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Abstract
Host	 nutrient	 supply	 can	mediate	 host–	pathogen	 and	 pathogen–	pathogen	 interac-
tions.	In	terrestrial	systems,	plant	nutrient	supply	is	mediated	by	soil	microbes,	sug-
gesting	a	potential	role	of	soil	microbes	in	plant	diseases	beyond	soil-	borne	pathogens	
and	induced	plant	defenses.	Long-	term	nitrogen	(N)	enrichment	can	shift	pathogenic	
and	nonpathogenic	soil	microbial	community	composition	and	function,	but	it	is	un-
clear	 if	 these	 shifts	 affect	plant–	pathogen	and	pathogen–	pathogen	 interactions.	 In	
a	growth	chamber	experiment,	we	tested	the	effect	of	 long-	term	N	enrichment	on	
infection	by	Barley	Yellow	Dwarf	Virus	(BYDV-	PAV)	and	Cereal	Yellow	Dwarf	Virus	
(CYDV-	RPV),	aphid-	vectored	RNA	viruses,	 in	a	grass	host.	We	 inoculated	sterilized	
growing	medium	with	soil	collected	from	a	long-	term	N	enrichment	experiment	(ambi-
ent,	low,	and	high	N	soil	treatments)	to	isolate	effects	mediated	by	the	soil	microbial	
community.	We	crossed	 soil	 treatments	with	 a	N	 supply	 treatment	 (low,	 high)	 and	
virus	inoculation	treatment	(mock-	,	singly-	,	and	co-	inoculated)	to	evaluate	the	effects	
of	long-	term	N	enrichment	on	plant–	pathogen	and	pathogen–	pathogen	interactions,	
as	mediated	by	N	availability.	We	measured	 the	proportion	of	plants	 infected	 (i.e.,	
incidence),	plant	biomass,	 and	 leaf	chlorophyll	 content.	BYDV-	PAV	 incidence	 (0.96)	
declined	with	low	N	soil	(to	0.46),	high	N	supply	(to	0.61),	and	co-	inoculation	(to	0.32).	
Low	N	soil	mediated	the	effect	of	N	supply	on	BYDV-	PAV:	instead	of	N	supply	reduc-
ing	BYDV-	PAV	 incidence,	 the	 incidence	 increased.	Additionally,	ambient	and	 low	N	
soil	ameliorated	the	negative	effect	of	co-	inoculation	on	BYDV-	PAV	incidence.	BYDV-	
PAV	infection	only	reduced	chlorophyll	when	plants	were	grown	with	low	N	supply	
and	ambient	N	soil.	There	were	no	significant	effects	of	long-	term	N	soil	on	CYDV-	
RPV	 incidence.	 Soil	 inoculant	with	 different	 levels	 of	 long-	term	N	 enrichment	 had	
different	effects	on	host–	pathogen	and	pathogen–	pathogen	interactions,	suggesting	
that	shifts	 in	soil	microbial	communities	with	 long-	term	N	enrichment	may	mediate	
disease	dynamics.
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1  |  INTRODUC TION

Fossil	 fuel	 use	 and	 fertilizer	 production	 have	 more	 than	 doubled	
reactive	 nitrogen	 (N)	 inputs	 to	 terrestrial	 ecosystems	 since	 pre-	
industrialization	 (Galloway	 et	 al.,	 2004;	 Vitousek	 et	 al.,	 1997).	
Nitrogen	 enrichment	 can	 profoundly	 impact	 terrestrial	 plant	 sys-
tems,	increasing	productivity	and	reducing	biodiversity	(Elser	et	al.,	
2007;	Midolo	 et	 al.,	 2019).	 Furthermore,	 the	 effects	 of	N	 enrich-
ment	on	plants	can	have	repercussions	throughout	food	webs	 (He	
&	 Silliman,	 2015;	 Ritchie,	 2000;	 Sedlacek	 et	 al.,	 1988).	 For	 exam-
ple,	N	enrichment	can	modify	plant–	pathogen	interactions	(Dordas,	
2009;	 Veresoglou	 et	 al.,	 2013)	 and	 interactions	 among	 different	
pathogens	that	co-	infect	plants	 (Kendig	et	al.,	2020;	Lacroix	et	al.,	
2014;	Strauss	et	al.,	2021).	The	communities	of	pathogens	that	rely	
on	plants	can	in	turn	impact	plant	productivity,	community	compo-
sition,	 and	 ecosystem	 processes	 (Borer	 et	 al.,	 2021;	 Lovett	 et	 al.,	
2010;	 Paseka	 et	 al.,	 2020).	 However,	 a	 key	 component	 of	 terres-
trial	 systems—	soil	 microbes	 (e.g.,	 bacteria,	 fungi,	 archaea)—	have	
been	neglected	 in	many	studies	of	N	enrichment	on	aboveground	
plant	pathogens.	Soil	microbes	affect	plant	access	to	N	(Kuzyakov	&	
Xu,	2013;	van	der	Heijden	et	al.,	2008)	and	plant	interactions	with	
above-		 and	 belowground	 pathogens	 (Berendsen	 et	 al.,	 2012;	 van	
Loon	et	al.,	1998).	Therefore,	 laboratory-	based	studies	that	do	not	
include	natural	soil	microbial	communities	may	under-		or	overesti-
mate	 the	 effects	 of	N	 enrichment	 on	 plant–	pathogen	 interactions	
under	field	conditions.	Moreover,	N	enrichment	can	change	the	na-
ture	of	interactions	between	soil	microbes	and	plants	through	time	
(Huang	et	al.,	2019;	Johnson,	1993;	Keeler	et	al.,	2008;	Weese	et	al.,	
2015).	Consequently,	even	studies	that	include	natural	soil	microbial	
communities	may	mischaracterize	the	 impacts	of	N	enrichment	on	
plant	pathogen	communities	if	they	do	not	encompass	long	enough	
time	scales.

While	it	is	widely	demonstrated	that	N	can	impact	plant–	pathogen	
interactions	(Dordas,	2009;	Lekberg	et	al.,	2021;	Veresoglou	et	al.,	
2013),	 the	 specific	 pathway	 is	 not	 typically	 understood,	 and	 soil	
microbes	may	play	an	 important	 role	 (Figure	1).	Nitrogen	 is	an	es-
sential	component	of	genetic	material	and	proteins	(Sterner	&	Elser,	
2002).	Changes	in	N	availability	can,	therefore,	modify	the	fitness	of	
plants	(Johnson,	1993;	Welch	&	Leggett,	1997),	microbes	(Kuzyakov	
&	Xu,	2013;	Schimel	&	Bennett,	2004),	and	insect	vectors	of	plant	
pathogens	 (Bogaert	et	 al.,	 2017;	Nowak	&	Komor,	2010).	Because	
plants,	their	pathogens,	and	insect	vectors	rely	on	N,	N	enrichment	
can	 increase	 or	 decrease	 infection	 prevalence	 (Borer	 et	 al.,	 2014;	
Seabloom	et	al.,	2010),	pathogen	load	(Fagard	et	al.,	2014;	Hoffland	
et	al.,	2000;	Mitchell	et	al.,	2003;	Robert	et	al.,	2004;	Singh,	1970;	
Whitaker	 et	 al.,	 2015),	 and	 disease	 resistance	 (Bellin	 et	 al.,	 2013;	
Dietrich	 et	 al.,	 2004;	 Mur	 et	 al.,	 2016).	 Furthermore,	 individual	
plants	and	plant	communities	 frequently	host	multipathogen	com-
munities	(Bass	et	al.,	2019;	Seabloom	et	al.,	2009)	which	may	shift	
in	composition	with	N	enrichment	(Kendig	et	al.,	2020;	Lacroix	et	al.,	
2014;	 Strauss	 et	 al.,	 2021).	 Soil	 microbes	 and	 N	 enrichment	 may	
interact	 to	 affect	 plant–	pathogen	 and	 pathogen–	pathogen	 inter-
actions.	For	example,	fertilizer	and	green	manure	can	 increase	the	

disease-	suppressive	activity	of	foliar	and	rhizosphere	microbial	com-
munities	(Berg	&	Koskella,	2018;	Wiggins	&	Kinkel,	2005).

