragmentation from drying (Gauthier et al. 2021), suggesting that anthropogenic barriers can 863 

be a strong determinant of diversity patterns in drying river networks. Recently, Marshall, 864 

Lobegeiger & Starkey (2020) showed that instream barriers such as weirs reduced fish 865 

movement opportunities by more than 70% during and following a two-year drought in south 866 

Australia, compromising fish access to refugess and post-disturbance recovery. 867 
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5. Conclusion and perspectives 868 

Although a rich body of literature exists on the effects of droughts on flowing waters, 869 

research on their impacts on IRES ecosystems remains limited. Confusion in terminology and 870 

the lack of tools and data to assess the hydrological responses of IRES to drought may have 871 

hindered development of drought research in IRES. We found that 43% of studies confused 872 

the term drought with seasonal drying and that a minority of studies measure droughts in a 873 

transferable way. Studies on ecological responses to drought in IRES networks are still rare 874 

and limited to a few climatic zones, countries, organisms, and mainly explored in perennial 875 

sections, most probably because disentangling responses between natural flow intermittence 876 

and drought remains a challenge. By accentuating the severity, duration, and extent of drying 877 

across IRES networks, droughts may cause irreversible ecohydrological changes if tipping 878 

points are crossed and resilience is compromised. Network-scale perspectives encompassing 879 

a gradient of flow intermittence are needed to explore the drivers of ecological responses to 880 

droughts in IRES.  881 

We identified interdisciplinary research directions (Table 2) whose pursuit should improve 882 

our understanding of the hydrological, ecological and socio-economical responses of IRES to 883 

drought. These research directions are non-exhaustive but represent gaps that should be 884 

addressed as priorities to develop further drought-research in IRES. In this review, we strictly 885 

focused on ecological responses to drought at the scale of populations and communities yet 886 

we also lack a synthesis of the effects of droughts on the biogeochemistry and ecosystem 887 

services of IRES (Arce et al., 2019; Datry et al., 2018; Table 2). As droughts are 888 

unpredictable and their legacy on hydrological and ecological processes may last for years, 889 

additional long-term monitoring of IRES networks is needed to capture the effects of extreme 890 

events on these ecosystems and measure their resilience (Kovach et al., 2019; Table 2). 891 

Research involving ecologists and hydrologists could help develop metrics for identifying 892 

tipping points beyond which the hydro-ecological resilience capacity of IRES is 893 

compromised (Table 2). More generally, increased collaboration between hydrologists, 894 

ecologists, social scientists and managers is needed to explore the impacts of droughts on 895 

IRES and the adverse effects of shifts from perennial to intermittent regimes from a socio-896 

ecological perspective (Table 2). Such interdisciplinary research could help designing nature-897 

based solutions (Maes & Jacobs, 2017) to ensure the resilience of  IRES hydro-ecosystems 898 

and dependent socio-economical systems in a changing and uncertain climatic future. 899 
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Tables 1644 

Table 1: Definition of the different attributes of flow regime and hydrological drought  1645 

 1646 

Phenomenon Attribute Definition 

Flow regime  

(adapted from Poff et al. 19971) 

Magnitude 
The amount of water moving past a fixed location per unit of time (e.g. mean minimum 

monthly discharge) 

Frequency 
How often a flow above a given magnitude recurs over some specified time interval 

(e.g., annual number of no-flow events) 

Duration 
The period of time associated with a specific flow condition (e.g., mean monthly 

number of days having zero daily flow) 

Timing (or predictability) 
The period and the regularity with which flows of defined magnitude occur (e.g., mean 

date of the first no-flow occurrence) 

Rate of change 
How quickly flow changes from one magnitude to another (e.g., dry-down duration, the 

number of days from a local streamflow peak to the first occurrence of no-flow) 

Hydrological drought  

(adapted from Dracup et al. 

