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Simple Summary: The BREEDWHEAT project has laid the foundation for future commercial varieties
by providing new and original modern molecular tools to breeders who have applied them to:
(1) efficiently analyze and structure the genetic diversity; (2) decipher traits of agronomical interest
including biotic and abiotic resistance and tolerance; (3) develop methodologies to implement
genomic and phenomic selection; (4) store and bring tools to the world wheat community to access
all of the results and data. This will provide a helping hand to developing new original and adapted
wheat varieties that will be more productive in terms of the quantity and quality in the context of
sustainable agriculture using less fertilizers, pesticides, fungicides, and water. This would help in
tackling the challenges that we have to face, especially with regard to global change.

Abstract: There is currently a strong societal demand for sustainability, quality, and safety in bread
wheat production. To address these challenges, new and innovative knowledge, resources, tools,
and methods to facilitate breeding are needed. This starts with the development of high throughput
genomic tools including single nucleotide polymorphism (SNP) arrays, high density molecular
marker maps, and full genome sequences. Such powerful tools are essential to perform genome-wide
association studies (GWAS), to implement genomic and phenomic selection, and to characterize the
worldwide diversity. This is also useful to breeders to broaden the genetic basis of elite varieties
through the introduction of novel sources of genetic diversity. Improvement in varieties particularly
relies on the detection of genomic regions involved in agronomical traits including tolerance to biotic
(diseases and pests) and abiotic (drought, nutrient deficiency, high temperature) stresses. When
enough resolution is achieved, this can result in the identification of candidate genes that could
further be characterized to identify relevant alleles. Breeding must also now be approached through
in silico modeling to simulate plant development, investigate genotype × environment interactions,
and introduce marker–trait linkage information in the models to better implement genomic selection.
Breeders must be aware of new developments and the information must be made available to the
world wheat community to develop new high-yielding varieties that can meet the challenge of higher
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wheat production in a sustainable and fluctuating agricultural context. In this review, we compiled all
knowledge and tools produced during the BREEDWHEAT project to show how they may contribute
to face this challenge in the coming years.

Keywords: wheat; Triticum aestivum; wheat breeding; molecular tools; genomic selection; high
throughput phenotyping; diversity; wheat database

1. Introduction: Wheat in a Fluctuating World

With 220 million hectares leading to an annual production of 729 million tons, bread
wheat (Triticum aestivum L.) is one of the most important crops worldwide and the staple
food for one third of the world’s population. It is also a major renewable resource for feed
and raw industrial materials. With changing diets and growing world populations, rising
prices for fertilizers and phytosanitary products, and an increasing competition between
food and non-food uses, the demand is continuously growing. Thus, today’s agriculture
has to face an unprecedented challenge: to keep pace with the human demand in an
environmentally and socially sustainable manner [1]. To meet this challenge, wheat yield
should increase by 1.7% per year over the next 30 years while the current yield increase
worldwide is only 0.9% per year, stagnating even in the main producing countries [2].
This goal would be achievable under the assumption of favorable growing conditions
but is more unlikely under climate change, which affects not only yield but also yield
stability [3–5]. With its high yielding wheat production (7.2 t ha-1 average on 2017–2020 in
France), the EU28 is the first ranked world wheat producer (148 Mt in 2019) and therefore
its production contributes significantly (22%) to the world supply. France alone ranks fifth
(35 Mt year-1 average on 2017–2020) in the world and first in the EU for both production and
export. However, like in many other countries, French annual yields have been stagnating
and are highly volatile since the end of the 1990s (Figure 1) [3,6].
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Figure 1. Evolution of bread wheat grain yield from 1960 to 2021 in France. A bi-linear regression
model was fitted (blue dotted line) for grain yield using the segmented R package [7] with default
settings. The value of the breaking point and the values of slope and standard deviation of the
residuals (RSD) are indicated for each period. Data were from the Agreste database (https://agreste.
agriculture.gouv.fr/agreste-web/accueil/ (accessed on 31 October 2021)).
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Thus, there is a need to speed up genetic progress for yield potential as well as to
improve tolerance to biotic and abiotic stresses, which are expected to increase in frequency
and intensity as a consequence of climate change. New resources and methods that will help
deliver improved varieties within shorter selection cycles (e.g., doubled-haploid, marker-
based selection, speed breeding, genomics selection, genome editing) are therefore needed.

2. The BREEDWHEAT Project Addressed Several Issues

In a large public-private partnership, the BREEDWHEAT project was designed to
address the aforementioned challenges through the development of knowledge, resources,
tools, and methods that could accelerate the translation from genomics to breeding through
a combination of genomics, genetics, ecophysiology, modeling, and phenotyping analyses.
BREEDWHEAT targeted the identification of QTLs and genes underlying key traits for
adaptation to abiotic and biotic stresses to enable breeding programs to better exploit genetic
resources and adapted germplasm through innovative breeding and management method-
ologies. From 2011 to 2020, BREEDWHEAT brought together 26 public and private research
groups (https://breedwheat.fr/partners/?lang=en (accessed on 16 December 2021)) with
extensive complementary skills and resources. It represented a unique opportunity to
integrate and synergize the efforts developed so far in small-scale and short-term projects.

To reach its objectives, BREEDWHEAT aimed at facilitating the translation of knowl-
edge and molecular resources into breeding as well as better exploiting genetic resources to
enlarge the diversity of the wheat gene pool.

Genome sequences hold the key for understanding the molecular basis of phenotypic
traits variations and provide a framework for varietal development through the utilization
of marker-assisted selection. Despite the recognition that genome sequencing is critical
for crop improvement, the size (approx. 16 Gb, 5× the human genome and 40× that of
rice), and complexity (three homoeologous A-, B-, and D-genomes and more than 80% of
repetitive DNA) of the wheat genome have long been obstacles to the efficient development
of genome sequencing projects. In 2009, when the BREEDWHEAT project was devised,
wheat was the last major crop for which no reference genome sequence was available.
The physical map of the largest chromosome, 3B, only just published [8], established
a template for the remaining wheat chromosomes and demonstrated the feasibility of
constructing physical maps in large, complex, polyploid genomes with a chromosome-
based approach. On this basis, BREEDWHEAT teamed up with the International Wheat
Sequencing Consortium (IWGSC) to provide the wheat community with this resource.

The elite crops used in modern agriculture have been developed through domestica-
tion and selection by farmers and plant breeders over hundreds, sometimes thousands of
years. The genetic variability of the elite germplasm has decreased as a consequence of
reduced population size (also called “bottleneck”) due to domestication, genetic drift, and
modern selection. While the frequency of the utmost adapted alleles is increasing, many
others, nearly neutral but potentially adaptive, have been lost [9,10]. It has become increas-
ingly clear that the commonly used elite genetic pool will hardly enable the genetic gain
needed for yield and quality in the context of global change. Thus, it is necessary to more
efficiently exploit worldwide regional landraces, local varieties as well as wild relatives
that likely contain novel and unique alleles that will sustain innovation in breeding [11].
BREEDWHEAT aimed at contributing to an in-depth characterization of the worldwide
bread wheat genetic diversity and establishing new pre-breeding populations and panels.

To ensure global food security, wheat grain yield (GY) needs to be increased in the
context of global change and the concomitant reduction in the use of water, fertilizers, and
pesticides due to environmental issues [1,12]. BREEDWHEAT aimed at addressing these
issues by identifying original genitors from exotic or ancient genetic resources and relevant
agronomical traits, molecular processes, genes, and loci associated with response to low
nitrogen input, high temperature, drought, and major fungal diseases that will constitute
the major challenges to face in the coming years.

https://breedwheat.fr/partners/?lang=en
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More than 80% of world wheat production is used after industrial processing, which
requires specific protein concentration and composition. Both grain protein concentrations
(GPC) and storage protein composition are key to the technological quality. These are
dependent on nitrogen (N) and sulfur (S) availability for the crop. It is likely that the
predicted reduction in N fertilizer use and the continuous reduction in anthropogenic S
deposition will alter the dough characteristics. The synthesis of grain storage protein is
primarily regulated at the transcriptional level by a transcriptional complex [13]. A better
understanding of the regulatory networks controlling the expression of genes for grain
storage proteins holds the key to engineer flour characteristics. BREEDWHEAT aimed at
contributing to the identification of key actors (e.g., transcriptional factors) involved in the
grain response to N and S supplies that can be used to maintain the bread making quality
of new cultivars in the context of sustainable agriculture.

