

Proposal for building an ozone module for the soil-crop model STICS

Marie Launay

► To cite this version:

Marie Launay. Proposal for building an ozone module for the soil-crop model STICS. [Research Report] INRAE US AgroClim; FACCE-ERA-NET+, project: Climate–CAFÉ. 2022. hal-03534885

HAL Id: hal-03534885 https://hal.inrae.fr/hal-03534885

Submitted on 19 Jan2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. First, we present the way the impact of ozone (O_3) was already introduced into new or existing models (Kobayashi, 1997; AFRCWHEAT2- O_3 with Ewert and Porter, 2000; Van Oijen et al., 2004 and CERES- O_3 model with Lebard, 2005). Second, we discuss the way those approaches feed the conceptual framework of the new ozone module for the STICS model.

 Presentation of existing modelling approaches for O₃ effects on crop growth and development For every approaches, we detail the way (i) the O₃ influx into the plant, (ii) the O₃ inhibition of photosynthesis and (iii) the O₃ acceleration of leaf senescence, are calculated.

a. Kobayashi, 1997

i. <u>O₃ inflow</u>

The O₃ inflow is not actually calculated. The model consider a **daily damaging O3 concentration** $[O_3](d)^1$ that is calculated as the excess of O₃ concentration beyond a background O₃ concentration under which there is no damage P_ $[O_{3,b}]^2$:

$$[O_3](d) = [O_{3,a}](d) - P_{-}[O_{3,b}]$$
(1)

ii. O3 effect on photosynthesis

The daily radiation use efficiency RUE(d) is reduced by a factor accounting for the daily damaging O3 concentration $[O_3](d)$ previously calculated (eq.1). This reducing factor also depends on the sensitivity of the crop to O_3 , varying with the phenology, P_pi.

 $RUE_{O_3}(d) = (1 - P_pi \cdot [O_3](d)) \cdot RUE(d)$ (2) With P_pi = P_p_{veg} during vegetative growth, and P_pi = P_p_{rep} during reproductive growth. P_p_{veg} is assumed to be lower than P_p_{rep}, considering that the O₃ impact on photosynthesis is much greater during reproductive growth.

iii. O3 effect on senescence

The natural senescence rate P_{α_r} is increased by a factor accounting for the daily damaging O₃ concentration [O₃](d) previously calculated (eq.1). This factor also depends on the sensitivity of the crop to O₃ during reproductive growth, P_p_{rep}. The daily LAI is thus calculated after having reached its maximum (LAI_{max}):

$$LAI(d) = LAI_{max} - P_{-}\alpha_{r} \sum_{LAI_{max}day}^{Harvest \, day} \left(1 + P_{-}p_{rep} \cdot [O_{3}](d)\right)$$
(3)

b. Ewert and Porter with AFRCWHEAT2-O3, 2000

i. O₃ inflow

The **instantaneous** O_3 **uptake rate** $O_{3,up}$ is calculated according to the stomatal conductance for O_3 which is the stomatal conductance for CO_2 g_{sc} corrected for the differences in the diffusivities of CO_2 and O_3 in the air with the ratio P_f_{DO3} (Laisk et al., 1989):

$$O_{3,up} = \left[O_{3,a}\right] \cdot g_{sc} \cdot P_{-}f_{DO3} \tag{4}$$

¹ All parameters and variables are listed in annex 1

² All parameters, supposed to remain constant are preceded by "P_"

ii. O₃ effect on photosynthesis

The short-term O_3 inhibition on photosynthesis is simulated through an O_3 dose effect factor $f_{O3,s}$ (d) (see eq.5 below) taking into account that:

- the short-term photosynthesis inhibition $f_{O3,s}$ (d) depends on the damage caused by O_3 during the current AND the previous hours $f_{O3,s}$ (h) and $f_{O3,s}$ (h-1) respectively (eq.5);
- there is a dose threshold under which there is no damage ($P_{\gamma}1/P_{\gamma}2$ in eq.6);
- the recovery from O₃ damage depends on leaf age according to the f_{LA} function (young leaves resist higher O₃ concentrations and can recover completely from O₃ damage within a period ranging from hours to a few days, Saxe 1991);

$$f_{O3,s}(d) = f_{O3,s}(h) \cdot f_{O3,s}(h-1) \qquad for \ h = 2,3 \dots 24$$

$$f_{O3,s}(d) = f_{O3,s}(h) \cdot r_{O3,s} \qquad for \ h = 1$$
(5)