Soil	microbes	may	mediate	plant–	pathogen	interactions	through	
multiple	mechanisms,	 including	altering	 the	amount	of	N	available	
to	the	plant.	Soil	microbes	can	 increase	plant	access	to	N	through	
N	fixation,	N	mineralization,	and	extending	root	networks	(van	der	
Heijden	et	al.,	2008),	and	they	also	may	compete	with	plants	for	N	
(Kuzyakov	 &	 Xu,	 2013;	 Schimel	 &	 Bennett,	 2004).	 N	 enrichment	
can	 reduce	 the	 benefits	 plants	 receive	 from	 microbial	 mutualists	

F I G U R E  1 Hypothesized	interactions	in	terrestrial	plant–	
pathogen	systems.	Long-	term	N	enrichment	increases	N	availability	
(a),	shifts	plant	community	productivity	and	composition	over	
time	(b),	and	alters	the	structure	and	function	of	soil	microbial	
communities	(c).	We	isolated	the	effects	of	long-	term	N	fertilization	
on	plant	diseases	through	changes	in	the	soil	microbial	community	
by	inoculating	growing	medium	with	soil	obtained	from	a	long-	term	
N	fertilization	experiment,	therefore,	removing	the	effects	of	long-	
term	N	fertilization	on	contemporary	N	availability	(a)	and	the	plant	
community	(b;	indicated	by	dashed	lines).	Soil	microbes	can	affect	
plant	diseases	by	inducing	plant	defenses	(d)	and	suppressing	soil-	
borne	pathogens	(not	shown).	We	hypothesize	that	soil	microbes	
also	affect	plant	diseases	by	altering	contemporary	N	availability	
(e),	which	affects	plant	diseases	by	increasing	plant	growth	or	
defenses	or	mediating	pathogen	replication	(f).	Although	each	
connection	(a–	f)	has	been	demonstrated,	it	is	unclear	if	the	effects	
of	long-	term	N	enrichment	on	soil	microbial	can	mediate	plant–	
pathogen	(g,	h)	or	pathogen–	pathogen	(i)	interactions.	In	plant–	virus	
systems,	insect	vectors	are	important	determinants	of	infection	
and	co-	infection	(j,	k)	and	can	be	affected	by	soil	properties	(i.e.,	N	
availability,	microbial	communities),	mediated	by	the	plant	(l).	Avena 
sativa	icon	by	Andreas	Trepte,	vectorized	by	T.	Michael	Keesey	
(https://creat	iveco	mmons.org/licen	ses/by-	sa/3.0/)
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(Johnson,	1993;	Weese	et	al.,	2015),	although	losses	can	be	offset	by	
the	direct	benefits	of	bioavailable	N	(Farrer	&	Suding,	2016;	Johnson,	
1993).	N	enrichment	has	variable	effects	on	N	mineralization	rates	
(Chen	et	al.,	2019;	Mueller	et	al.,	2013),	mediated	by	changes	in	soil	
microbial	community	composition	and	pH	(Chen	et	al.,	2019).	Over	
decadal	time	scales,	N	enrichment	can	drive	compositional	and	evo-
lutionary	changes	in	soil	microbial	communities	that	affect	their	N-	
related	 interactions	with	plants	 (Huang	et	 al.,	 2019;	Klinger	 et	 al.,	
2016).	For	example,	N	enrichment	can	shift	the	relative	abundance	
of	 archaea	 and	 bacteria	 that	 oxidize	 ammonia,	 depending	 on	 the	
form	of	N	added	(Leff	et	al.,	2015;	Moreau	et	al.,	2015).

Soil	 microbial	 communities	 also	 may	 mediate	 plant–	pathogen	
interactions	 by	 varying	 in	 abundance	 of	 soil-	borne	 plant	 patho-
gens	or	inducing	host	defenses	(Mauch-	Mani	et	al.,	2017;	Schlatter	
et	 al.,	 2017).	 For	 example,	 soil	 microbes	 can	 suppress	 soil-	borne	
pathogens	via	competition	for	resources,	 interference	with	patho-
gen	signaling,	or	production	of	antibiotic	compounds	and	lytic	en-
zymes	 (Berendsen	et	 al.,	 2012;	 Lugtenberg	&	Kamilova,	 2009).	 In	
addition,	beneficial	and	pathogenic	soil	microbes	can	induce	disease	
resistance	pathways	 in	 plants,	 priming	 them	 for	 faster	 and	 stron-
ger	 responses	 to	 aboveground	 pathogen	 attacks	 (Mauch-	Mani	
et	al.,	2017;	Pieterse	et	al.,	2014;	van	Loon	et	al.,	1998).	Soil	biota	
associated	with	 induced	disease	resistance	 include	bacteria	 in	 the	
genera Pseudomonas,	Serratia,	and	Bacillus	and	fungi	 in	the	genera	
Trichoderma,	Fusarium,	Piriformospora,	and	Glomeromycota	 (Mauch-	
Mani	et	al.,	2017;	Pieterse	et	al.,	2014).	Nitrogen	enrichment	may	
modify	 the	 effects	 of	 soil	 microbes	 on	 plant	 diseases	 through	
compositional	 or	 evolutionary	 shifts	 in	 microbial	 communities	 or	
changes	 in	 microbe–	pathogen	 interactions	 (Huang	 et	 al.,	 2019;	
Klinger	et	al.,	2016;	Otto-	Hanson	et	al.,	2013;	Schlatter	et	al.,	2013).	
For	example,	N	enrichment	can	reduce	the	abundance	and	coloni-
zation	rates	of	arbuscular	mycorrhizal	fungi	(AMF),	which	includes	
the genus Glomeromycota	(Jia	et	al.,	2020;	Leff	et	al.,	2015;	Treseder,	
2004).	In	contrast,	N	enrichment	tends	to	increase	phyla	and	classes	
containing	 some	 groups	 of	 fungi	 (Trichoderma and Fusarium)	 and	
bacteria	 (Pseudomonas,	 Serratia,	 and	 Bacillus)	 that	 induce	 disease	
resistance	 (Chen	et	al.,	2019;	Fierer	et	al.,	2012;	Leff	et	al.,	2015;	
Ramirez	et	al.,	2012).

Long-	term	 N	 enrichment	 may	 impact	 plant–	pathogen	 and	
pathogen–	pathogen	 interactions	 indirectly	 through	changes	 in	 the	
soil	microbial	community	via	three	main	processes:	altered	N	avail-
ability,	induced	disease	resistance,	and	changes	in	abundance	of	soil	
pathogens	(Figure	1).	Although	soil	pathogen	impacts	on	plants	have	
received	substantial	attention	(Kuzyakov	&	Xu,	2013;	Mauch-	Mani	
et	al.,	2017;	van	der	Heijden	et	al.,	2008),	the	effects	of	 long-	term	
N	 enrichment,	 as	 mediated	 by	 nonpathogenic	 soil	 microbes,	 on	
aboveground	plant	pathogens	are	not	well	 understood.	To	 fill	 this	
gap,	we	evaluated	the	effects	of	soil	microbial	communities	from	a	
long-	term	N	 enrichment	 study	 on	 plant–	pathogen	 and	 pathogen–	
pathogen	 interactions	using	two	widespread	and	economically	 im-
portant	 insect-	vectored	plant	viruses	(BYDV-	PAV	and	CYDV-	RPV).	
We	used	aphids	(Rhopalosiphum padi)	to	inoculate	oat	plants	(Avena 
sativa)	with	these	Barley	and	Cereal	Yellow	Dwarf	Viruses	(B/CYDVs)	

across	a	full	factorial	combination	of	soil	inoculum	from	a	long-	term	
N	enrichment	experiment	(ambient,	low,	or	high	N	soil	and	a	nonin-
oculated	control),	N	supply	rates	(low	or	high),	and	virus	inoculation	
treatments	(mock-	,	single-	,	co-	inoculation).	For	each	treatment,	we	
measured	virus	incidence	(i.e.,	the	proportion	of	plants	that	became	
infected),	plant	biomass,	and	leaf	chlorophyll	content.	We	addressed	
three	questions:	 (1)	What	 are	 the	 effects	of	N	on	 single	 infection	
and	co-	infection	incidence	in	plants	grown	in	noninoculated	growing	
medium?	 (2)	Do	 long-	term	N-	enriched	soils	mediate	the	effects	of	
N	on	single	 infection	and	co-	infection	 incidence?	 (3)	Do	 long-	term	
N-	enriched	soils	mediate	the	effects	of	N	or	infection	on	host	traits?	
We	 hypothesized	 that	 inoculating	 growing	 medium	 with	 soils	 ex-
posed	to	different	levels	of	N	enrichment,	which	likely	differ	in	soil	
microbial	community	structure	or	function,	would	differentially	af-
fect	host–	pathogen	and	pathogen–	pathogen	interactions.