To reach these objectives, BREEDWHEAT also addressed a number of methodological
and technological challenges including high-throughput genotyping and phenotyping as
well as genomic selection. In this review, we will provide an overview of the main achieve-
ments of the project and show how they could be useful for wheat breeders worldwide.

3. A Genomics Toolbox for Wheat Research and Breeding

Genomics tools have the potential to assist conventional breeding to develop better
varieties more rapidly through genome-wide association studies, characterization of genetic
resources, marker-assisted breeding (including genomic selection), genome editing, etc.
However, because of its size and complexity (allohexaploid and highly repetitive), the
bread wheat genome has long been perceived as too complex for the efficient development
of genetic and genomic resources such as highly saturated genetic maps and a reference
genome sequence. Consequently, wheat has long lagged behind other crops in terms of
molecular-assisted breeding and the characterization of genes underlying major agronomic
traits. BREEDWHEAT participated in the development of several genomics tools that are
summarized in Table 1 and are detailed in the following sections.

Table 1. Summary of genomics tools developed within the BREEDWHEAT project.

Tool Size Uses Publications

Axiom SNP arrays 409,685 SNPs Phylogeny, mapping,
GWAS, GS [14–21]

34,746 SNPs GWAS, GS

Chinese Spring (CS)
× Renan Genetic map 146,602 SNPs

21 CS pseudomolecules
assembly, analysis of the
recombination landscape,

QTL detection

[22–26]

Chromosome 1B
sequence

10,395 BACs
13,277 scaffolds

920 Mb

Analysis of the
transcriptional landscape,
the impact of transposable

elements on genome
structure and evolution,

etc.

[22–25]

3.1. Polymorphism Detection and High Throughput Genotyping

Single nucleotide polymorphisms (SNPs) have been adopted as the markers of choice
for genetic studies because they are the most abundant type of polymorphism in plant
genomes and because they are amenable to high-throughput, cost effective genotyping
technologies [27,28]. In 2011, at the beginning of the BREEDWHEAT project, only a limited
number of SNPs were published in wheat and no high-throughput technologies were
available. The development of the BREEDWHEAT TaBW280K Axiom SNP array was
initiated in 2012, simultaneously with the Axiom 820K chip [29] and finalized in 2013,
concomitantly with the publication of the first SNP array in wheat [30]. This array took
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advantage of pre-publication access to the IWGSC chromosome-based draft assembly of
the wheat genome [31]. By combining these sequences with resequencing data from eight
wheat cultivars, BREEDWHEAT discovered more than three million SNPs and selected
a subset of 280,226 polymorphisms located in both genic and non-repetitive intergenic
regions to build an Affymetrix Axiom array [14].

This array was complemented with additional SNPs coming from an ISBP (insertion
site-based polymorphism) capture experiment. To this aim, the technique later reported by
Cubizolles and collaborators [32] was applied to 96 wheat accessions comprising 13 elite
varieties and 83 accessions selected to represent the worldwide genetic diversity. Eventually,
350 k SNPs were identified and a subset of 105,703 was selected that were polymorphic in
elite material and with low rates of missing and heterozygous data. In addition, 4815 SNPs
brought by BREEDWHEAT partners, 116 published polymorphisms in major genes (Rht,
Vrn, and Ppd) as well as 5155 SNPs from the Axiom 820K [29] and 13,670 SNPs from
the Illumina 90K SNP arrays [33] were added. Altogether, 409,685 polymorphisms were
incorporated in the BW SNP chip (called TaBW410K SNP array).

In 2017, a subset of this array comprising 34,746 SNPs (therefore called TaBW35K
SNP array) was selected using several complementary criteria in order to maximize its
usefulness. We chose polymorphic high resolution or off-target variant SNPs located on all
wheat chromosomes and with high quality clustering profiles [22]. These SNPs were evenly
distributed based on linkage disequilibrium analyses (r2 = 0.80), and preferably associated
with agronomic traits. In addition, when possible, the priority was given to SNPs that were
shared with the Wheat Breeder’s Axiom 35K [34] and the Illumina 90K SNP arrays [33] to
allow for comparative analyses of panels genotyped with these two latter chips and the
two TaBW410K and TaBW35K SNP chips.

The TaBW410K and TaBW35K SNP arrays were proven to be highly useful for the
BREEDWHEAT project (see following sections) and Axiom arrays were more powerful
than Illumina arrays that required a lot of manual curation of the data [30,33].

3.2. Genetic Mapping and Recombination Pattern Analyses

Analysis of complex polygenic traits relies on the establishment of densely populated
genetic linkage maps of molecular markers [35]. Using the TaBW410K SNP array [15] on
430 F6 recombinant inbred lines (RILs) derived from the cross between Chinese Spring and
Renan (CSRe population), we were able to genetically map 146,602 SNPs on the 21 bread
wheat chromosomes. This was the largest set of mapped markers used to anchor and order
the scaffolds and elaborate the 21 pseudomolecules of the wheat genome sequence [22]. This
map confirmed that recombination mainly occurs in distal chromosomal regions favoring
allelic diversity, providing the basis for adaptability to changing environments. This study
suggested that recombination could be one of the main drivers of the partitioning of the
chromosomes that is observed in wheat with two highly (R1 and R3) and two poorly (R2a
and R2b) recombinogenic regions [36].

Such a high-density of markers allows for the application of different approaches to
study the recombination rate, especially those based on the variation of linkage disequilib-
rium (LD) or coalescent analysis [37]. By using the genotyping data from the TaBW410K
SNP array and densifying some regions of chromosome 3B, it was shown that crossovers
(COs) derived from the CSRe population correlated quite well with ancestral COs (pre-
dicted through linkage disequilibrium) obtained from two collections of 180 varieties
representative of the Asian and European genetic pools [38]. Moreover, the high density of
SNPs allowed us to observe a significant association of COs with genic features as well as a
higher frequency of a DNA motif specific to the TIR-Mariner DNA transposon in recom-
binant intervals. A similar approach was adopted using the same SNP array to genotype
371 landraces representing four diverging populations (West Asia, East Asia, West Eu-
rope, and East Europe) [39]. Recombination landscapes of the four populations positively
correlated between each other and significantly shared most recombinogenic intervals.
Interestingly, correlation was the highest for the less divergent populations, suggesting
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an effect of SNP divergence on recombination rates. Finally, 118,189 SNPs of TaBW410K
SNP array with no missing data were used to estimate the pairwise distances between
29 varieties used to develop a nested associated-mapping (NAM) population [40]. This
population was developed using the CIMMYT photoperiod insensitive cultivar “Berkut”
as the pivotal parent crossed with 28 lines, resulting in 2100 F6 recombinant inbred lines
(RILs; 75 individuals per population) and was also used to detect QTLs for grain protein
content [41–43]. These data, combined with genotyping by sequencing (GBS) data of
segregating individuals, led to the location of quantitative trait loci (QTLs) affecting the
frequency of COs. Some of these QTLs contained candidate genes known to be involved in
recombination variation such as Hei10 on chromosomes 6A and 6B.

Dense genetic maps also greatly help in positional cloning of genes of interest. For
example, 84 SNPs from the TaBW410K array were used to characterize a set of 113 deletion
lines from chromosome 3D [44]. The size of the deletions ranged from 6.5 to 357.0 Mb but
most interestingly, the regions between two successive deletions (deletion bins) ranged from
0.15 to 50.00 Mb, therefore reducing the number of genes in each bin. This was a crucial
step toward the positional cloning of Ph2, a gene controlling homoeologous recombination
in wheat [45]. With these SNPs, we revealed that the initial deletion in the ph2a mutant in
fact covered 121 Mb and not 80 Mb, as initially estimated. Most importantly, we reduced
the region bearing Ph2 to a segment of 14.3 Mb containing only 100 genes, TaMsh7-3D being
the only relevant candidate.