With:

$$f_{O3,s}(h) = \begin{cases} 1 & \text{if } O_{3,up} \le P_{-}\gamma_{1}/P_{-}\gamma_{2} \\ 1 + P_{-}\gamma_{1} - P_{-}\gamma_{2} \cdot O_{3,up} & \text{if } P_{-}\gamma_{1}/P_{-}\gamma_{2} < O_{3,up} < \frac{1 + P_{-}\gamma_{1}}{P_{-}\gamma_{2}} \\ 0 & \text{if } O_{3,up} \ge \frac{1 + P_{-}\gamma_{1}}{P_{-}\gamma_{2}} \end{cases}$$
(6)

And:

$$r_{03,s} = f_{03,s}(d-1) + \left[f_{03,s}(h-1)\right] \cdot f_{LA}$$
(7)

Where $r_{O3,s}$ corresponds to the incomplete recovery from O_3 damage of the previous day (considering that repair of ozone damage during the night was not sufficient);

And where f_{LA} is a factor accounting for leaf age, with values between 0 and 1; f_{LA} equals to 1 before emergence, decreases linearly with the age of the leaf (°C.day) and falls to zero when the leaf is dead. Thus before emergence $r_{O3,s} = 1$ and for mature leaves there is quite no repair during the night ($r_{O3,s} \approx f_{O3,s}$ (d-1)) (figure 1).

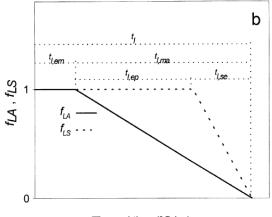
Finally this short-term photosynthesis inhibition factor $f_{O3,s}$ (d) reduces the Rubiscolimited rate of photosynthesis Ac (simulated at hourly steps as in the biochemical model of photosynthesis developed by Farquhar et al., 1980 and von Caemmerer & Farquhar, 1981):

$$A_{c,03} = A_c \cdot f_{03,s}(d) \cdot f_{LS}$$
(8)

The f_{LS} term in eq.8 is a senescence factor taking into account the natural decrease of the Rubisco-limited rate of photosynthesis with leaf senescence. As O_3 is assumed to accelerate senescence, this f_{LS} term is detailed below.

iii. O3 effect on senescence

 O_3 is assumed to accelerate the rate of senescence by reducing leaf life-span $t_{l,ma}$ through a long-term O_3 impact factor $f_{O3,l}$ calculated as a function of accumulated ozone uptake (till the leaf age t_l):


$$f_{O3,l} = 1 - P_{-}\gamma_{3} \int_{0}^{t_{l}} O_{3,up} dt$$

$$t_{l,ma} = (t_{l,ep} + t_{l,se}) \cdot f_{O3,l}$$
(10)

Where $t_{l,ma}$ is the life-span of a mature leaf, corresponding to the thermal time from sowing to fully expanded leaf stage $(t_{l,ep})$ plus the thermal time during which the leaf is senescing $t_{l,se}$. O₃ is thus also assumed to bring forward the onset of senescence $(t_{l,se}=0.33t_{l,ma}$, Porter, 1984).

Finally, the factor f_{LS} accounting for the effect of senescence on the Rubisco-limited rate of photosynthesis Ac, is calculated taking into account the effect of accumulated ozone uptake (eq.11)

$$f_{LS} = \begin{cases} 1 & before the fully expanded leaf stage \\ 1 - \frac{a_l - t_{l,ep}}{t_{l,ma}/f_{03,l} - t_{l,ep}} & for t_{l,em} < a_l < t_l \\ 0 & for a_l \ge t_l \end{cases}$$
(11)

Where a_i is the leaf age (°Cday) and t_i is the leaf life-span (°Cday)

Thermal time (°Cday)