2  |  MATERIAL S AND METHODS

2.1  |  Study system

The	 B/CYDVs	 cause	 systemic	 infections	 in	 over	 150	 grass	 spe-
cies	 in	 the	 Poaceae	 family,	 stunting	 growth,	 yellowing	 or	 redden-
ing	 leaves,	and	reducing	fecundity	 (Carrigan	et	al.,	1983;	D'Arcy	&	
Burnett,	1995;	Irwin	&	Thresh,	1990).	B/CYDVs	comprise	members	
of	 the	 Luteovirus	 (BYDVs)	 and	 Polerovirus	 (CYDVs)	 genera	 (Miller	
et	 al.,	 2002).	 BYDV-	PAV	 and	 CYDV-	RPV	 are	 considered	 repre-
sentative	members	of	each	genera	and	have	been	the	foci	of	many	
studies	(Kendig	et	al.,	2020;	Lacroix	et	al.,	2014;	Power	et	al.,	1991;	
Seabloom	et	al.,	2009).	These	viruses	are	transmitted	by	a	range	of	
aphid	vectors,	including	R. padi	that	transmits	both	BYDV-	PAV	and	
CYDV-	RPV	(D'Arcy	&	Burnett,	1995).	Importantly,	these	viruses	are	
strictly	insect	vectored;	they	cannot	be	transmitted	to	plants	via	soil.	
We	used	A. sativa	L.	cv.	Coast	Black	Oat	as	our	plant	host	species.	
Avena sativa	can	host	AMF	(Yang	et	al.,	2010)	and	AMF	were	found	
to	have	 a	positive	 effect	 on	BYDV-	PAV	 titer	 in	Avena fatua under 
elevated	CO2	(Rúa	et	al.,	2013).	Soil	was	collected	from	Cedar	Creek	
Ecosystem	Science	Reserve	and	Long-	Term	Ecological	Research	site	
(CDR;	 see	 next	 section).	 Prior	 to	 conducting	 this	work,	we	 estab-
lished	that	both	of	our	focal	viruses	are	present	in	natural	commu-
nities	at	CDR.	 In	2009,	we	haphazardly	collected	153	plants	of	10	
different	 grass	 species	 across	 CDR	 to	 determine	which	 B/CYDVs	
were	present.	We	assessed	infection	status	via	ELISA	as	detailed	in	
Seabloom	et	al.	 (2009).	Overall	 infection	prevalence	of	BYDV-	PAV	
was	0.17	and	CYDV-	RPV	was	0.03.

2.2  |  Long- term N- enriched soils

In	June	2014,	we	collected	soil	cores	from	a	long-	term	experiment	
in	a	successional	grassland	at	CDR	(experiment	“E001,”	www.cedar	
creek.umn.edu;	Bethel,	MN,	USA).	Cedar	Creek	has	sandy,	N-	limited	
soils	 and	 a	 background	 wet	 N	 deposition	 rate	 of	 approximately	

http://www.cedarcreek.umn.edu
http://www.cedarcreek.umn.edu
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6	 kg	N	 ha−1 year−1	 (58%	NH4,	 42%	NO3)	 (Clark	 &	 Tilman,	 2008;	
Tilman,	 1987).	We	 collected	 soils	 from	 field	 A,	which	was	 aban-
doned	from	agriculture	 in	1968	and	burned	annually	beginning	 in	
2005.	These	plots	had	received	annual	additions	of	P,	K,	Ca,	Mg,	
S,	and	citrate-	chelated	trace	metals	since	1982	and	three	levels	of	
N	 fertilizer:	 0,	 34,	 or	 272	 kg	N	ha−1 year−1	 (see	Tilman,	 1987	 for	
details).	In	this	experiment,	long-	term	N	enrichment	has	increased	
plant	biomass	and	soil	N	concentration	and	decreased	plant	 spe-
cies	richness	(Isbell,	Reich,	et	al.,	2013;	Isbell,	Tilman,	et	al.,	2013).	
In	addition,	N	enrichment	 in	 this	experiment	 is	 associated	with	a	
shift	 in	bacterial	community	composition	 (Fierer	et	al.,	2012)	and	
phenotypes	(Schlatter	et	al.,	2013)	toward	faster	growing	bacteria	
with	narrower	resource	niches.	We	randomly	selected	three	plots	
for	each	N	enrichment	rate	 (plots	22A,	45A,	54A,	8D,	23D,	38D,	
40H,	17H,	and	52H)	and	six	locations	within	each	4	×	4	m	plot	to	
extract	 a	 soil	 core	 (1.9	 cm	diameter	 and	10	 cm	deep).	 In	 the	 lab,	
soil	cores	were	passed	through	a	4-	mm	sieve,	then	twice	through	a	
2-	mm	sieve	to	remove	coarse	debris	and	roots,	and	then	combined	
based	on	their	N	enrichment	rate.

Next,	we	prepared	soil	microcosms	by	filling	four	large,	surface	
sterilized	bins	with	17	L	of	potting	soil	composed	of	70%	Sunshine	
medium	vermiculite	(vermiculite	and	<1%	crystalline	silica;	Sun	Gro)	
and	 30%	 Turface	MVP	 (calcined	 clay	 containing	 up	 to	 30%	 crys-
talline	silica;	Turface	Athletics),	 saturated	with	 tap	water	 (approxi-
mately	5	L	for	every	20	L	of	dry	soil)	and	autoclaved	at	121°C	and	
15	psi	for	60	min	to	kill	the	naturally	existing	microbial	consortium.	
We	 then	mixed	350	ml	of	 field	 soil	 from	each	N	enrichment	 level	
separately	 into	 the	bins.	Field	soil	 comprised	approximately	2%	of	
the	 bin	 soil	 volume.	We	did	 not	mix	 field	 soil	 into	 the	 fourth	 bin.	
Lastly,	we	covered	the	bins	with	nonairtight	lids	and	incubated	the	
soil	at	25°C	for	11	days.

2.3  |  Experimental setup and implementation

For	 each	 of	 the	 four	 soil	microcosms,	we	 filled	 80	 conical	 plastic	
pots	(3.8	cm	diameter	×	21	cm	depth,	164	ml)	with	soil	mixture	and	
planted one A. sativa	 seed	per	pot	4.5	cm	from	the	surface	of	 the	
soil.	Seeds	were	obtained	from	the	USDA	(National	plant	germplasm	
system,	USDA;	USA)	in	June	2013	and	were	surface	sterilized	with	
12.5%	 bleach	 solution.	 Then,	 we	 haphazardly	 assigned	 plants	 to	
later	 receive	1	of	 2	N	 supply	 rates	 (7.5	μM	NH4NO3	was	 “low	N”	
and	375	μM	NH4NO3	was	 “high	N”;	Table	A1)	and	1	of	4	virus	 in-
oculations	(BYDV-	PAV,	CYDV-	RPV,	co-	inoculation,	or	mock	inocula-
tion),	leading	to	10	replicates	per	treatment.	Plants	grew	in	a	growth	
chamber	containing	only	healthy	plants	with	a	16:8	h	light:dark	cycle	
at	 19–	20°C	 under	 Lumilux	 high	 pressure	 sodium	 ET18	 bulbs	 for	
11	days.	Two	days	after	planting,	we	watered	the	pots	with	30	ml	of	
the	modified	Hoagland	solution	(Hoagland	&	Arnon,	1938;	Lacroix	
et	al.,	2014;	Table	A1)	corresponding	to	the	plant’s	assigned	N	supply	
rate.	We	watered	plants	with	these	solutions	twice	per	week	until	
harvest.

When	the	plants	had	been	growing	for	22	days,	we	used	R. padi 
aphids	to	inoculate	them	with	BYDV-	PAV,	CYDV-	RPV,	both	viruses,	
or	to	perform	mock	inoculations.	Rhopalosiphum padi	were	obtained	
from	Dr.	G.	Heimpel	at	the	University	of	Minnesota	(St.	Paul,	MN,	
USA)	 and	 reared	 on	 A. sativa	 in	 growth	 chamber	 conditions	 de-
scribed	above	(except	with	28W	Ultramax	EcoXL	lights).	BYDV-	PAV	
and	CYDV-	RPV	isolates	were	obtained	from	Dr.	S.	Gray	at	Cornell	
University	(Ithaca,	NY,	USA)	in	January	2013.	They	were	also	main-
tained in A. sativa	plants	in	similar	growth	chamber	conditions	(except	
with	40	W	cool	white	light	bulbs).	We	inoculated	plants	by	allowing	
aphids	to	feed	on	either	BYDV-	PAV-		or	CYDV-	RPV-	infected	A. sativa 
tissue	in	25-	ml	glass	tubes	sealed	with	corks	for	approximately	48	h.	
Then,	we	 transferred	 the	 aphids	 to	2.5	×	 8.5	 cm,	118-	μm	polyes-
ter	mesh	cages	secured	to	one	leaf	on	each	experimental	plant	with	
Parafilm	 and	 bobby	 pins.	 Ten	 aphids	were	 used	 to	 inoculate	 each	
plant,	with	5	carrying	each	virus	 for	 the	co-	inoculation	 treatment,	
5	viruliferous	(carrying	virus),	and	5	nonviruliferous	aphids	for	each	
single	virus	treatment,	and	10	nonviruliferous	aphids	for	the	mock	
inoculation	treatment.	We	allowed	aphids	to	feed	on	the	experimen-
tal	plants	for	approximately	96	h,	after	which	we	manually	killed	all	
aphids	and	removed	the	cages.	Plants	grew	for	19	more	days	before	
we	 took	measurements.	To	estimate	N	stress	 through	 leaf	chloro-
phyll	content	(Zhao	et	al.,	2015),	we	took	three	measurements	per	
plant	 with	 a	 SPAD-	502	 Meter	 (Soil	 Plant	 Analysis	 Development;	
Konica	Minolta).	Then,	we	harvested	and	weighed	the	aboveground	
biomass,	which	we	stored	at	−20°C	until	 it	was	analyzed	 for	virus	
infection.