3.3. Sequencing the Bread Wheat Genome

To overcome the difficulties related to the size and complexity of the bread wheat
genome, the IWGSC decided to adopt a chromosome-specific approach to construct inte-
grated physical maps and sequence the hexaploid wheat genome [46]. In 2011, this strategy
had been successfully applied to chromosome 3B and had led to the publication of the
first physical map of a wheat chromosome, 3B [8]. This also resulted in the first project
funded at the international level for the production of a high-quality reference sequence of
a wheat chromosome [36]. Other physical maps have already been constructed, though
not published as yet. This included the chromosome 1BS and 1BL physical maps that were
constructed in the framework of the EU FP7 TriticeaeGenome project [47] and published in
2013 [48,49].

With the aim of contributing to the international effort to sequence the hexaploid
wheat genome, BREEDWHEAT sequenced chromosome 1B in collaboration with France
Genomique (www.france-genomique.org/platforms-and-equipments/ (accessed on 16
December 2021)). A total of 10,395 BAC clones corresponding to the physical map minimal
tiling path (MTP) was selected. Pools of ten BACs were sequenced using an Illumina MiSeq
in 2 × 250-bp overlapping pairs. Pools of 96 BACs were sequenced in 2 × 100-bp 5-kb
mate-paired reads using an Illumina HiSeq2000. The assembly was conducted with the
Newbler and SSPACE algorithms [50,51], leading to 13,227 scaffolds with an N50 of 351 kb
and a cumulative length of 920 Mb [22]. In parallel, BREEDWHEAT also contributed to the
construction of other physical maps such as that of chromosome 7DS by providing genetic
mapping data of the Chinese Spring × Renan population for physical contig anchoring
and ordering [52].

The IWGSC reference sequence led to unprecedented analyses of the wheat genome.
To date, the IWGSC reference sequence has been cited in more than 650 articles in different
fields including the transcriptional landscape of wheat and the expression and regulation
of homoeologous genes [23,24], the impact of transposable elements on genome structure
and evolution, etc. [25].

4. Characterization and Exploitation of the Wheat Genetic Diversity

From an historical point of view, bread wheat is an allohexaploid species arising from
two hybridization events between three diploid species: Triticum urartu (A-genome), an
Aegilops species from the Sitopsis section (S-genome), and Aegilops tauschii (D-genome) [53,54].

www.france-genomique.org/platforms-and-equipments/
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During the processes of domestication, wheat has undergone important genetic bottlenecks,
resulting in a very narrow genetic base, especially when considering the D-genome [55].
More recently, modern breeding has also participated in reducing the genetic variability,
especially in winter elite germplasm [11]. The introduction of novel sources of genetic
diversity within the elite germplasm is one of the most promising approaches for genetic
improvement of the cultivated varieties. Novel sources of diversity are present in different
types of material. The most obvious correspond to cultivars that are grown in various
agro-climatic environments around the world, in particular, cultivars that are adapted
to very stressful environments (e.g., under dry, hot, and/or with high disease pressure).
A second source is the large amount of diversity present in so-called Genebanks, which
corresponds to several thousands of genotypes that are kept alive in collections [56].

4.1. Characterizing the Worldwide Genetic Diversity

With 11,960 hexaploid wheat accessions originating from 108 countries, the INRAE
Biological Resource Center (www6.clermont.inrae.fr/umr1095/crb (accessed on 16 Decem-
ber 2021)) is one of the largest ex situ collections in the world. It is composed of 32.5%
French cultivars, 27% European cultivars, and 40.5% cultivars from the rest of the world.
Inside this collection, different biological classes are represented such as landraces and
traditional cultivars (20%), modern varieties (36%), and breeding material (44%). Signif-
icant efforts have already been made to describe and characterize this collection. A first
core collection covering more than 98% of the diversity (based on neutral markers) of the
entire collection was developed [57] and described for both phenotypic traits [58,59] and
molecular data [60].

To better characterize the whole collection, 4506 accessions were selected based on
sampling an optimal worldwide diversity using the available passport data including
geographical origin (country, region, state, department . . . ), status (landraces, breeding
lines, cultivars, elite lines . . . ) registration period, growth habit (spring, intermediate or
winter type), and pedigree. This panel was genotyped using the TaBW280K SNP array
and a worldwide phylo-geographical study was conducted to trace back the history of the
wheat genetic diversity (Figure 2) [16].

4.2. Assembling a New Pre-Breeding Panel for the European Breeding Programs

At the beginning of the BREEDWHEAT project, an elite panel (BWP2 panel) was
assembled to represent the diversity of cultivated winter wheat in France. The panel was
composed of 220 European elite varieties of winter wheat released by the different breeders
between the mid-1970s and the early 2010s, 89% of which have been mostly released in
France since 2000. This panel was extensively used for genome wide association studies on
several agronomic traits (see below, [17–21,61]).

It was decided to select a complementary winter wheat pre-breeding panel rep-
resenting the worldwide diversity and optimized for association genetics. Out of the
4506 accessions previously characterized, 1340 accessions were referenced as winter type
on passport data and were adapted to French growing conditions (based on comparison to
standard varieties) regarding plant height and heading dates. The objective was to design a
panel of about 500 accessions for association studies. Two sampling strategies were investi-
gated with the aim to minimize future spurious associations due to structure, and as far as
possible with a limited allelic diversity reduction. Both the maximum length sub-tree (MLS)
sampling strategy and minimal SD subset (MSDS) sampling strategy were implemented
in DARwin software [62]. The MSDS sample was finally chosen based on lower global
LD values and more diverse geographical origins of the accessions. Indeed, the MSDS
strategy tries to find a sub-sample that shows the smallest disequilibrium. The procedure
is a stepwise algorithm, removing at each step the unit with the greatest contribution to the
general disequilibrium between all pairs of loci. This new panel (BWP3 panel) sampled a
much larger diversity than the elite panel, as shown with the principal coordinate analysis
based on the TaBW280K SNP array (Figure 3). Finally, set to a size of 450 accessions, this
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panel was consequently used for association studies. The list of the accessions and seeds
are available upon request to the INRAE Biological Resource Center.
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5. Genetics and Ecophysiology Studies of Wheat Adaptation to Biotic and Abiotic
Stress in the Framework of Sustainable Agricultural Systems and Climate Change

The grain yield increase that is needed in the next few decades has to be achieved
in the context of climate change with increased atmospheric CO2 levels. This may be
favorable to C3 plants in the first place [63]. However, the increasing frequency and
intensity of high temperatures and water deficits that will accompany climate change will
eventually negatively impact grain yield as well as grain weight and protein composition,
two major determinants of wheat end-use value [3,64–66]. In addition, the reduction in
nitrogen (N) fertilization and fungicide application planned in keeping with the framework
of sustainable agriculture will also potentially affect grain yield and protein quality [67].
Sulfur (S) availability, which impacts wheat yield and end-use value, will most likely also
become a concern in the coming years because of the tremendous reduction in atmospheric
deposition since the 1970s [68,69]. Thus, breeding for new varieties adapted to these
constraints, in other words, with improved tolerance to major abiotic (limited water supply,
high temperature, limited N and S availability) and biotic stresses (fusarium head blight,
septoria leaf blotch), and able to efficiently exploit higher atmospheric CO2 concentration is
of critical importance [5]. Identifying traits and markers associated with a better tolerance
to these major environmental factors will help to select such varieties.

5.1. Grain Composition

Improving yield potential while maintaining grain quality is a huge challenge, espe-
cially in the sustainable agriculture context, which implies to decrease nitrogen inputs. The
sulfur deficiency recently observed in soils adds to this context. Both N and S are essential
for grain storage protein (GSP) synthesis and then for grain quality. Thus, identification of
the molecular mechanisms that control the accumulation of GSP in response to N and S
supply is necessary to maintain/improve cereal grain nutritional and functional properties.
To reach this goal, we developed a large-scale analysis to characterize the grain response
to N and S deficiencies as well as a study focusing on transcriptional factors involved in
GSP synthesis.