Figure 1: *f*_{LA} and *f*_{LS} factors versus the thermal time (from Ewert & Porter, 2000)

c. Van Oijen et al., 2004

i. <u>O₃ inflow</u>

The **daily damaging O₃ uptake** QO_{3,up} is calculated according to the canopy stomatal conductance for CO2 and O₃ g_s, the photoperiod average of ambient ozone concentration [O_{3,aph}], and taking into account that part of the flux that is detoxified by inert plant material (cell walls) and by biochemical detoxification mechanisms P_f_{detox}: $QO_{3,up} = [O_{3,aph}] \cdot g_s \cdot (1 - P_f_{detox})$ (12)

ii. O3 effect on photosynthesis

The daily radiation use efficiency RUE(d) is reduced by a factor $F_{O3}(d)$ accounting for the daily photoperiod average of ambient ozone concentration $[O_{3,aph}]$ (and not for the daily damaging O3 uptake previously calculated $QO_{3,up}$ eq.12 !):

$$RUE_{O_3}(d) = RUE(d) \cdot F_{O3}(d) \tag{13}$$

With:

$$F_{03}(d) = 1 - \frac{44}{30} \frac{[O_{3,aph}] \cdot P_{-f_{detox}} \cdot P_{-c_{detox}}}{c_a - c_i} - f_{lv} \cdot P_{-f_{repair}}$$
(14)

Where the ratio 44/30 is the ratio of carbon contents of CO_2 (12/44) and CH_2O (12/30), f_{Iv} is the fraction of produced assimilates that is allocated to leaf growth and maintenance, f_{repair} is the fraction of assimilates allocated to leaves that is used in

repair, $P_{c_{detox}}$ is the cost coefficient of detoxification, C_a is ambient CO_2 concentration, C_i is the leaf internal CO_2 concentration (supposed to be equal to 0.7 C_a).

iii. O3 effect on senescence

Nothing is proposed by the authors to deal with the O₃ impact on senescence.

d. Lebard with CERES-O3, 2005

i. <u>O₃ inflow</u>

The damaging instantaneous O_3 uptake rate within the leaf layer II $O_{3,up,II}$ is calculated according to the stomatal conductance for O_3 , g_{O3} , the ambient ozone concentration near leaf surface in the leaf layer II, $[O_{3,a,II}]$, and taking into account that a part of the flux is detoxified accordingly to the leaf age:

$$O_{3,up,ll} = ([O_{3,a,ll}] - P_Kd \cdot Facsen) \cdot g_{03} \cdot 10^{-12}$$
(15)

Where $Kd.g_{03}$.Facsen corresponds to the instantaneous detoxified flux in layer II, and Kd.Facsen is a threshold concentration above which O_3 impacts the crop growth. This threshold evolves according to the leaf senescence which is estimated through to ratio between the actual leaf photosynthesis activity and the maximal (before senescence) leaf photosynthesis activity:

$$Facsen = \frac{V_{cmax}}{P_{-}V_{cmaxopt}}$$
(16)

A damaging cumulative amount of O₃ is then calculated (t in second):

$$CO_{3,up,ll} = \int_0^t O_{3,up,ll} \cdot 3600 \cdot dt$$
 (17)

ii. O₃ effect on photosynthesis

The maximum rate of carboxylation V_{cmax} is reduced according to the damaging cumulative amount of O₃, $CO_{3,up,ll}$ (eq.17):

$$V_{cmax,O3} = V_{cmax} - P_{-}Ki \cdot 10^{-3} \cdot CO_{3,up,ll}$$
(18)
n O₃ impact coefficient.

Where P_Ki is an O₃ impact coefficient.

The Rubisco amount is also reduced by the damaging instantaneous O_3 uptake rate within the leaf layer II $O_{3,up,II}$ calculated as described above (eq.15)

$$\partial RU = -P_{Ki} \cdot [RU] \cdot O_{3.up.ll} + \partial RU_{remobilisation}$$
(19)

Where δRU is the variation of the stock of Rubisco, P_Ki is an impact coefficient (= 302 s⁻¹), [RU] is the remaining amount of Rubisco, and $\delta RU_{remobilisation}$ is the reduction of the stock of Rubisco because of remobilization.

This formalism allows simulating the cumulative effect of O_3 as well as the dose effect on the photosynthesis response to the cumulative effect (Fig.2).

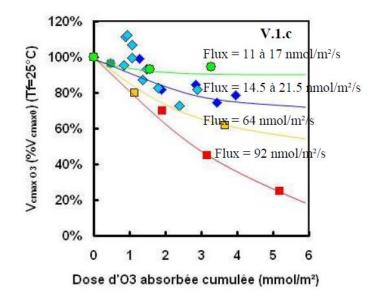


Figure 2: Maximum carboxylation rate versus cumulative O3 uptake and according to the average O3 inflow (from Lebard, 2005, Fig. V.1.c Chap. V.)

iii. O3 effect on senescence

Nothing is proposed by the author to deal with the O_3 impact on senescence. Furthermore, the author developed a formalism about the O_3 impact on leaf nitrogen content. *e.* Synthesis on about threshold effect, detoxification and repair mechanisms, and time scales which are considered in the previous modelling approaches.