2.4  |  Detection of B/CYDV infection

To	extract	total	RNA,	we	ground	approximately	50	mg	of	leaf	tissue	
per	 plant	 in	 a	 bead-	beater	with	 a	 copper	BB	 and	1	ml	 of	 TRIzol™	
Reagent	 (Invitrogen™,	 Thermo	 Fisher	 Scientific)	 as	 per	 the	manu-
facturer’s	 instructions.	 We	 then	 purified	 RNA	 from	 the	 cellular	
components	following	the	extraction	protocol	published	by	Lacroix	
et	 al.	 (2014).	We	 resuspended	 the	 purified	 RNA	 in	 nuclease-	free	
water	 and	 stored	 the	 samples	 at	 −20°C	 until	 performing	 reverse	
transcription	polymerase	chain	reaction	 (RT-	PCR).	We	used	a	nan-
odrop	 spectrophotometer	 (Thermo	Fisher	 Scientific)	 to	 quantitate	
the	concentration	of	RNA	within	each	sample	and	then	performed	
a	 multiplex	 RT-	PCR	 assay	 to	 isolate	 and	 amplify	 BYDV-	PAV	 and	
CYDV-	RPV	nucleic	acids	as	published	previously	(Deb	&	Anderson,	
2008;	Lacroix	et	al.,	2014).

We	 combined	5	μl	 of	 each	PCR	product	with	2	μl	 of	 6× load-
ing	 dye	 (Genesee	 Scientific)	 and	 loaded	 the	 samples	 and	 100	 bp	
DNA	ladder	(Apex	Bioresearch	Products)	into	an	Agarose-	1000	gel	
(Invitrogen,	 Thermo	 Fisher	 Scientific)	 stained	 with	 2%	 SybrSafe	
(Invitrogen,	Thermo	Fisher	Scientific).	After	25	min	at	120	V,	we	ob-
served	the	gel	with	a	UV-	light	EZ	doc	system	(Bio-	Rad	Laboratories)	
to	detect	bands	at	298	bp	and	447	bp,	 indicating	 the	presence	of	
BYDV-	PAV	and	CYDV-	RPV,	respectively	(Figure	A1).
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2.5  |  Statistical analyses

We	 assessed	 the	 effects	 of	 the	 experimental	 treatments	 on	 the	
infection	 incidence	 of	 BYDV-	PAV	 and	 CYDV-	RPV	 using	 binomial	
(logit-	link)	 generalized	 linear	 regressions	 with	 virus	 infection	 as	 a	
binary	 response	 variable	 and	 long-	term	N-	enriched	 soil	 treatment	
(noninoculated,	ambient	N,	low	N,	or	high	N),	N	supply	(binary	vari-
able),	whether	the	plants	were	co-	inoculated	 (binary	variable),	and	
their	 interactions	 as	 independent	 variables.	 The	 intercepts	 repre-
sented	singly	inoculated	plants	grown	in	noninoculated	growing	me-
dium	with	low	N	supply.	We	tested	the	effects	of	N	supply	and	soil	
treatment	on	co-	infection	incidence	using	an	analogous	procedure.	
Samples	with	 an	 infection	 inconsistent	with	 the	 inoculation	 treat-
ment	 were	 removed	 from	 analyses.	 Inconsistent	 infections	 likely	
arose	from	small	aphids	escaping	cages	during	the	inoculation	period	
and	occurred	in	31	of	229	plants	(Table	A2).	Treatment	sample	sizes	
in	the	final	dataset	ranged	from	7	to	10.

To	assess	the	effects	of	the	experimental	treatments	on	the	A. 
sativa	plants,	we	used	linear	regressions	with	 log-	transformed	bio-
mass	and	log-	transformed	chlorophyll	content	as	response	variables	
and	long-	term	N-	enriched	soil	treatment,	N	supply,	successful	inoc-
ulation	treatment	(mock,	BYDV-	PAV	only,	and	CYDV-	RPV	only),	and	
their	 interactions	as	the	independent	variables.	We	omitted	plants	
from	analyses	 that	were	unsuccessfully	 inoculated,	either	because	
the	intended	infection	was	not	detected	or	because	an	unintended	
infection	was	detected	(Table	A2).	Co-	infected	plants	were	omitted	
from	 analyses	 due	 to	 limited	 sample	 sizes.	 The	 chlorophyll	 values	
used	 in	 the	model	were	 the	 averages	 of	 three	measurements	 per	
plant.	The	intercepts	represented	mock-	inoculated	plants	grown	in	
noninoculated	growing	medium	with	low	N	supply.	Treatment	sam-
ple	sizes	in	the	final	dataset	ranged	from	three	to	nine.

Regressions	 described	 above	 were	 fit	 using	 Bayesian	 models	
with	 the	 brms	 package	 in	 R	 version	 4.0.2	 (Bürkner,	 2017;	 R	 Core	
Team,	2020).	Models	had	three	chains	of	6000	iterations	each	with	
a	 1000	 iteration	 discarded	 burn-	in	 period.	 Gaussian	 distributions	
with	a	mean	of	0	and	a	standard	deviation	of	10	were	used	as	prior	
distributions	 for	 intercepts	 and	coefficients	 (very	weakly	 informa-
tive;	McElreath,	2015).	We	used	a	half	Student’s	t	distribution	with	
3	degrees	of	freedom,	a	location	of	0,	and	a	scale	of	10	as	the	prior	
distribution	for	the	residual	standard	deviations	(Bürkner,	2017).	We	
assessed	model	fit	by	ensuring	that	r-	hat	values	were	equal	to	one,	
that	the	three	chains	were	well	mixed,	and	that	simulated	data	from	
the	posterior	predictive	distributions	were	consistent	with	observed	
data.	In	the	results,	we	report	point	estimates	with	95%	highest	pos-
terior	density	intervals	based	on	posterior	samples	of	model	coeffi-
cients	in	brackets.

To	evaluate	 the	effect	of	sample	size	on	the	probability	of	de-
tecting	 an	 effect	 with	 quantile-	based	 95%	 credible	 intervals	 that	
omit	zero,	we	simulated	1000	datasets	of	the	same	sample	sizes	and	
with	the	mean	effect	size	measured	in	the	experiment.	We	drew	sim-
ulated	values	from	normal	distributions	with	means	equal	to	model	
estimates	for	each	treatment	and	standard	deviations	equal	to	the	
overall	model-	estimated	 standard	 deviation.	We	 fit	 regressions	 to	

the	simulated	datasets	and	calculated	the	number	of	times	the	95%	
credible	 intervals	 of	 the	 variable	 of	 interest	 omitted	 zero	 (Kurz,	
2019).	We	repeated	the	analysis	with	multiple	sample	sizes.	We	per-
formed	this	analysis	for	the	effects	of	CYDV-	RPV	infection	on	log-	
transformed	plant	biomass,	where	the	mean	difference	was	−0.23,	
the	 sample	 sizes	were	8	 (mock-	inoculated,	 low	N	supply,	noninoc-
ulated	growing	medium)	and	6	(CYDV-	RPV	infected,	 low	N	supply,	
noninoculated	growing	medium),	 and	 the	 regression	was	a	normal	
linear	regression	with	infection	status	as	the	independent	variable.

3  |  RESULTS

3.1  |  The effects of N supply on infection incidence 
in noninoculated growing medium

The	BYDV-	PAV	incidence	of	singly	inoculated	plants	grown	with	low	
N	 supply	was	0.96	 [0.85,	 1.00]	 (Figure	2).	High	N	 supply	 reduced	
BYDV-	PAV	 incidence	 in	 singly	 inoculated	 plants	 to	 0.61	 (−36%	
[−71%,	 −4.3%])	 and	 co-	inoculation	 reduced	 BYDV-	PAV	 incidence	
to	0.32	(−67%	[−93%,	−39%],	Figure	2).	However,	high	N	supply	did	
not	reduce	BYDV-	PAV	incidence	of	co-	inoculated	plants	(estimated	
change	relative	to	low	N	supply:	55%	[−83%,	271%]),	 leading	to	an	
interaction	between	N	supply	and	co-	inoculation	 (Table	1).	CYDV-	
RPV	incidence	of	singly	inoculated	plants	grown	with	low	N	supply	
was	0.66	[0.38,	0.93]	(Figure	3).	Co-	inoculation	reduced	CYDV-	RPV	
incidence	to	0.11	(−83%	[−100%,	−53%],	Figure	3).	Nitrogen	supply	
did	not	affect	CYDV-	RPV	incidence	in	singly	or	co-	inoculated	plants	
(Table	2).	The	average	co-	infection	incidence	of	co-	inoculated	plants	
grown	with	low	N	supply	was	0.10	[0.00,	0.28].	Nitrogen	supply	did	
not	significantly	affect	co-	infection	incidence	(Figure	4,	Table	3).