19802 and Mishra and Singh 

20103) 

Timing Initiation and termination dates of a streamflow deficit 

Duration 
The number of consecutive time periods (e.g., months, years) for which the streamflow 

is below the long-term mean or another defined threshold reflecting a critical level 

Severity The cumulative deficit of streamflow below the critical level for that duration 

Intensity (or magnitude) The average deficit of streamflow for that duration (severity/duration) 
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Spatial extent 
The areas, river sections, basins, or regions affected by streamflow deficit (e.g. the 

cumulative dry river length) 

 1647 

(1)  Poff, N. L. R., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., Sparks, R. E., & Stromberg, J. C. (1997). The natural 1648 

flow regime: A paradigm for river conservation and restoration. BioScience, 47(11), 769–784. https://doi.org/10.2307/1313099; (2) Dracup 1649 

J.A., Lee K.S., Paulson E.G., (1980). On the definition of droughts. Water Resource Research, 16, 297–302; (3) Mishra, A. K., & Singh, V. 1650 

P. (2010). A review of drought concepts. Journal of Hydrology, 391, 202-216. https://doi.org/10.1016/j.jhydrol.2010.07.012 1651 

https://doi.org/10.2307/1313099
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Table 2: Research questions and perspectives to improve our understanding of IRES 1652 

responses to droughts.  1653 

Research question Scientific breakthrough 

examples 

Disciplines 

What drives the propagation 

from meteorological drought 

to hydrological drought in 

IRES? 

Identify river reaches whose 

hydrology is most severely 

affected by meteorological 

droughts. 

Hydrology, hydrogeology, 

modelling 

How do the delayed onset 

and recovery of groundwater 

drought affect IRES 

ecosystem resilience?  

Understand the role of 

groundwater in mediating 

the short and long-term 

effects of hydrological 

drought.  

Hydrology, hydrogeology, 

modelling 

To which extent are drought 

impacts amplified by 

increased human 

withdrawals of water during 

droughts? 

Understand how surface and 

groundwater abstraction 

dynamics interact during 

drought episodes in IRES. 

Hydrology, hydrogeology, 

modelling 

Where and under which 

conditions are IRES 

ecosystems, including 

organisms, populations and 

communities are most 

sensitive to drought? 

Determine the tipping points 

in drying patterns after 

which the resilience of 

individual species and 

communities in IRES river 

networks is compromised. 

  

Hydrology, ecology 
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What are the long-term 

hydrological and ecological 

trajectories in IRES after 

droughts? 

Understand the legacy of 

droughts on IRES resilience. 

Hydrology, hydrogeology, 

ecology 

How do floods and droughts 

interact in IRES? 

Quantify the relative roles of 

extreme hydrological events 

on IRES resilience. 

Hydrology, hydrogeology, 

ecology 

What is the impact of 

drought compared to 

seasonal intermittence on 

biotic interactions? 

Disentangle the relative role 

of abiotic and biotic factors 

in determining community 

trajectories in IRES after 

droughts.  

Ecology 

How do droughts in IRES 

networks affect nearby 

terrestrial ecosystems? 

Identify the ripple effects of 

droughts in terrestrial food 

webs during and after the 

event. 

Ecology, biogeochemistry 

What are the effects of 

drought on local to network-

scale ecosystem processes 

(e.g., decomposition, CO2 

emissions)? 

Understand how droughts 

can disrupt ecosystem-wide 

processes. 

Hydrology, ecology, 

biogeochemistry 

How do IRES ecosystems 

respond to different suites of 

interacting stressors? 

Quantify the interactive 

effects of multiple stressors 

in a context of flow 

intermittence. 

Hydrology, ecology, 

ecotoxicology 

What are the differences in 

ecological responses 

between natural and human-

induced IRES? 

Predict socio-ecological 

consequences of shifts from 

perennial to intermittent flow 

regimes and vice-versa. 

Hydrology, hydrogeology, 

ecology, ecotoxicology, 

social sciences 
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How do droughts affect the 

provision of ecosystem 

services in IRES river 

networks? 

Translate the changes in 

biophysical templates due to 

drying into socio-economical 

responses. 

Hydrology, hydrogeology, 

ecology, social sciences, 

economy, modelling 

How can societies mitigate 

and adapt to drought-

induced changes in flow 

regimes? 

Test and develop 

management strategies, 

including Nature-Based 

Solutions to mitigate the 

effects of droughts in IRES. 

Hydrology, hydrogeology, 

ecology, social sciences, 

economy, modelling 

 1654 

  1655 
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Figures 1656 

 1657 

 1658 

Figure 1: Global distribution of studies on the ecohydrological responses of intermittent 1659 

rivers and ephemeral streams (IRES) to droughts. Studies were clustered by geographic 1660 

location and climate (a), larger points show locations with more studies. Comparing the 1661 

distribution of studies (darker-colored bars) to that of IRES (lighter-colored bars; Messager et 1662 

al. 2021) across climate zones (b) reveal climates for which there are currently no studies 1663 