Model	O3 Influx			O3 impacts						
				Photosynthesis inhibition			Senescence acceleration			
	time step and secondary effects	comment	equation	time step and secondary effects	comment	equation	time step and secondary effects	comment	equation	
Kobayashi (Kobayashi, 1997)	daily	The O ₃ influx is not calculated, but a damaging $[O_3]$ is calculated.	eq. 1	daily		eq. 2	daily	daily senescent rate is increased by daily damaging O₃ uptake	eq. 3	
	threshold effect	the threshold $[O_3]$ air is supposed to be constant		leat age ettect on	2 sensitivity parameters are fixed, one for the vegetative growth, and one for the reproductive growth	eq. 2				
AFRCWHEAT2- O3 (Ewert & Porter, 2000)	instantaneous (second)		eq. 4	hourly	O₃ effect on the Rubisco-limited rate of photosynthesis Ac (FvCB model)	eq. 5	daily?	cumulative effect of O_3 on senescence	eq. 10	
				threshold effect	low O_3 concentration are detoxified without direct effect on the photosynthetic system; but the reduced detoxification capacity with leaf age is not taken into account (Pell et al., 1997)	eq. 6				
				•	young leaves can recover fully from O_3 damage (Pell et al., 1992)	eq. 7				
	daily		eq. 12	daily	O ₃ effect on the RUE	eq. 13				
van Oijen (van Oijen et al., 2004)	threshold effect	the O ₃ flux that is instantaneously detoxified is cut away in order to directly calculate a damaging O ₃ uptake		threshold effect	the cost of O_3 detoxification is taken into account	eq. 14				
				no leat age effect	the cost of leaf repair is taken into account as a constant parameter	eq. 14				
	instantaneous (second)	The damaging instantaneous O ₃ uptake rate is calculated for every leaf layers	eq. 15	hourly	damaging O3 cumulative amount effect on the maximum rate of carboxylation Vcmax (FvCB model)	eq. 18				
CERES-O3 (Lebard, 2005)	threshold effect leaf age effect on instantaneous detoxification (Pell et al., 1997)									

In order to build an O3 module pluggable to STICS, it's necessary to choose formalisms using input variables that can be provided by STICS (or at less calculated from STICS state variables). As STICS assesses daily canopy resistances for CO₂ exchanges through a resistive approach (Fig. 3), and simulates a daily net photosynthesis according to an integrative approach without downscaling to the biochemical processes such as in the FvCB model, we propose the following formalisms in line with van Oijen et al. (2004) and Lebart (2005).

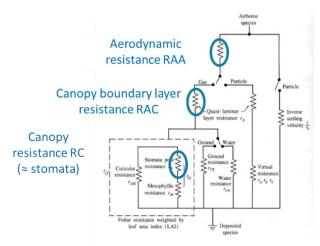


Figure 3: Canopy resistances as calculated by STICS (from Brisson et al., 2009)

a. O3 inflow

In line with van Oijen et al. (2004), the **daily damaging O₃ uptake QO_{3,up}** (nmol.m⁻² ground.day⁻¹) is calculated according to the canopy resistance for O₃ (the inverse of canopy conductance for O₃), the photoperiod average of ambient ozone concentration $[O_{3,aph}]$ (nmol.m⁻² ground.s⁻¹), and taking into account that part of the flux that is instantaneously detoxified P_f_{detox} (eq. 20). The canopy resistance for O₃ is the canopy resistance for CO₂ RT (sm⁻¹) corrected for the differences in the diffusivities of CO₂ and O₃ in the air with the ratio P_kdif_{O3} (eq. 20). Two options were implemented, considering only the stomatal resistance rc (1st option) which is the greater contribution, or alternatively all resistances (2nd option) i.e. aerodynamic resistance raa, canopy boundary layer resistance rac and stomatal resistance rc (eq. 21):

$$QO_{3,up}(d) = 1/RT(d) \cdot [O_{3,aph}] \cdot P_k dif_{O3} \cdot (1 - P_f_{detox}) \cdot photoperiod \cdot 3600$$
(20)