For the large-scale analysis of characterizing grain response to N and S deficiencies,
an experiment based on a genotype of einkorn (Triticum monococcum ssp. monococcum)
was performed. Einkorn was used as a good diploid model species to study bread wheat
GSP regulations. It was cultivated in an environmentally controlled growth chamber as
described in Bonnot et al. [70]. Plants received a nutrient solution containing both N and
S, which was replaced at anthesis with demineralized water. Then, during grain filling
(from 200◦ Cd to 700◦ Cd after anthesis), four combinations of N and S were supplied:
N−S−, N+S−, N−S+, N+S+, according to whether N and/or S were applied. Samples
of grains were harvested at different thermal times after anthesis to provide proteomic,
transcriptomic, and metabolomic data. In particular, the proteomic approach focused on
GSP, albumins-globulins as well as nuclear proteins. Studying the nuclear proteome was
possible thanks to the development made by Bancel et al. [71]. To see how grain proteome,
transcriptome and metabolome responded to different amounts of N and S during grain
development, we first analyzed the proteomic-data separately. Then, a large-scale analysis
including all omics-data was performed. Data integration was based on a network approach
using either RulNet (https://wheat-urgi.versailles.inrae.fr/Tools/RulNet (accessed on
16 December 2021)), a web-oriented platform partly funded by BREEDWHEAT [72], or
Mixomics (http://mixomics.org/ (accessed on 16 December 2021)).

As reported by Bonnot et al. [70], the N to S ratio in the grain was clearly affected
by post-flowering N and S nutrition. This led to major changes in the grain proteome
due to perturbation in the N:S balance. This changed the GSP composition in mature
grain, by modification of the rate and duration of GSP accumulation. Post flowering N
and S nutrition also influenced grain nuclear and albumin-globulin fractions, as shown
by the differentially abundance of 203 proteins from these fractions. S supply strongly
increased the rate of accumulation of S-rich α/β-gliadin and γ-gliadin, and the abundance

https://wheat-urgi.versailles.inrae.fr/Tools/RulNet
http://mixomics.org/
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of several other proteins involved in glutathione metabolism. Post-anthesis N supply
resulted in increasing high molecular weight glutenins andω1-2 gliadins. It also activated
the amino acid metabolism at the expense of carbohydrate metabolism and the activa-
tion of transport processes including nucleocytoplasmic transit. Protein accumulation
networks obtained due to RulNet emphasized the strong importance of S. The abundance
of DNA-binding proteins was modified by the treatments, suggesting a transcriptional
reprogramming with potential effects on chromatin. This detailed analysis of grain sub-
proteomes provides information on how wheat grain storage protein composition can be
managed in low-level fertilization conditions. To complete this work, the response to N
and S nutrition of albumin-globulin proteome of the grain in development was re-analyzed
to establish relationships between the storage proteins and all quantified and identified
the albumins-globulins (n = 352) present in all samples [73]. Both datasets were integrated
using methods implemented in Mixomics to find candidate albumins-globulins related to
seed storage synthesis. This approach was completed by linkage mapping to identify the
candidate albumins-globulins statistically associated with storage proteins. These integra-
tive approaches highlighted 18 albumins-globulins, out of which three were statistically
validated by association genetics. Four out of these 18 proteins were also highlighted by
Bonnot et al. [70], two of them being associated with storage proteins.

The final step of this work concerned a large-scale analysis including all omics-data to
identify regulatory mechanisms that may be involved in the control of grain composition
in response to N and S nutrition [74]. Twenty-four transcripts were identified as potential
coordinators of the grain response to N and S supply and strongly responded to S deficiency.
They emphasized the high impact of S deficiency on the transcriptome and metabolome
of developing einkorn grains. Post-anthesis N supply without S increased the pool of
free amino acids, necessary for GSP synthesis. In response to the increase in the grain
N-to-S ratio and the resulting grain S deficiency, sulfate transporters and genes involved in
methionine metabolism were upregulated, suggesting regulation of the pool of free amino
acids and of the grain N-to-S ratio to probably limit the impact of S deficiency.

For the study focusing on transcriptional factors involved in GSP synthesis, we iden-
tified a regulatory protein called SPA heterodimerizing protein (SHP) by looking for or-
thologs of transcription factors involved in storage protein synthesis in barley [75]. SHP
is encoded by three homoeologous genes located on group 5 chromosomes. It bounds
cis-motifs of the promoters of high and low molecular weight glutenin genes that were
already reported to bind to bZIP family transcriptional factors. Contrary to its barley or-
tholog, it acts as a repressor of their activity. This result was confirmed by transgenic lines.
Two SHP over-expressed events were available. These lines and their null segregant lines
were cultivated with low and high nitrogen supply. SHP relative expression at 500 ◦C days
after anthesis was five- and eight-fold higher in the overexpressed lines compared with
the null segregant lines in both N treatments. Their phenotype showed a lower quantity
of high and low molecular weight glutenins, while the quantity of gliadin did not change,
regardless of the availability of N. This led to an increase in the gliadin to glutenin ratio,
suggesting differences in the regulation of gliadin and glutenin genes.

Taken together, these studies point to several genes or proteins involved in the adapta-
tion of grain protein composition to nutritional deficiencies. Although several candidate
genes were identified, they showed that the regulation of storage proteins is complex and
needs to be further investigated.

5.2. Adaptation to Abiotic Stress
5.2.1. Heat Stress

Wheat is sensitive to high temperature during its reproductive phase, particularly, a
few days before and after anthesis [76]. Depending on their timing, intensity, and duration,
high temperatures can reduce either the number of grains per ear [77], or the final grain
dry mass [76], or both. Alterations in grain development result from various molecular
and cellular responses at different levels that have been widely addressed in the literature.
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However, they were mainly investigated after a severe heat stress in the leaves. In contrast,
the effect of a high, but relevant in Northern European growing conditions, temperature on
grain development is less documented in wheat. In this context, within BREEDWHEAT,
Girousse et al. [78] first analyzed the response of wheat grain development in response to
low and moderately high temperatures (19 ◦C vs. 27 ◦C) in two genotypes. They used the
NimbleGen microarray containing 40,656 UniGenes to characterize differentially expressed
genes. In these conditions, grain dry mass was reduced by 14.4% and 6258 genes had an
expression level affected by the temperature at one or more of the developmental stages.
Both the up- and downregulated genes were then annotated and their enrichment, in
particular, metabolic pathways was investigated. The upregulated genes were particularly
enriched in genes involved in “nutrient reservoir activity”. This suggests that moderately
high temperatures induce an earlier expression of genes related to nutrient accumulation.
This process may be the signal for an accelerated development rate of the grain, which
results in a net reduction in grain dry mass. Then, Touzy et al. [20] explored, under the
same conditions, the genetic variability for tolerance to heat in the panel of elite Northern
European winter varieties (BWP2 panel) previously genotyped [14]. They identified a
significant variability for the tolerance, with grain dry mass losses at high temperature
ranging from 9.1% to 36.4%. A GWAS was carried out with TaBW410K to dissect the
genetic determinants of heat tolerance. Ten QTLs were associated with at least one trait and
seven QTLs were characterized by a significant interaction with post-anthesis heat stress.
In particular, a significant SNP × treatment interaction for grain dry mass was identified
on the telomeric region of the short arm of chromosome 4B. Focusing on a well-defined
moderate terminal heat stress, these findings will help identify the genomic regions needed
to develop heat-stress tolerant crops.

5.2.2. Drought Stress

Drought is one of the main abiotic stresses limiting winter bread wheat growth and
productivity. Alleles for tolerance in one drought scenario could have negative effects under
other growing conditions, generating genotype × environment (G×E) interactions [79].
Defining the relevant target water stress scenario is then the first necessary step. Quanti-
fying the genetic variability and identifying chromosomal regions involved is the second
step. Several genetic studies have already been conducted and QTL reviewed [80–82]. To
our knowledge, however, no study has explored the differences in water stress scenarios in
a multi-environment trial of European winter wheats. The same panel of elite Northern
European winter varieties (BWP2 panel) as used in Touzy et al. [20] was experimented on
by BREEDWHEAT partners in 35 field trials [21]. A crop model was run with detailed
climatic and soil data to assess the dynamics of water stress in each environment. These
simulations allowed for grouping the environments into four water stress scenarios: an
optimal condition with no water stress, a post-anthesis water stress, a moderate water stress
around anthesis, and a high pre-anthesis water stress. Interestingly, a significant genetic
progress was observed for both the optimal condition and the high-stress scenarios. The
GWAS identified several QTLs, some of which were specific to the different water stress
patterns. These results make easier breeding for improved drought resistance to specific
environmental scenarios. This will facilitate genetic progress for future environmental
conditions (i.e., water stress environments).