(grey bars) and climates that are disproportionately studied (e.g., warm temperate and mesic, 1664 

cool temperate and moist). Most research on IRES responses to drought have focused on 1665 

invertebrates and fish (c). See Appendix 1, Figure S1 for the full distribution of climate zones 1666 

(Global Environmental Stratification; Metzger et al., 2013; zones that include less than 1% of 1667 

the world’s IRES length and were not studied are not included in panel B). 1668 

 1669 
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 1670 
Figure 2: The hydrological consequences of meteorological droughts vary among rivers 1671 

with different flow regimes. The responses of three rivers of eastern South Africa to a 1672 

drought in the early 1980s differ. In a naturally intermittent river (a), flow cessation is a 1673 

natural process, but droughts can result in more prolonged and severe drying; in naturally 1674 

perennial rivers (b-c), severe droughts can cause temporary flow cessation (b), and in 1675 

exceptional cases, permanently shift the flow regime of a river from perennial to non-1676 

perennial (c). Thicker, black sections of the hydrograph line identify days of zero flow. The 1677 

shading reflects daily Standardized Precipitation Index (SPI) values calculated over the 1678 

previous 24 months (see Section 2.3 for more details on this index). 1679 

 1680 
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 1681 
Figure 3: Commonly-used drought indices imperfectly reflect hydrological droughts in 1682 

the naturally intermittent Gqunube River at Outspan in South Africa.  1683 

(a) a standard threshold-level drought index that flags every discharge value at or under Q90 1684 

classifies all instances of flow cessation as drought days (red highlight). The drought index 1685 

developed by Van Huijgevoort, by contrast, only flags abnormally long periods of zero 1686 

discharge as drought events (blue highlight). Of the standardized drought indices (b), the 1687 

Standardized Precipitation Index (SPI; grey line) is the most commonly used but only reflects 1688 

the meteorological character of a drought. In this case, the SPI calculated based on a weather 1689 

station near the Gqunube River (< 70 km) does not reflect a hydrological drought in 1993 1690 

identified with the Standardized Streamflow Index (SSI; blue line) and Standardized Flow 1691 

Intermittence (SFI; orange line). All three standardized indices were computed at the monthly 1692 

time scale based on records over the previous 24 months.  1693 
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 1695 

Figure 4: Stepped changes in instream community composition as drying progresses and 1696 

aquatic habitats are lost in IRES. Figure inspired by Boulton (2003). 1697 

 1698 

  1699 
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 1700 

 1701 

Figure 5: Two IRES in different hydrological stages, including one during a drought. 1702 

The Calavon River, Southeastern France, during flowing (a), non-flowing (b) phases and with 1703 

an extremely dry streambed during a drought in 2017 (c). The Clauge River, Eastern France, 1704 

for the same hydrological phases: flowing (d), non-flowing (e) phases and during a drought in 1705 

2017 (f). Photos: Bertrand Launay. 1706 
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Figure 6: Changes in the configuration of flow conditions and habitat within an IRES 1708 

river network (The Colne river, England) between an average (1-3) and a drought (4-6) 1709 

year. 1710 
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 1712 

 1713 

Figure 7: Effects of intermittent drying (a) and droughts duration (b) and frequency (c) 1714 

on the extent of drying reaches at the network scale (upper panel) and hypothesized 1715 

responses of local (i.e., diversity and abundances; middle panels) and regional (i.e. β and 1716 

γ diversity; lower panels) biodiversity. In IRES where drying is cyclic and an inherent part 1717 

of the natural flow regime, local and regional diversity may fluctuate between the dry and wet 1718 

season. However, droughts can induce decreases in local diversity and population density 1719 

beyond those observed during seasonal drying, with likely stronger initial responses in 1720 

perennial and intermittent streams as habitats contract than in ephemeral streams mainly 1721 

composed of resistant taxa. Short droughts may induce increases in community variability if 1722 

network scale environmental conditions become more variable and if refuges prevent 1723 

regional extinctions. Spatially and temporally extended drought may however lead to 1724 

synchronous declines in diversity across streams with different permanence regimes as 1725 

resistance capacities of species are exceeded. Such events can lead to decrease in regional 1726 

diversity and a homogenization of communities at the regional scale if only a subset of 1727 

resistant species remain everywhere. Drought periods interrupted by short periods of rainfall 1728 

may allow the persistence of diversity by avoiding complete loss of refuges. However, 1729 

increases in drought frequencies may lead to a selection of a set of taxa with short life cycle 1730 

able to recover quickly between droughts, leading to a homogenization of the communities at 1731 

the network scale. 1732 
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