Where

$$RT(d) = \begin{cases} rc(d) & \text{if option 1} \\ rc(d) + rac(d) + raa(d) & \text{if option 2} \end{cases}$$
(21)

The damaging cumulative amount of $O_3 CO_{3,up}$ (mmol $O_3 m^{-2}$ ground) is thus equal to:

$$CO_{3,up}(d) = \int_{em}^{d} QO_{3,up}(i) \cdot 10^{-6}$$
(22)

b. O3 impact on photosynthesis

In line with Lebard (2005), we consider the cumulative effect of O_3 on photosynthesis, as well as the dose effect on the photosynthesis response to the cumulative effect. We apply Lebard approach (eq.18, fig.2) to the maximum value of the radiation use efficiency EBMAX (eq. 23, Fig. 4):

$$\frac{EBMAX_{O3}(d)}{EBMAX(d)} = 1 - \left(1 - exp(-f_{FO3} \cdot CO_{3,up}(d))\right)$$
(23)

With:
$$f_{FO3} = P_k dose_{O3} \cdot FO_{3,up}(d)$$
 (24)

Where:

$$FO_{3,up} = QO_{3,up} / (photoperiod \cdot 3600)$$
(25)

EBMAXO3 is the maximum radiation use efficiency under O₃ effect (g biomass.MJ⁻¹) while EBMAX is the maximum radiation use efficiency without O₃ effect. $CO_{3,up}$ as calculated in eq.22, represents the cumulative amount of O₃ uptake, whereas f_{FO3} is the O₃ dose effect factor on photosynthesis response to the cumulative effect of O₃. f_{FO3} is calculated from FO_{3,up} (eq.24) i.e. the instantaneous average of O₃ inflow calculated from the daily damaging O₃ uptake QO_{3,up} (eq.25). P_kdose_{O3} is a coefficient supposed to be constant.

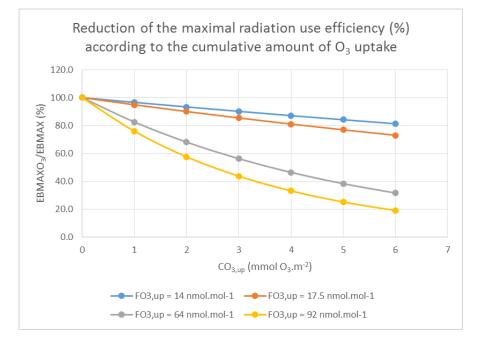


Figure 4: Relation between the reduction of the maximum radiation use efficiency and the cumulative amount of O3 uptake, according to the inflow intensity

3. Parameterization, evaluation and perspectives of the STICS O3 module

Parameters of the O3 module should now be estimated:

- The ratio of diffusion rates P_kdifO3 is fixed at 0.93 when considering only the stomatal resistance (1st option), according to Ewert and Porter (2000). When considering all resistances (2nd option) i.e. aerodynamic resistance raa, canopy boundary layer resistance rac and stomatal resistance rc, we should estimate a diffusion ratio for each of them: the diffusion ratio for aerodynamic resistance could be fixed at 1 (A. Olioso, com. Pers.), and the diffusion ratio for boundary layer resistance should be found in the literature.
- The instantaneous detoxified fraction of O₃ flux P_f_{detox} is fixed at 0.9 according to van Oijen et al. (2004).
- The coefficient for the O₃ dose effect factor calculation P_kdose₀₃ is estimated from the VcmaxO₃/Vcmax curve by Lebard (2005) originally established with data from Lebard (2005), Farage et al. (1991) and Cardoso Vilhena et al. (2004) (see Lebard, 2005, Figure V.1). The optimized value of P_kdose₀₃ is thus fixed at 3.10⁻³.

The O3 module should be evaluated, and parameters estimated more accurately, according to data found in the literature (such as Farage et al., 1991, Ewert et al., 1999; Cardoso Vilhena et al., 2004 and Lebard, 2005) and from the ozone experiments conducted by Danish colleagues in Roskilde University and DTU within the Climate CAFÉ project (Hansen et al., 2019).

Finally, the effect of leaf age on the detoxification efficiency could be introduced into the module, by transforming the $P_{f_{detox}}$ parameter into a variable evolving with leaf age. Last, the effect of O_3 on senescence has to be formalized.