5.2.3. Nitrogen Stress

N is a major plant nutrient whose application strongly increases grain yield and
grain protein concentration. There are, however, many adverse environmental effects of
inappropriate N applications such as ground water pollution and the release of nitrogen
oxide greenhouse gases. Moreover, N fertilizers represent a significant part of the oper-
ational and energetic costs of wheat production. Most field genetic studies conducted
at different N levels have reported significant genotype × N level and QTL × N level
interactions for grain yield and grain protein concentration [83,84]. It seems, however, that
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very few have investigated the interaction between the genotype and the stress scenario.
The BREEDWHEAT panel of elite Northern European winter varieties (BWP2 panel) was
evaluated in 12 field trials with two N treatments. The clustering approach based on mean
environment yield components and grain protein concentration identified four N availabil-
ity scenarios: optimal condition, moderate and early deficiency, high and late deficiency,
high and continuous deficiency (Agathe Mini, personal communication). A large range of
tolerance to N deficiency was observed with varieties showing different rankings between
N deficiency scenarios. The well-known negative correlation between grain yield and grain
protein concentration also existed between tolerance indices calculated for these two traits,
meaning that it will be difficult to identify varieties maintaining both their grain yield
and protein concentration in N deficiency conditions. QTL regions were identified for the
tolerance indices. These regions may be selected separately or combined thanks to their
associated markers to improve the tolerance to N deficiency within a breeding program.

5.3. Crop Modeling

In the coming decades, plants are expected to be exposed to highly contrasting growth
conditions and agricultural practices. In response to climatic and crop management changes,
plants will shift their phenotype, which may affect their agronomic performances. Anticipat-
ing the plastic responses of plants is crucial to adapt their management and identify future
varieties to be grown or bred. Given the large number of varieties and environments to be
tested, computational plant modeling could help researchers and breeders identify efficient
genotypes for given environments. Such plant models could build upon the large field trials
and genotyping data that were recently collected in the BREEDWHEAT program [18,21],
allowing to decompose the genotype-by-environment interactions (G × E).

Rincent et al. [61] proposed new methods to predict G × E interactions, which can
help plant breeders to identify promising genotypes. To that purpose, the authors used
a multi-environment trial involving 42 environments and 220 genotyped elite varieties
of winter wheat (panel BWP2). The authors showed that an AMMI (additive main and
multiplicative interaction) decomposition of the phenotypic data was very efficient to
estimate observed covariances between varieties and between environments. In addition,
two kinds of environmental covariates (EC) were used to characterize the environmental
conditions: (i) usual meteorological data by developmental stage and (ii) stress indices
derived from a crop model and reflecting the water, nitrogen, and temperature stresses
that the plants might experience during their growth. Interestingly, they found that more
G × E variance was explained when using a subset of seven ECs than with all ECs taken
together (the correlation with the AMMI matrix increased from 0.56 to 0.84). The three
most important ECs were the climatic variable related to the photo-thermal quotient
between meiosis and flowering and two thermal stress indices depending on the maximal
temperature during specific growth periods.

Using a similar approach, de los Campos et al. [85] presented a simulation platform to
predict the performance of wheat cultivars in various weather conditions. This platform
incorporates data from an extensive field trial on wheat (n = 25,841 records) including DNA
polymorphism (SNPs), weather data, and EC generated from a crop model that reflects
critical temperatures, radiation, and water availability for eight distinct phases of crop
phenology. The authors used different statistical models to evaluate the proportion of grain
yield variance explained by genetic and environmental factors and the fraction of those
variances that could be captured using SNPs and ECs. They showed that most of the grain
yield variance was explained by a so-called full model combining the trial information
(year, location, and year × location interactions) along with ECs and SNPs. The molecular
markers explained almost all of the genetic variance. In a cross-validation procedure, the
full model also showed the highest within-trial correlation between predicted and observed
grain yields (0.58). The authors then used the full model to predict the grain yield of
28 genotypes using historical weather data in 16 locations in France. Their simulations
showed that modern cultivars achieved higher yields across locations than historical
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varieties. The simulation platform therefore offers an opportunity for researchers and
breeders to leverage their data with historical weather records to produce robust predictions
of cultivar performance.

Models of G × E interactions were also developed to optimize wheat phenology to
avoid climatic stresses. Gouache et al. [86], and later Bogard et al. [87], used field trials
involving a large number of winter wheat varieties grown in different French locations in
order to calibrate a phenology model. In particular, two model parameters were calibrated
using the information on molecular markers in Bogard et al. [87]. The two parameters
GDDpv (growing degree days reduced by photoperiod and vernalization factors) and
GDDp (growing degree days reduced by the photoperiod factor) determine the accumula-
tion of modified thermal time by cold temperature and photoperiod from emergence to the
beginning of stem elongation (GS30) and from GS30 to the heading date (GS55). Using a
QTL-GBLUP (genomic best linear unbiased prediction) model in an independent dataset,
the authors found that the correlation between predicted and observed GS30 and GS55
ranged from 0.37 to 0.71 and 0.74 to 0.94, respectively. GWAS for GDDpv and GDDp also
showed the major impact of photoperiod sensitivity genes (Ppd-D1, Ppd-B1) on the earli-
ness of the tested cultivars. Finally, simulations were performed for every marker-based
GDDpv × GDDp combinations (n = 50,451), in order to identify the ideotypes maximizing
climatic risk avoidance. They found strong interactions between the tested genotypes,
sowing dates, and climate zones. For instance, early genotypes and late sowing should
be preferred in oceanic regions with high Mediterranean influence (southwest of France).
In contrast, the optimal growth period was overall shorter in semi-continental locations
where early genotypes and early sowings should be avoided because of the high frequency
of late frosts. The authors concluded that their methodology could be used to choose the
genotype × sowing date combination that maximizes grain yield.

Barillot et al. [88] proposed a different and complementary approach that does not
build on a statistical model of G × E, but rather on an explicit description of the processes
involved in plant plasticity. The originality of the model, named CN-Wheat, lies in an
integrated vision of plant functioning emerging from a detailed description of the primary
metabolism of carbon (C) and nitrogen (N) at the organ scale. CN-Wheat is an individual-
based model describing resource acquisition (photosynthesis, N-uptake, transpiration) as
well as the synthesis, degradation, and allocation of the main C-N metabolites (sucrose,
starch, fructans, nitrates, amino acids, and proteins). These physiological processes are not
only regulated by pedo-climatic variables (light, CO2, moisture, and soil N), but also by
metabolite concentrations. Thus, the metabolite concentrations at the organ level act as
internal variables, allowing for the integration of the different processes at the scale of the
whole plant. The model was first evaluated [89] for its ability to simulate the dynamics and
spatial distribution of biomass and N between roots, photosynthetic organs, and grains,
as observed in a field experiment where wheat plants were subjected to three levels of
N fertilization at flowering. The model also provided clues for interpreting the observed
behaviors, in particular, how the decrease in mobile metabolites following rapid grain
filling, ultimately leads to the cessation of resource acquisition. The model was later used
to assess how architectural traits such as leaf inclination affect resource acquisition and
allocation in pure and mixed stands [90]. The model was recently extended to the vegetative
stages [91], thus giving the opportunity to assess plant phenotypic plasticity in contrasting
growth conditions [92].