3.2  |  Long- term N- enriched soils and N supply: 
effects on infection incidence

With	low	N	supply,	inoculation	with	low	N	soil	reduced	BYDV-	PAV	
incidence	 to	0.46	 [0.16,	0.76],	a	52%	decrease	 [−83%,	−20%]	 rela-
tive	to	plants	grown	in	noninoculated	growing	medium	(Figure	2).	In	
contrast	to	the	negative	effect	of	high	N	supply	when	plants	were	
grown	in	noninoculated	growing	medium,	high	N	supply	did	not	re-
duce	BYDV-	PAV	incidence	when	plants	were	grown	with	low	N	soil	
inoculation	(estimated	change	relative	to	low	N	supply:	112%	[−33%,	
316%],	 Figure	2),	 leading	 to	 an	 interaction	between	N	 supply	 and	
low	N	soil	 (Table	1).	Similarly,	high	N	supply	did	not	affect	BYDV-	
PAV	incidence	when	plants	were	grown	with	ambient	N	(estimated	
change	relative	to	low	N	supply:	−37%	[−92%,	25%],	Figure	2)	or	high	
N	(estimated	change	relative	to	low	N	supply:	−0.36%	[−8.5%,	6.3%],	
Figure	2)	soil	inoculation,	but	there	were	no	statistical	interactions	
between	N	supply	and	 these	soil	 treatments	 (Table	1).	 In	contrast	
to	plants	grown	with	noninoculated	growing	medium,	co-	inoculation	
did	not	affect	BYDV-	PAV	 incidence	when	plants	were	grown	with	
low	 N	 soil	 (estimated	 change	 relative	 to	 single	 inoculation:	 24%	
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[−75%,	164%])	or	ambient	N	soil	 (estimated	change	relative	to	sin-
gle	inoculation:	−27%	[−80%,	32%]),	leading	to	interactions	between	
co-	inoculation	and	each	of	 the	 soil	 treatments	 (Table	1,	 Figure	2).	
However,	 co-	inoculation	 reduced	 BYDV-	PAV	 incidence	 from	 0.99	
to	 0.70	 (−29%	 [−58%,	 −5.7%])	when	 plants	were	 grown	with	 high	
N	soil	(Figure	2).	Soil	treatments	did	not	affect	significantly	CYDV-	
RPV	incidence	(Figure	3,	Table	2)	or	co-	infection	incidence	(Figure	4,	
Table	3).

3.3  |  Long- term N- enriched soils, N supply, and 
infection: effects on the host

The	 average	 aboveground	 biomass	 of	 mock-	inoculated	 plants	
grown	 in	 noninoculated	 growing	 medium	 with	 low	 N	 supply	 was	
0.20	g	[0.13	g,	0.28	g]	(Figure	5).	High	N	supply	increased	biomass	
to	0.37	g,	a	92%	increase	[4%,	192%]	 (Figure	5,	Table	4).	 Infection	
and	 soil	 treatment	 did	 not	 significantly	 affect	 aboveground	 bio-
mass	(Table	4).	CYDV-	RPV	infection	reduced	aboveground	biomass	
on	average,	but	the	95%	credible	 intervals	 included	zero	 (Table	4).	
Only	10%	of	 simulated	datasets	of	 the	 same	 sample	 sizes	used	 in	
the	experiment	had	significant	effects	of	CYDV-	RPV	on	biomass.	In	
contrast,	sample	sizes	10	times	of	those	in	the	experiment	produced	
significant	effects	in	72%	of	simulated	datasets.

The	average	leaf	chlorophyll	content	of	mock-	inoculated	plants	
grown	in	noninoculated	growing	medium	with	low	N	supply	was	23	
SPAD	[21	SPAD,	25	SPAD]	(Figure	5).	High	N	supply	increased	leaf	
chlorophyll	content	to	27	SPAD,	a	20%	increase	[4%,	36%]	(Figure	6,	
Table	5).	Infection	did	not	significantly	affect	leaf	chlorophyll	content	

of	 plants	 grown	 in	 noninoculated	 growing	 medium	 (Table	 5),	 but	
BYDV-	PAV	infection	reduced	leaf	chlorophyll	content	from	24	SPAD	
to	19	SPAD,	a	21%	decrease	[−34%,	−8%],	for	plants	grown	with	am-
bient	N	soil	(Figure	6).	However,	when	plants	were	grown	with	high	
N	supply	and	ambient	N	soil,	BYDV-	PAV	infection	did	not	affect	leaf	
chlorophyll	content	(estimated	change	relative	to	no	infection:	−7%	
[−23%,	10%]),	leading	to	a	three-	way	interaction	among	ambient	N	
soil,	N	supply,	and	BYDV-	PAV	infection	(Table	5,	Figure	6).

4  |  DISCUSSION

Human	 activities	 have	 dramatically	 increased	 N	 supply	 to	 terres-
trial	ecosystems,	with	consequences	for	plant	communities,	plant–	
pathogen	 interactions,	 and	 pathogen–	pathogen	 interactions	 (Elser	
et	 al.,	 2007;	 Midolo	 et	 al.,	 2019;	 Smith,	 2014;	 Veresoglou	 et	 al.,	
2013).	Long-	term	N	enrichment	can	shift	the	composition	and	func-
tion	of	soil	microbial	communities	(Huang	et	al.,	2019;	Klinger	et	al.,	
2016),	which	can	mediate	N	availability,	soil-	borne	pathogens,	and	
plant	defenses	(van	der	Heijden	et	al.,	2008;	Kuzyakov	&	Xu,	2013;	
Mauch-	Mani	et	al.,	2017).	However,	 the	microbe-	mediated	effects	
of	long-	term	N	enrichment	on	aboveground	pathogen	communities	
and	host–	pathogen	 interactions	have	received	 little	attention.	Our	
experimental	manipulation	of	 long-	term	N-	enriched	 soil	 inoculum,	
N	supply,	and	virus	infection	suggests	that	long-	term	N	enrichment,	
potentially	mediated	by	changes	in	the	soil	microbial	community,	can	
influence	 aboveground	 plant–	pathogen	 and	 pathogen–	pathogen	
interactions	 and	 mediate	 the	 impact	 of	 infection	 on	 plant	 traits.	
Specifically,	ambient	or	low	N	soil	mediated	the	effects	of	N	supply	

F I G U R E  2 BYDV-	PAV	incidence	of	plants	grown	with	noninoculated	growing	medium,	field	soil	exposed	to	long-	term	ambient	N,	field	soil	
exposed	to	long-	term	low	N,	and	field	soil	exposed	to	long-	term	high	N.	Plants	were	grown	with	low	or	high	N	supply	and	were	inoculated	
either	with	BYDV-	PAV	only	or	BYDV-	PAV	and	CYDV-	RPV	(co-	inoculated).	Points	and	error	bars	are	model-	estimated	mean	and	95%	highest	
posterior	density	intervals	(HDI).	Small	points	are	raw	data,	which	take	on	values	of	either	zero	or	one	and	are	jittered	for	visualization
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and	 co-	inoculation	 on	 BYDV-	PAV	 infection	 incidence	 and	 BYDV-	
PAV	 infection	on	plant	chlorophyll	content.	Surprisingly,	soil	 treat-
ments	did	not	affect	aboveground	plant	biomass,	and	had	different	
impacts	on	the	incidence	of	two	related	viral	pathogens.

Long-	term	low	N-	enriched	soil	reduced	BYDV-	PAV	incidence	and	
counteracted	 the	 negative	 effects	 of	N	 supply	 and	 co-	inoculation	
on	BYDV-	PAV	incidence.	Few,	if	any,	other	studies	have	yet	demon-
strated	 that	 changes	 in	 soil	 microbes	 due	 to	 N	 enrichment	 may	

TA B L E  1 Summary	of	generalized	linear	regression	of	BYDV-	PAV	incidence	(n =	139)

Variablea Estimate Std. error

95% CI

R- hatLower Upper

Interceptb 4.22 1.79 1.42 8.30 1.00

N supply −3.70 1.90 −7.94 −0.46 1.00

Co- inoculation −5.06 1.88 −9.25 −1.92 1.00

Soil	ambient	N −3.07 1.96 −7.33 0.37 1.00

Soil low N −4.38 1.89 −8.57 −1.29 1.00

Soil	high	N 6.46 4.92 −1.70 17.12 1.00

N supply × co- inoculation 4.03 2.07 0.27 8.41 1.00

Soil	ambient	N	×	N	supply 2.21 2.20 −1.83 6.77 1.00

Soil low N × N supply 5.94 2.29 1.89 10.80 1.00

Soil	high	N	×	N	supply 3.68 5.66 −6.83 15.34 1.00

Soil ambient N × co- inoculation 3.89 2.12 0.03 8.33 1.00

Soil low N × co- inoculation 5.18 2.07 1.58 9.72 1.00

Soil	high	N	×	co-	inoculation −4.67 4.96 −15.31 3.63 1.00

Soil	ambient	N	×	N	supply	×	co-	inoculation −0.92 2.55 −6.10 4.04 1.00

Soil	low	N	×	N	supply	×	co-	inoculation −4.62 2.62 −10.03 0.34 1.00

Soil	high	N	×	N	supply	×	co-	inoculation −3.49 5.71 −15.27 7.31 1.00

aVariables	with	quantile-	based	95%	credible	intervals	that	omit	zero	are	in	bold.
bIntercept	factor	levels:	low	N	supply,	BYDV-	PAV	inoculation,	noninoculated	growing	medium.