5.4. High Throughput Field Phenotyping

While the genotyping capacity has increased rapidly, phenotyping has become the
major limitation in research programs aiming at characterizing the genetic diversity for
crop response to climate changes and reduced inputs [93]. Detailed measurements on a
broad genetic diversity along the crop cycle and in known environmental conditions are
key levers of genetic advances [94]. For that, both the development of platforms that enable
creating environmental scenarios and monitoring plant development through sensors and
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models to derive relevant traits are necessary. While several traits can be well characterized
under controlled conditions with plants in pots under greenhouses, emphasis should be
put on field conditions that represent the actual challenge of phenotyping.

In close collaboration with the Phenome-Emphasis Project (https://www.phenome-
emphasis.fr (accessed on 16 December 2021)), several phenotyping systems have been
developed (Figure 4). These include UAV (unmanned airborne vehicles) equipped with
high resolution RGB and multispectral cameras with throughput higher than 1000 micro-
plots per hour (classical micro-plots are 7–12 m2 large). Furthermore, ground robotic rovers,
called Phenomobiles, and gantry systems have also been specifically developed, with
throughput higher than 100 micro-plots per hour. The Phenomobiles and gantry systems
share the same measurement system, which includes LiDARs, RGB, and multispectral
cameras. The sensors are triggered by the same unit that records, in a consistent way, all
the data acquired along with the associated meta-information. The advantages and limits
of the several phenotyping systems considered here are discussed below.
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The phenotyping systems are operated over different installations including some
(Ouzouer-le-Marché and Clermont-Ferrand) where the environment can be manipulated
to control soil water availability with mobile rain shelters [95] and atmospheric CO2
concentration with a FACE (free air CO2 enrichment). Furthermore, the main environmental
characteristics such as temperature, radiation, wind speed, air humidity, and soil moisture
are precisely monitored at the hourly time step.

These high-throughput phenotyping systems deliver massive amount of data, mostly
in the form of high resolution 2D and 3D images. A great effort was dedicated to developing
interpretation methods that provide estimates of several relevant ecophysiological traits
(Table 2). These correspond to structural, morphological, or biochemical characteristics
either at the canopy or organ levels. The methods used are diverse, based on photogram-
metry, the inversion of radiative transfer models, computer vision, and more recently, deep
learning. Most methods use a single sensor, sometimes combining observations from two
or more directions to better scan plants or organs and better describe the canopy structure.
However, for canopy level traits, several methods and sensors can be combined, resulting
in multiple estimates that can be used to check the consistency of high-throughput methods.
While the traits derived from the LiDAR are specific to the Phenomobile, most of the other
traits can be derived either from UAV or Phenomobile observations. The higher throughput
of UAV allows for exhaustive sampling of the micro-plots, although this is obtained at the
expense of the quality of the images with a reduced ground sampling distance. Conversely,
Phenomobile observations are lower throughput, but allow for the control of the illumina-
tion conditions by using flashes, and to obtain a higher spatial resolution (smaller ground
sampling distance) because of the slower speed of the vehicle, and smaller distance between
the sensors and the ground. A very high spatial resolution is mandatory when estimating
organ level traits because they first need to be identified, requiring a ground sampling
distance at least smaller than one fifth the typical organ dimension. Deep learning methods
based on convolutional neural networks are now very efficient for segmentation and plant
or organ identification and counting. They are currently assessed to score symptoms of

https://www.phenome-emphasis.fr
https://www.phenome-emphasis.fr
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diseases targeting specific organs. However, the main drawback of such machine learning
methods is the difficulty in obtaining a robust model. It therefore requires a large and
diverse training dataset populated by many acquisition sessions with possible differences in
ground sampling distance, illumination conditions, growth stages, and background. How-
ever, for most of the traits considered in Table 2, the methods that we developed showed a
higher broad sense heritability compared to the traditional phenotyping methods.

Table 2. Traits that can be estimated from high-throughput systems developed within BREEDWHEAT
and Phenome-Emphasis projects that can be applied to wheat crops. DL: deep learning, RTM:
radiative transfer model, SVM: support vector machine, VI: vegetation index. Colored cell indicate
that the corresponding sensor or vector was used to estimate the trait.

Level Trait Method

Sensor Configuration Vector
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Vegetation Index (VI) Band combination 0◦ 20 [96]

Plant height
Structure from motion 0◦ 1 [97]
Distribution of height ±35◦ 0.5 [97]

Vegetation Fraction (VF)

DL segmentation 0◦ 0.05 Madec et al.
(pers.com)

Height threshold ±35◦ 0.5
Lopez-

Lozano et al.
(pers.com)

Green Fraction (GF)

SVM/random forest 0◦-45◦ 0.05 Serouart et al.
(pers.com)

DL segmentation 0◦–45◦ 0.05 Madec et al.
(pers.com)

1D RTM inversion 0◦ 20 [98]

Green Area Index (GAI)
Green fraction turbid 0◦–45◦ 0.05 [99]

1D RTM inversion 0◦–45◦ 20 [100]
3D RTM inversion ±35◦ 0.05–0.5 [101]

Plant Area Index (PAI) 1D turbid ±35◦ 0.5
Lopez-

Lozano et al.
(pers.com)

Fraction of Intercepted
Radiation (FIPAR)

1D RTM inversion 0◦ 20 [102]
Green Fraction turbid 0◦–45◦ 0.05 [103]

1D turbid ±35◦ 0.5
Lopez-

Lozano et al.
(pers.com)

Average Inclination
Angle (AIA)

1D RTM inversion 0◦ 20 [102]

1D turbid 0◦–45◦ 0.05 Liu et al.
(pers.com)

1D turbid ±35◦ 0.5
Lopez-

Lozano et al.
(pers.com)

3D inversion ±35◦ 0.05–0.5 [103]

pers.com
pers.com
pers.com
pers.com
pers.com
pers.com
pers.com
pers.com
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Table 2. Cont.

Level Trait Method

Sensor Configuration Vector

Reference
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Canopy Chlorophyll
Content (CCC)

1D RTM inversion 0◦–45◦ 20 [104]
VI empirical 0◦ 20 [105]
VI empirical 0◦ 0.05 [106]

3D Distribution of Area 1D turbid ±35◦ 0.5
Lopez-

Lozano et al.
(pers.com)

O
rg

an

Plant density DL at emergence 45◦ 0.05 [107]
Stem density DL at harvest 0◦ 0.02 [108]

Stem diameter DL at harvest 0◦ 0.02 [108]
Ear density DL at reproductive stage 0◦ 0.05 [109]

Leaf Chlorophyll Content

1D RTM inversion 0◦ 20 [105]

VI empirical 0◦ 0.05 Jay et al.
(pers.com)

VI empirical 0◦ 0.05 Jay et al.
(pers.com)

The high throughput phenotyping methods targeting traits describing canopy or
the organ state allowed us to repeat the observations along the growth cycle. It is then
possible to access a few phenological events such as heading [110] or flowering [97], and to
describe the dynamics of canopy structure as a proxy of functional traits. The use of simple
models or more sophisticated ones [101,107,111,112] offers great potential for providing
breeders with new insights into the functioning of the crop. This will be the focus of
future investigations where crop functioning models are combined with high-throughput
phenotyping observations to tune model parameters that describe the reaction of the crop
to environmental factors. This will ultimately allow us to predict the fate of the crop for a
wide range of environmental conditions.

6. Development of Innovative Methods and Cost-Efficient Breeding Platforms
6.1. Genomic Selection

As stated previously, accelerating genetic progress has become the priority of many
agricultural agencies. Genetic progress per year (∆G) is given by the general formula:

∆G = (i × h2 × σρ)/L

where i is the selection intensity; h2 is the trait heritability; σρ is the phenotypic variability;
and L is the duration of the selection cycle. The utilization of genome-wide markers
has been proposed as a means to increase selection intensity and reduce cycle length (by
reducing the need/cost of phenotyping), provided that marker-based prediction accuracy
is compared to phenotypic heritability. This was proposed as “genomic selection” (GS) by
Meuwissen et al. [113] and has since been widely applied, particularly in animal genetics for
quantitative traits such as milk production controlled by “infinitesimal” genes. The use of
GS for crop improvement was first proposed in 2007 by Bernardo and Yu [114]. However, in

pers.com
pers.com
pers.com
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contrast to animals, plants are subjected to huge G × E interactions. In addition, in the case
of wheat, breeding objectives are diverse and encompass complex traits such as yield under
stress conditions, and more simple traits such as quality or disease resistance. In 2011, only
three papers dealing with GS in wheat were published [115–117]. Later, several genomic
prediction models have been applied to various traits of bread wheat [118]. Although
differences were usually small, some methods achieve higher predictive abilities than
others, depending on the traits considered, most likely due to their genetic architecture.

The first task in BREEDWHEAT was to develop an integrated pipeline for genomic
prediction based on available R-libraries [119]. The BREEDWHEAT Genomic Selection
software, BWGS [120] (Figure 5), is available as an easy-to-use, standalone R package,
with default parameters adapted to the commonly used size of datasets. It includes two
methods for missing data imputation, four methods for selecting marker subsets (random,
LD-based, GWAS-based), and 14 methods for GEBV prediction (from historical GBLUP to
Bayesian radial neural networks). Additionally, two methods are proposed for sampling
training subsets: random (useful for teaching purpose) and optimization, according to
Rincent et al. [121]. A first function enables carrying out random cross-validation to select
the best parameterization and the most predictive method, and a second function to carry
out the prediction of GEBV in the target set of lines after designing the best model on the
training set. The source code of BWGS R functions as well as example files and notes are
freely available on https://forgemia.inra.fr/umr-gdec/bwgs (accessed on 16 December
2021), and also from the CRAN (https://cran.r-project.org/ (accessed on 16 December
2021)). Figure 6 illustrates the predictive ability of the 14 prediction methods obtained for
grain yield by cross-validation on a training population of 760 breeding lines with historical
trial data from 2000 to 2014 (unbalanced data).

BWGS was primarily developed to estimate single trait GEBV. However, wheat breed-
ing requires simultaneous improvement of several traits, which are often correlated to
each other. This is why we also tested methods for multi-trait genomic selection and trait-
assisted genomic selection [122]. In this study, an extension of the optimization algorithm
from Rincent et al. [121] was proposed, and a case study was carried out on bread making
quality using data from a real breeding program. Results were presented considering the
respective cost of genotyping and phenotyping for both the main and the secondary traits.

Such economic parameterization was also used in a virtual selection program using a
novel algorithm, whose parameters were co-constructed with BREEDWHEAT breeders.
This software enables the breeder to compare realistic breeding schemes of similar cost,
with or without a step of genomic pre-selection [123,124].
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We also addressed the endless question of predicting G × E interaction. Although sev-
eral attempts have been published thus far [118,125], the improvement provided by these
methods appears to be limited. We used genomic random factorial regression (FR-GBLUP)
to achieve genome prediction of the reaction norms to environmental stress [126]. This
tool can help breeders to improve adaptation and tolerance to specific stress factors such
as heat or drought. Comparing the prediction accuracies of the additive GBLUP and the
FR-GBLUP models on real data, we showed accuracy gains of 1.6 to 26.2% for the genomic
regression to drought. To predict performances of individuals in new environments, the
FR-GBLUP model was consistently more accurate than the additive GBLUP. Moreover,
we reported that the use of output variables from crop growth models (CGM) allowed
higher predictive ability of FR-GBLUP than raw variables (e.g., climatic), as exemplified
with the use of the nitrogen nutrition index on grain number [127]. In addition, a new
prediction approach combining the use of a secondary trait and a CGM was proposed [19].
The originality is that the phenotyping of the test set for the secondary trait is replaced by
CGM predictions. Prediction of grain yield as the target trait using heading date as the
secondary trait resulted in high predictive abilities in three prediction scenarios (sparse
testing, or prediction of new genotypes, or of new environments).

Finally, we wanted to use CGM incorporating genetic parameters to combine ecophys-
iological and genetic modeling. The objective was to determine a method to optimize the
set of environments composing a multi-environment trial (MET) for estimating genetic
parameters. A criterion called OptiMET was defined for this aim, and was evaluated on
simulated and real data, with the example of wheat phenology. The MET defined with
OptiMET allowed us to estimate the genetic parameters with lower error, leading to higher
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QTL detection power and higher prediction accuracies. MET defined with OptiMET was
on average more efficient than random MET composed of twice as many environments in
terms of genetic parameters estimation [128].

6.2. Phenomic Selection

Obtaining high-density genotyping data on large numbers of individuals such as
those that are typically experienced in breeding can be challenging and expensive. In
2009, Mackay et al. [129] proposed the use of endophenotypes (i.e., intermediate molec-
ular phenotypes such as transcripts, proteins or metabolites) to help accurately predict
complex traits. The possibility of using metabolic markers for monitoring or predicting
plant performance was reviewed by Fernandez et al. [130]. A cost-efficient pipeline using
metabolic markers as putative predictors of performance with notable applications in
plant-breeding was designed. In this context, Rincent et al. [18] proposed using low-cost
and non-destructive near-infrared spectroscopy (NIRS) to perform “phenomic selection”
(PS) based on high-throughput phenotyping to obtain numerous variables that can be
used as regressors or to estimate kinship in the classical statistical GS models. In PS, NIR
reflectances are considered in the same way as genomic or endophenotypic regressors,
allowing for predictions in any environment once NIR reflectances are acquired in one
environment. Tested on bread wheat, predictions as accurate as those with molecular
markers were reached for heading date and grain yield, even in environments radically
different from the one in which NIRS were collected. These studies constitute a proof of
concept and provide new perspectives for the breeding community [131].

7. Data Integration into an Information System following the FAIR Principles

The BREEDWHEAT data are very valuable, diverse, and high throughput. To manage
these data, we used the GnpIS information system of INRAE-URGI, which allowed us to
achieve important objectives:

(1) Long-term storage of the data as GnpIS has been available since 2000 and benefits
from perennial funding by INRAE (Plant Biology and Breeding division);

(2) Implementation of a data management plan, which includes a data access mechanism
with credentials following the consortium agreement;

(3) Integration of all the project data in a common information system to link the data
from genomics to phenomics [132];

(4) To allow the researchers and breeders to query the data through the GnpIS web
interfaces (FAIDARE, JBrowse, GnpIS core-DB, detailed below); and

(5) To insure data quality and compliance to the FAIR principles (Findable Accessible
Interoperable Reusable) [133].

A dedicated webpage has been set up to easily access the BREEDWHEAT data in Gn-
pIS: https://wheat-urgi.versailles.inrae.fr/Projects/BreedWheat (accessed on 16 December
2021) (Figure 7).

7.1. Data Quality and FAIRness

The project data followed the existing standards per data type (e.g., VCF, MIAPPE,
MCPD) and have been curated. Moreover, consistency checks have been performed using
ETL (Extract Transform Load) tools. In addition to these quality checks, GnpIS insures the
FAIRness of the data and metadata:

• Findability: a DOI (digital object identifier) was generated for each accession; all data
are searchable using web interfaces; public BREEDWHEAT data are findable by the
whole community via the WheatIS data discovery tool (https://urgi.versailles.inrae.
fr/wheatis (accessed on 16 December 2021)).

• Accessibility: phenotyping data are accessible through Breeding API (BrAPI) web
services [134].

• Interoperability: phenotyping data followed an ontology developed in the frame of
the project and merged with the international wheat crop ontology (CO_321) [135].

https://wheat-urgi.versailles.inrae.fr/Projects/BreedWheat
https://urgi.versailles.inrae.fr/wheatis
https://urgi.versailles.inrae.fr/wheatis
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• Reusability: a data management timeline defines when each kind of data will be
opened; all the GnpIS tools have general terms of use and license.

Biology 2021, 10, x  2 of 30 
 

 
Figure 7. BREEDWHEAT data summary webpage (https://wheat-urgi.versailles.inrae.fr/Projects/BreedWheat (accessed 
on 16 December 2021)) with some examples of GnpIS web interface results. 

7.1. Data Quality and FAIRness 
The project data followed the existing standards per data type (e.g., VCF, MIAPPE, 

MCPD) and have been curated. Moreover, consistency checks have been performed using 
ETL (Extract Transform Load) tools. In addition to these quality checks, GnpIS insures the 
FAIRness of the data and metadata: 
• Findability: a DOI (digital object identifier) was generated for each accession; all data 

are searchable using web interfaces; public BREEDWHEAT data are findable by the 
whole community via the WheatIS data discovery tool (https://urgi.ver-
sailles.inrae.fr/wheatis (accessed on 16 December 2021)). 