F I G U R E  3 CYDV-	RPV	incidence	of	plants	grown	with	noninoculated	growing	medium,	field	soil	exposed	to	long-	term	ambient	N,	
field	soil	exposed	to	long-	term	low	N,	and	field	soil	exposed	to	long-	term	high	N.	Plants	were	grown	with	low	or	high	N	supply	and	were	
inoculated	either	with	CYDV-	RPV	only	or	BYDV-	PAV	and	CYDV-	RPV	(co-	inoculated).	Points	and	error	bars	are	model-	estimated	mean	and	
95%	HDI.	Small	points	are	raw	data,	which	take	on	values	of	either	zero	or	one	and	are	jittered	for	visualization
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mediate	the	effects	of	N	supply	on	a	non-	soil-	borne	plant	pathogen.	
Of	the	three	general	mechanisms	through	which	soil	microbes	can	
affect	 plant–	pathogen	 interactions—	modified	 access	 to	 resources	

(van	 der	 Heijden	 et	 al.,	 2008;	 Kuzyakov	 &	 Xu,	 2013;	 Schimel	 &	
Bennett,	2004),	promotion	or	suppression	of	pathogens	in	the	soil	
(Berendsen	et	al.,	2012;	Lekberg	et	al.,	2021;	Schlatter	et	al.,	2017),	

TA B L E  2 Summary	of	generalized	linear	regression	of	CYDV-	RPV	incidence	(n =	154)

Variablea Estimate Std. error

95% CI

Lower Upper R- hat

Interceptb 0.76 0.74 −0.62 2.28 1.00

N	supply 1.77 1.31 −0.60 4.62 1.00

Co- inoculation −3.27 1.31 −6.12 −0.94 1.00

Soil	ambient	N 0.02 1.04 −2.01 2.08 1.00

Soil	low	N −0.49 1.00 −2.48 1.45 1.00

Soil	high	N −0.32 1.00 −2.30 1.61 1.00

N	supply	×	co-	inoculation 0.74 1.75 −2.78 4.22 1.00

Soil	ambient	N	×	N	supply −2.77 1.64 −6.17 0.31 1.00

Soil	low	N	×	N	supply −1.25 1.64 −4.64 1.84 1.00

Soil	high	N	×	N	supply −2.64 1.62 −6.02 0.40 1.00

Soil	ambient	N	×	co-	inoculation 1.53 1.64 −1.57 4.89 1.00

Soil	low	N	×	co-	inoculation 2.55 1.62 −0.46 5.85 1.00

Soil	high	N	×	co-	inoculation 1.88 1.63 −1.15 5.19 1.00

Soil	ambient	N	×	N	supply	×	co-	inoculation 1.21 2.19 −3.10 5.59 1.00

Soil	low	N	×	N	supply	×	co-	inoculation −1.74 2.22 −6.08 2.63 1.00

Soil	high	N	×	N	supply	×	co-	inoculation 1.32 2.21 −3.04 5.72 1.00

aVariables	with	quantile-	based	95%	credible	intervals	that	omit	zero	are	in	bold.
bIntercept	factor	levels:	low	N	supply,	CYDV-	RPV	inoculation,	noninoculated	growing	medium.

F I G U R E  4 Co-	infection	incidence	of	plants	grown	with	noninoculated	growing	medium,	field	soil	exposed	to	long-	term	ambient	N,	field	
soil	exposed	to	long-	term	low	N,	and	field	soil	exposed	to	long-	term	high	N.	Plants	were	grown	with	low	or	high	N	supply	and	were	co-	
inoculated	with	BYDV-	PAV	and	CYDV-	RPV.	Points	and	error	bars	are	model-	estimated	mean	and	95%	HDI.	Small	points	are	raw	data,	which	
take	on	values	of	either	zero	or	one	and	are	jittered	for	visualization
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and	 induced	 plant	 defenses	 (van	 Loon	 et	 al.,	 1998;	 Mauch-	Mani	
et	 al.,	 2017;	 Pieterse	 et	 al.,	 2014)—	the	 third	 is	 the	 most	 likely	 to	
apply	to	our	study.	Soil	treatment	did	not	significantly	affect	plant	
biomass	 and	only	mediated	 the	effect	of	 infection	on	 leaf	 chloro-
phyll	content,	 suggesting	 that	potential	 shifts	 in	soil	microbes	due	
to	long-	term	N	enrichment	did	not	generally	affect	plant	access	to	
resources.	Measurements	of	plant	and	soil	N	content	in	future	stud-
ies	 would	 help	 evaluate	 this	 conclusion	more	 rigorously.	 Because	
BYDV-	PAV	and	CYDV-	RPV	are	obligately	 transmitted	to	plants	by	
aphid	 vectors	 (D’Arcy	 &	 Burnett,	 1995),	 soil	 microbes	 could	 only	
affect	virus	incidence	indirectly	via	effects	on	the	plant,	ruling	out	
the	 second	mechanism.	 Induction	 of	 plant	 defenses	 could	 explain	
why	BYDV-	PAV	incidence	was	significantly	lower	when	plants	were	
grown	with	low	N	soil.	Furthermore,	ambient	and	low	N	soil	negated	

the	effects	of	co-	inoculation	and	N	supply	on	BYDV-	PAV	incidence	
and	the	combined	effect	of	co-	inoculation	and	N	supply	on	BYDV-	
PAV	 incidence	was	 subadditive.	 These	 interactions	 are	 consistent	
with	 these	 factors	 affecting	BYDV-	PAV	 incidence	 through	 a	 com-
mon	mechanism,	such	as	host	defenses.	Soil	treatments	did	not	af-
fect	 CYDV-	RPV	 incidence.	 BYDV-	PAV	 had	 a	 higher	 prevalence	 at	
the	field	site	in	a	single	survey	(see	Section	2),	which	may	indicate	
more	frequent	indirect	interactions	between	BYDV-	PAV	and	soil	mi-
crobes	at	the	site.	However,	long-	term	monitoring	would	be	needed	
to	assess	whether	BYDV-	PAV	consistently	occurs	at	a	higher	preva-
lence	than	CYDV-	RPV.

Increased	 N	 supply	 reduced	 BYDV-	PAV	 incidence	 in	 plants	
grown	 in	 noninoculated	 growing	 medium.	 Higher	 N	 availability	
may	 have	 decreased	 plant	 susceptibility	 to	 infection,	 which	 has	

Variablea Estimate Std. error

95% CI

R- hatLower Upper

Interceptb −2.63 1.18 −5.34 −0.73 1.00

N	supply 1.05 1.43 −1.57 4.07 1.00

Soil	ambient	N −0.02 1.70 −3.56 3.25 1.00

Soil	low	N 1.03 1.46 −1.67 4.10 1.00

Soil	high	N 1.04 1.44 −1.62 4.04 1.00

Soil	ambient	N	×	N	supply 1.59 1.99 −2.21 5.64 1.00

Soil	low	N	×	N	supply −0.39 1.80 −4.06 3.03 1.00

Soil	high	N	×	N	supply 0.28 1.79 −3.28 3.71 1.00

aVariables	with	quantile-	based	95%	credible	intervals	that	omit	zero	are	in	bold.
bIntercept	factor	levels:	low	N	supply,	noninoculated	growing	medium.

TA B L E  3 Summary	of	generalized	
linear	regression	of	co-	infection	incidence	
(n =	79)

F I G U R E  5 Aboveground	biomass	(g/plant)	of	plants	grown	with	noninoculated	growing	medium,	field	soil	exposed	to	long-	term	ambient	
N,	field	soil	exposed	to	long-	term	low	N,	and	field	soil	exposed	to	long-	term	high	N.	Plants	were	grown	with	low	or	high	N	supply	and	were	
uninfected	(mock	inoculation)	or	infected	with	BYDV-	PAV,	CYDV-	RPV,	or	both	(co-	infection).	Points	and	error	bars	are	model-	estimated	
mean	and	95%	HDI.	Small	points	are	raw	data
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been	 demonstrated	 for	 other,	 usually	 necrotrophic,	 pathogens	
(Dordas,	 2009;	 Vega	 et	 al.,	 2015).	 In	 a	 field	 experiment,	N	 sup-
ply	decreased	BYDV-	PAV	incidence	only	when	P	supply	was	high,	
which	 suggests	 that	 the	 stoichiometry	 of	 nutrient	 supply	 (e.g.,	
N:P)	influences	plant–	pathogen	interactions	rather	than	the	abso-
lute	supply	(Borer	et	al.,	2014).	Our	results	may,	therefore,	suggest	
that	BYDV-	PAV	infection	was	more	successful	when	plants	were	
grown	with	higher	P:N	supply,	perhaps	due	to	higher	within-	host	
virus	 replication,	 as	 has	 been	 demonstrated	 in	 aquatic	 systems	
with	P:C	stoichiometry	(Clasen	&	Elser,	2007;	Frost	et	al.,	2008).	
However,	studies	that	have	measured	within-	host	BYDV-	PAV	titer	
have	not	found	a	positive	effect	of	P	or	P:N	(Kendig	et	al.,	2020;	
Lacroix	et	al.,	2017;	Rúa	et	al.,	2013;	Whitaker	et	al.,	2015).	The	
mechanism	 behind	 reduced	 BYDV-	PAV	 incidence	 with	 higher	 N	

supply,	therefore,	requires	a	closer	examination	of	plant	defenses,	
within-	host	 dynamics,	 and	 plant–	vector	 interactions.	 Nitrogen	
supply	 no	 longer	 reduced	 infection	 incidence	when	 plants	were	
co-	inoculated.	 Interestingly,	N	supply	and	co-	inoculation	also	 in-
teracted	to	affect	virus	incidence	in	a	study	conducted	by	Lacroix	
et	al.	(2014),	except	that	the	interaction	affected	CYDV-	RPV	inci-
dence	 rather	 than	BYDV-	PAV.	These	 results	 suggest	 that	BYDV-	
PAV	and	CYDV-	RPV	may	 interact	within	hosts	and	 that	nutrient	
supply	may	modify	 their	 interactions,	analogous	 to	pathogens	 in	
animal	and	human	systems	(Smith,	2014;	Smith	&	Holt,	1996).