• Accessibility: phenotyping data are accessible through Breeding API (BrAPI) web 
services [134]. 

• Interoperability: phenotyping data followed an ontology developed in the frame of 
the project and merged with the international wheat crop ontology (CO_321) [135]. 

• Reusability: a data management timeline defines when each kind of data will be 
opened; all the GnpIS tools have general terms of use and license. 

7.2. Genetic Resources Data Integration 
The data of 5232 accessions managed by the INRAE Biological Resource Center were 

integrated in GnpIS. The passport data and the related phenotyping data can be displayed 
using the FAIDARE (FAIr Data-finder for Agricultural REsearch) web interface. FAIDARE 

Figure 7. BREEDWHEAT data summary webpage (https://wheat-urgi.versailles.inrae.fr/Projects/
BreedWheat (accessed on 16 December 2021)) with some examples of GnpIS web interface results.

7.2. Genetic Resources Data Integration

The data of 5232 accessions managed by the INRAE Biological Resource Center were
integrated in GnpIS. The passport data and the related phenotyping data can be displayed
using the FAIDARE (FAIr Data-finder for Agricultural REsearch) web interface. FAIDARE
allows one to find data using free text, controlled vocabularies, and identifiers of key
scientific resources such as genetic material or phenotyping and environmental traits. It
indexes databases around the globe and offers data preview of all those datasets with
relevant ontology annotation when available with a link back to the original database.

7.3. Genomics Data Integration

The 1B chromosome sequence obtained in the frame of BREEDWHEAT was included
in the reference sequence of the IWGSC available in the IWGSC data repository hosted
by INRAE-URGI. GnpIS offers some tools to download, analyze (BLAST), and display
(JBrowse) this annotated genome. The IWGSC RefSeq v1.0 browser includes a dedicated
track to display the TaBW280K SNPs chip [14]. All the annotated markers including SNPs
were linked to the corresponding genetic and phenomic data [132].

https://wheat-urgi.versailles.inrae.fr/Projects/BreedWheat
https://wheat-urgi.versailles.inrae.fr/Projects/BreedWheat
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7.4. Genotyping, Phenotyping, and GWAS Data Integration

GnpIS core-DB is a hybrid database composed by a relational database (PostgreSQL)
that allows for a high level of data integration though well curated pivot data and a NoSQL
database (ElasticSearch), which enables fast searchable capabilities. All the SNPs of the
Axiom TaBW410K chip (including the TaBW280K first published markers) [14] and the
corresponding genetic map were integrated in GnpIS. SNP positions on the reference
genome and their flanking sequences are available as well as a custom download in a
VCF format. Phenotyping data from panel BWP2 (29 trials since 2011), panel BWP3
(11 trials since 2016), and AB-QTL (20 trials since 2017) were integrated in GnpIS following
the same trait ontology [136], which allows one to search for a variable across all of the
BREEDWHEAT phenotyping experiments with download capabilities in standard formats
such as MIAPPE and ISA-TAB.

GnpIS integrated the corresponding GWAS between the BREEDWHEAT genotyping
and phenotyping data. It also offers figures displayed as box plots, Manhattan plots, and
QQ plots. It integrated the BREEDWHEAT data together, but also with open access data
from the achieved project (e.g., H2020 Whealbi, www.whealbi.eu (accessed on 16 December
2021)), public networks (e.g., French small grain cereals network), and consortia (e.g.,
IWGSC, Wheat Initiative). This will help researchers and breeders find new knowledge.

8. Conclusions

The BREEDWHEAT project was conceived to provide wheat breeders with extension
services with knowledge and tools to address the societal demand for wheat production
sustainability, quality, and safety. It contributed significantly to the sequencing and the
analysis of the first reference sequence of the hexaploid wheat genome, which was a major
breakthrough for the wheat community. Based on these resources, two genotyping arrays
were developed: the TaBW410K and the TaBW35K arrays, which were extensively used in
the framework of BREEDWHEAT as well as in other projects, since they have been made
available to the wheat community. More than 13,000 cultivated and wild wheat accessions
were genotyped to perform genome-wide association studies, implement genomic and
phenomic selection, characterize the worldwide diversity and its history, and build a
catalogue of structural variations of the genome sequence.

The aim was also to broaden the genetic basis of French elite varieties through the
introduction of novel sources of genetic diversity that contain favorable alleles for resistance
to abiotic and biotic stresses. For this, plans were made (i) to select a panel of 450 accessions
representing the world genetic diversity for winter wheat and (ii) to create pre-breeding
populations crossing elite European varieties and exotic genitors, bringing new tolerances
to biotic and abiotic stresses. To build the panel, 4600 accessions of the INRAE bread
wheat collection were genotyped and characterized in the field for adaptation traits (plant
height, precocity). A total of 450 accessions were then selected in order to maximize the
power of detecting chromosomal regions in genome-wide association studies. To create
pre-breeding populations, genitors were either selected in the worldwide diversity or in the
panel of 450 accessions. Once these selections were made, BREEDWHEAT partners created
36 populations for a total of almost 5000 pre-breeding lines that contain novel sources of
diversity for tolerance to various stresses.

The genetic and ecophysiological tolerance to biotic and abiotic stresses were investi-
gated. A set of ecophysiological models was developed to investigate genotype × envi-
ronment interactions and improve methods for high throughput phenotyping. Candidate
genes and pathways were identified for the response of grain weight to high temperature
and the response of grain protein composition to nitrogen and sulfur supplies. This was
undertaken using different approaches (network inference, multivariate analyses) to ana-
lyze transcriptomics and proteomics data. Finally, genetic approaches were undertaken
to identify genomic regions of interest (QTL) by combining genotypic and phenotypic
data collected from large field trial networks. Two different panels, the first one composed
of 220 European elite varieties and the second one corresponding to the 450-accessions

www.whealbi.eu


Biology 2022, 11, 149 22 of 28

worldwide diversity panel, were experimented and phenotyped in large trial networks.
Marker x traits associations were identified for tolerance to stresses. BREEDWHEAT was
able to provide lists of tolerant varieties and markers to breeders in order to follow genetic
areas of interest for biotic and abiotic stress tolerance.

An R-package named BWGS, which gathers several easy-to-use methods for data
cleaning, sampling, and imputation as well as 15 methods for genomic prediction of
breeding value was developed. This package was disseminated through national and
international training sessions. The objective was also to develop a centralized repository
suited to the data generated within BREEDWHEAT and following the FAIR principles.
It was specifically designed to manage and link different data types: genomics data,
germplasm description, genotyping data, genetic maps, ontologies, phenotyping data, and
the results of association studies. The information system was successfully implemented
with the data and a dedicated webpage was set up to easily access them.

Further works on traits of interest are needed in many areas. Recent future climatic
scenarios [137] do not predict a change in the trend of increased constraints for crops
cultivated in Northern Europe. Average temperature increase will lead to accelerated
development rates and shorter growth cycle. Even in the case of no change in the amount
of rainfall, less water will be available due to higher evapotranspiration. Furthermore,
extreme events are likely to be more frequent such as what happened for the 2015–2016
season in France with a combination of abnormally warm temperatures in late autumn 2015
and abnormally wet conditions and low solar radiations in spring 2016 [138]. In addition,
economic and ecological constraints will favor agricultural systems with less phytosani-
tary and fertilizer inputs such as those prone in organic farming and agroecology [139].
Favorable biotic interactions (e.g., plant-to-plant interactions in cultivar or species mixtures
and plant–microbiome interactions in the rhizosphere) will probably be important factors
to design less vulnerable and more resilient agricultural systems. In these conditions,
maintaining the genetic progress will be a huge challenge. This will rely on the optimal use
of all recent breeding tools (high-throughput genotyping and phenotyping, genomic and
phenomic selection) [140,141] and the exploitation of all available genetic diversity that
could best be conducted within large consortia associating public and private research.
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