The	 long-	term	 N	 enrichment	 treatments,	 which	 have	 been	
previously	 shown	 to	 shape	 the	 soil	 microbial	 community	 (Fierer	
et	al.,	2012;	Schlatter	et	al.,	2013),	modified	plant–	pathogen	 inter-
actions.	Only	soil	exposed	to	multiple	decades	of	low	N	enrichment	

Variablea Estimate Std. error

95% CI

R- hatLower Upper

Interceptb −1.62 0.19 −1.99 −1.25 1.00

N supply 0.62 0.26 0.12 1.13 1.00

BYDV-	PAV	infection 0.19 0.26 −0.31 0.70 1.00

CYDV-	RPV	infection −0.22 0.28 −0.78 0.34 1.00

Soil	ambient	N 0.03 0.30 −0.55 0.63 1.00

Soil	low	N 0.51 0.26 0.00 1.03 1.00

Soil	high	N 0.09 0.27 −0.44 0.63 1.00

N	supply	×	BYDV-	PAV −0.14 0.41 −0.93 0.66 1.00

N	supply	×	CYDV-	RPV −0.07 0.38 −0.81 0.67 1.00

Soil	ambient	N	×	N	supply 0.23 0.39 −0.54 1.00 1.00

Soil	low	N	×	N	supply −0.24 0.37 −0.95 0.48 1.00

Soil	high	N	×	N	supply 0.13 0.37 −0.59 0.84 1.00

Soil	ambient	
N	×	BYDV-	PAV

−0.52 0.42 −1.35 0.30 1.00

Soil	low	N	×	BYDV-	PAV −0.41 0.41 −1.22 0.39 1.00

Soil	high	N	×	BYDV-	PAV 0.06 0.38 −0.69 0.80 1.00

Soil	ambient	
N	×	CYDV-	RPV

−0.31 0.43 −1.15 0.53 1.00

Soil	low	N	×	CYDV-	RPV −0.40 0.41 −1.22 0.40 1.00

Soil	high	N	×	CYDV-	RPV 0.11 0.41 −0.69 0.91 1.00

Soil	ambient	N	×	N	
supply ×	BYDV-	PAV

0.04 0.63 −1.21 1.28 1.00

Soil	low	N	×	N	
supply ×	BYDV-	PAV

−0.18 0.59 −1.33 0.96 1.00

Soil	high	N	×	N	
supply ×	BYDV-	PAV

−0.26 0.56 −1.36 0.85 1.00

Soil	ambient	N	×	N	
supply ×	CYDV-	RPV

0.21 0.58 −0.93 1.36 1.00

Soil	low	N	×	N	
supply ×	CYDV-	RPV

0.02 0.56 −1.08 1.11 1.00

Soil	high	N	×	N	
supply ×	CYDV-	RPV

−0.66 0.57 −1.77 0.44 1.00

aVariables	with	quantile-	based	95%	credible	intervals	that	omit	zero	are	in	bold.
bIntercept	factor	levels:	low	N	supply,	mock	inoculation,	noninoculated	growing	medium.

TA B L E  4 Summary	of	linear	regression	
of	log-	transformed	aboveground	biomass	
(n =	154)
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significantly	reduced	BYDV-	PAV	incidence.	Ambient	N	soil	caused	a	
weaker	(and	nonsignificant)	reduction	in	BYDV-	PAV	incidence	while	
all	plants	grown	with	high	N	soil	became	infected	with	BYDV-	PAV	
(unless	 they	were	 co-	inoculated).	 If	 soil	microbes	 affected	 BYDV-	
PAV	 incidence	 through	 induced	plant	 defenses,	 these	 results	 sug-
gest	 that	 long-	term	N	 enrichment	 could	 indirectly	 influence	 plant	
defenses	 via	 the	 soil	 microbial	 community.	 Specifically,	 long-	term	
low	N-	enriched	soil	may	induce	plant	defenses	while	long-	term	high	
N-	enriched	soil	may	not.	This	result	contrasts	with	previous	studies	
that	 have	demonstrated	 that	 higher	 nutrient	 availability	 increased	
the	disease	suppressive	activity	of	plant-	associated	microbes	(Berg	
&	Koskella,	2018;	Wiggins	&	Kinkel,	2005),	but	a	nonmonotonic	rela-
tionship	between	N	enrichment	and	microbe-	induced	plant	defenses	
is	possible.	We	also	 found	 that	BYDV-	PAV	 infection	only	 reduced	
leaf	 chlorophyll	 content	when	plants	were	 grown	with	 ambient	N	
soil.	This	result	suggests	that	not	only	may	the	microbial	community	
mediate	the	success	of	BYDV-	PAV	infection	but	it	may	also	mediate	
some	of	the	symptoms	of	infection	experienced	by	infected	plants.	
We	do	not	know	whether	long-	term	N	enrichment	shifted	the	com-
position,	function,	or	both	of	the	soil	microbial	communities	(Chen	
et	al.,	2019;	Klinger	et	al.,	2016;	Leff	et	al.,	2015),	but	subsequent	
studies	 could	 characterize	 microbial	 taxa	 and	 function	 associated	
with	changes	in	BYDV-	PAV	infection.

We	 selected	 the	 host	 species	 and	 virus	 species	 because	 of	
their	importance	for	agriculture	(Mckirdy	et	al.,	2002;	Riedell	et	al.,	
2007)	and	 the	wide	knowledge	base	provided	by	previous	studies	
(Baltenberger	et	al.,	1987;	Carrigan	et	al.,	1983;	Erion	&	Riedell,	2012;	
Lacroix	et	al.,	2014;	Power	et	al.,	1991).	However,	the	host	species	
does	 not	 naturally	 co-	occur	 with	 the	 soil	 microbial	 communities	

sampled	in	this	study,	which	may	have	limited	the	observed	effects	
of	soil	treatment	on	plant	growth	and	plant–	pathogen	interactions	
(Essarioui	et	al.,	2020).	Indeed,	studies	that	have	used	co-	occurring	
plant	species	and	soil	microbial	communities	have	found	statistically	
significant	effects	of	the	N	enrichment	history	of	field	soil	on	plant	
biomass	(Johnson,	1993;	Weese	et	al.,	2015).	Therefore,	our	study	
may	have	 isolated	the	effects	of	soil	microbes	that	are	generalists	
or	 that	 affect	 plant–	pathogen	 interactions	 without	 requiring	 co-	
evolved	interactions.	A	follow-	up	study	may	consider	exploring	the	
relationship	 of	 nutrients,	 plant	 pathogens,	 and	 soil	microbes	 from	
communities	in	which	the	species	naturally	occur.	In	addition	to	no	
effect	of	soil	 treatment	on	plant	biomass,	we	also	found	no	effect	
of	infection	on	plant	biomass.	BYDV-	PAV	and	CYDV-	RPV	infections	
typically	 reduce	 plant	 biomass	 (Baltenberger	 et	 al.,	 1987;	 Erion	&	
Riedell,	2012),	but	the	effects	of	plant	pathogens	depend	on	envi-
ronmental	conditions	 (Barrett	et	al.,	2009).	BYDV-	PAV	and	CYDV-	
RPV	 infections	may	 have	 affected	 the	 plants	 in	ways	 that	we	 did	
not	measure,	such	as	root	growth	or	mineral	nutrient	concentrations	
(Riedell	et	al.,	2007).	Additionally,	based	on	simulated	datasets,	our	
study’s	sample	sizes	may	have	 impeded	our	ability	 to	detect	small	
changes	 in	 biomass.	Although	we	did	 not	measure	 plant	 or	 soil	N	
content,	high	N	supply	increased	the	biomass	and	chlorophyll	con-
tent	of	mock-	inoculated	plants	grown	in	noninoculated	growing	me-
dium	(i.e.,	control	plants),	suggesting	that	manipulation	of	N	supply	
was	successful.

B/CYDVs	are	vectored	by	aphids,	which	may	mediate	the	effects	
of	soil	nutrients	and	soil	microbes	on	plant–	pathogen	and	pathogen–	
pathogen	 interactions.	 For	 example,	 increasing	N	 supply	 to	plants	
can	 increase	 or	 decrease	 the	 length	 of	 time	 that	 aphids	 feed	

F I G U R E  6 Leaf	chlorophyll	content	(SPAD)	of	plants	grown	with	noninoculated	growing	medium,	field	soil	exposed	to	long-	term	ambient	
N,	field	soil	exposed	to	long-	term	low	N,	and	field	soil	exposed	to	long-	term	high	N.	Plants	were	grown	with	low	or	high	N	supply	and	were	
uninfected	(mock	inoculation)	or	infected	with	BYDV-	PAV,	CYDV-	RPV,	or	both	(co-	infection).	Points	and	error	bars	are	model-	estimated	
mean	and	95%	HDI.	Small	points	are	raw	data
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(Bogaert	et	al.,	2017;	Nowak	&	Komor,	2010),	which	affects	the	prob-
ability	that	viruses	successfully	infect	plants	(Power	et	al.,	1991).	Soil	
microbial	communities	also	can	influence	the	feeding	behavior	and	
population	 dynamics	 of	 aphids	 (Pineda	 et	 al.,	 2010).	 For	 example,	
soil	microbes	 can	 increase	or	decrease	 the	weight,	 body	 size,	 and	
intrinsic	growth	rate	of	aphids	(Hackett	et	al.,	2013;	Hol	et	al.,	2010;	
Pineda	et	al.,	2012).	Higher	aphid	population	densities	may	increase	
the	co-	infection	 incidence	of	B/CYDVs	 (Seabloom	et	 al.,	 2009).	 In	
addition,	N	 supply	 and	 soil	microbial	 communities	may	 interact	 to	
affect	aphid	vectors	because	the	effects	of	microbes	on	insect	her-
bivores	 tend	 to	be	stronger	when	plants	experience	abiotic	 stress	
(Pineda	et	al.,	2013).	For	 instance,	a	previous	study	demonstrated	
that	other	soil-	dwelling	organisms,	nematodes,	affected	aphid	pop-
ulation	growth	rates	and	plant	preference	only	when	N	was	limited	

(Kutyniok	et	al.,	2014).	To	evaluate	 the	 role	of	aphids	 in	pathogen	
responses	to	N	supply	and	soil	microbial	communities,	future	studies	
could	 investigate	 the	 effects	 of	N	 and	microbes	on	 aphid	 feeding	
duration	in	the	lab	and	aphid	population	dynamics	in	the	field.

Our	experiment	provided	a	novel	demonstration	that	long-	term	
N-	enriched	soil	may	affect	the	incidence	of	an	insect-	vectored	virus,	
BYDV-	PAV,	 in	a	plant	host,	A. sativa,	 through	shifts	 in	 the	soil	mi-
crobial	community.	Because	soil	treatments	mediated	the	effects	of	
contemporary	N	 supply,	 and	 the	N	 enrichment	 history	 of	 soil	 im-
pacted	both	incidence	and	chlorophyll	of	infected	plants,	our	results	
suggest	 that	 inferences	 about	 how	 N	 enrichment	 modifies	 plant	
pathogens	 based	 on	 laboratory	 experiments	 will	 depend	 on	 the	
role	of	soil	microbes.	Furthermore,	our	results	suggest	that	high	N	
enrichment	 could	 reduce	 the	pathogen-	suppressive	effects	of	 soil	

Variablea Estimate Std. error

95% CI

R- hatLower Upper

Interceptb 3.13 0.05 3.03 3.23 1.00

N supply 0.18 0.07 0.05 0.32 1.00

BYDV-	PAV	infection 0.08 0.07 −0.05 0.22 1.00

CYDV-	RPV	infection 0.06 0.07 −0.09 0.21 1.00

Soil	ambient	N 0.05 0.08 −0.10 0.21 1.00

Soil	low	N 0.00 0.07 −0.13 0.14 1.00

Soil	high	N 0.02 0.07 −0.12 0.16 1.00

N	supply	×	BYDV-	PAV −0.21 0.11 −0.42 0.01 1.00

N	supply	×	CYDV-	RPV −0.15 0.10 −0.35 0.04 1.00

Soil	ambient	N	×	N	supply −0.05 0.10 −0.25 0.15 1.00

Soil	low	N	×	N	supply 0.04 0.10 −0.15 0.23 1.00

Soil	high	N	×	N	supply 0.03 0.10 −0.16 0.22 1.00

Soil ambient 
N × BYDV- PAV

−0.33 0.11 −0.54 −0.11 1.00

Soil	low	N	×	BYDV-	PAV −0.14 0.11 −0.35 0.06 1.00

Soil	high	N	×	BYDV-	PAV −0.06 0.10 −0.26 0.13 1.00

Soil	ambient	
N	×	CYDV-	RPV

−0.11 0.11 −0.33 0.11 1.00

Soil	low	N	×	CYDV-	RPV −0.04 0.11 −0.25 0.17 1.00

Soil	high	N	×	CYDV-	RPV −0.04 0.11 −0.25 0.17 1.00

Soil ambient N × N 
supply × BYDV- PAV

0.37 0.17 0.05 0.69 1.00

Soil	low	N	×	N	
supply ×	BYDV-	PAV

0.07 0.15 −0.24 0.36 1.00

Soil	high	N	×	N	
supply ×	BYDV-	PAV

0.04 0.15 −0.25 0.32 1.00

Soil	ambient	N	×	N	
supply ×	CYDV-	RPV

0.23 0.15 −0.07 0.53 1.00

Soil	low	N	×	N	
supply ×	CYDV-	RPV

0.12 0.15 −0.17 0.41 1.00

Soil	high	N	×	N	
supply ×	CYDV-	RPV

0.04 0.15 −0.25 0.34 1.00

aVariables	with	quantile-	based	95%	credible	intervals	that	omit	zero	are	in	bold.
bIntercept	factor	levels:	low	N	supply,	mock	inoculation,	noninoculated	growing	medium.

TA B L E  5 Summary	of	linear	regression	
of	log-	transformed	leaf	chlorophyll	
content	(n =	154)
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microbes	for	some	plant–	pathogen	pairs,	potentially	leading	to	more	
widespread	infection	under	field	conditions	with	elevated	N	supply.	
This	work	 demonstrates	 the	 important	 indirect	 role	 of	 soil	micro-
bial	communities	for	infection	outcomes,	pointing	to	an	exciting	new	
frontier:	examining	the	generality	and	context	dependence	of	these	
results,	 and	 the	 indirect	 role	of	 soil	microbes	 in	 the	high	variation	
in	 plant–	microbe	 (Smith	 &	 Goodman,	 1999)	 and	 plant–	pathogen	
(Hoffland	et	al.,	2000)	interactions.
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APPENDIX 1

Additional methods

TA B L E  A 1 Modified	Hoagland	solution	used	to	manipulate	N	
supply	rate.	The	low	and	high	concentrations	of	NH4NO3	are	0.2%	
and	10%	of	half-	strength	Hoagland	solution,	respectively

Compound Molar mass
Concentration 
(μM)

K2SO4 174.25 1250

MgSO4·7H2O 246.48 1000

KH2PO4 136.09 1

CaSO4·2H2O 172.17 2000

NH4NO3 80.04 7.5	(375	for	high	N)

KCl 74.56 25

H3BO3 61.83 12.5

MnSO4·H2O 169.02 1

ZnSO4·7H2O 278.56 1

CuSO4·5H2O 249.69 0.25

H2MoO4·(H2O) 161.95 0.25

NaFeEDDHA	(6%	Fe) 434.8 10

TA B L E  A 2 Plants	with	virus	infections	inconsistent	with	their	
inoculation	treatment.	Total	sample	sizes	are	in	parentheses

Inoculation treatment BYDV- PAV CYDV- RPV

Mock	(77) 2 12

CYDV-	RPV	(78) 3

BYDV-	PAV	(74) 14

F I G U R E  A 1 An	example	gel	electrophoresis	used	to	evaluate	infections	of	BYDV-	PAV	and	CYDV-	RPV	following	RT-	PCR.	A	100	bp	
DNA	ladder	is	on	either	side	of	the	samples	and	controls.	BYDV-	PAV	is	detected	at	298	bp	and	CYDV-	RPV	is	detected	at	447	bp.	Labels	
for	experimental	samples	consist	of	three	letters	and	a	number	and	follow	the	format:	N	supply	rate	(C	=	low	N,	N	=	high	N),	field	soil	
inoculation	(S	=	noninoculated	growing	medium,	A	=	0	kg	N	ha−1 year−1,	D	=	34	kg	N	ha−1 year−1,	H	=	272	kg	N	ha−1 yr−1),	virus	inoculation	
(C	=	co-	inoculation,	H	=	mock-	inoculation,	P	=	BYDV-	PAV,	R	=	CYDV-	RPV),	and	replicate	number.	There	are	positive	controls	for	BYDV-	
PAV	(PAV	ctrl)	and	CYDV-	RPV	(RPV	ctrl).	There	are	negative	controls	for	noninoculated	A. sativa	(HO	ctrl	=	healthy	oat	control),	reverse	
transcription	components	(RT	ctrl)	and	PCR	components	(PCR	ctrl)
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