References:

- Cardoso-Vilhena, J., Balaguer, L., Eamus, D., Ollerenshaw, J., Barnes, J., 2004. Mechanisms underlying the amelioration of O-3-induced damage by elevated atmospheric concentrations of CO2. Journal of Experimental Botany 55, 771-781.
- Ewert, F., Porter, J.R., 2000. Ozone effects on wheat in relation to CO2: modelling short-term and long-term responses of leaf photosynthesis and leaf duration. Global Change Biology 6, 735-750.
- Ewert, F., van Oijen, M., Porter, J.R., 1999. Simulation of growth and development processes of spring wheat in response to CO2 and ozone for different sites and years in Europe using mechanistic crop simulation models. European Journal of Agronomy 10, 231-247.
- Farage, P.K., Long, S.P., Lechner, E.G., Baker, N.R., 1991. THE SEQUENCE OF CHANGE WITHIN THE PHOTOSYNTHETIC APPARATUS OF WHEAT FOLLOWING SHORT-TERM EXPOSURE TO OZONE. Plant Physiology 95, 529-535.
- Hansen, E. M. O., Hauggaard-Nielsen, H., Launay, M., Rose, P., & Mikkelse, T. N. (2019). The impact of ozone exposure, temperature and CO2 on the growth and yield of three spring wheat varieties. Environmental and Experimental Botany, 168, 15. doi:10.1016/j.envexpbot.2019.103868
- Kobayashi, K., 1997. Variation in the relationship between ozone exposure and crop yield as derived from simple models of crop growth and ozone impact. Atmospheric Environment 31, 703-714.
- Laisk, A., Kull, O., Moldau, H., 1989. OZONE CONCENTRATION IN LEAF INTERCELLULAR AIR SPACES IS CLOSE TO ZERO. Plant Physiology 90, 1163-1167.
- Lebard, S., 2005. Analyse et modélisation au moyen du modèle CERES de la réponse d'un couvert de blé à l'ozone. Application à l'évaluation des pertes de rendement à l'échelle régionale. PhD thesis, University Paris 11, Orsay, Paris, p. 89.
- Saxe, H., 1991. PHOTOSYNTHESIS AND STOMATAL RESPONSES TO POLLUTED AIR, AND THE USE OF PHYSIOLOGICAL AND BIOCHEMICAL RESPONSES FOR EARLY DETECTION AND DIAGNOSTIC-TOOLS. Advances in Botanical Research Incorporating Advances in Plant Pathology 18, 1-128.
- Voncaemmerer, S., Farquhar, G.D., 1981. SOME RELATIONSHIPS BETWEEN THE BIOCHEMISTRY OF PHOTOSYNTHESIS AND THE GAS-EXCHANGE OF LEAVES. Planta 153, 376-387.
- van Oijen, M., Dreccer, M.F., Firsching, K.H., Schnieders, B., 2004. Simple equations for dynamic models of the effects of CO2 and O-3 on light-use efficiency and growth of crops. Ecological Modelling 179, 39-60.

Aknowledgments:

We thank J-F. Castell and A. Olioso for their thoughtful comments and suggestions, which greatly brought light to this subject.

Annex 1: Table of Parameters, Input and Output variables in models from Kobayashi (1997), Ewert and Porter (2000), van Oijen et al. (2004) and Lebard (2005).

Name	Input variable / Output variable / Parameter	Definition	Unit	Value (for parameters only)	Equation	Model / Reference	Time step calculation
[O₃](d)	Output variable	Daily mean O_3 concentration in excess of background O_3 (day d)	ppb or nmol.mol ⁻¹		1	Kobayashi, 1997	daily average
[O _{3,a}] (d)	Input variable	Daily mean O3 concentration in the air (day d)	ppb or nmol.mol ⁻¹		1	Kobayashi, 1997	daily average
	D	Declaration (under which there is no domone)	ppb or nmol.mol ⁻¹	not estimated by author	1	Kabawahi 4007	
P_[O _{3,b}]	Parameter	Background O3 concentration (under which there is no damage)	g biomass.MJ ⁻¹	author		Kobayashi, 1997	d - 11 -
RUE(d)	Input variable	Daily radiation use efficiency with no O ₃ impact	0			Kobayashi, 1997	daily
RUE ₀₃ (d)	Output variable	Daily radiation use efficiency reduced by O ₃ impact	g biomass.MJ ⁻¹		2	Kobayashi, 1997	daily
P_p _{veg}	Parameter	sensitivity of photosynthesis to excess O_3 during vegetative growth	-	not estimated by author	2	Kobayashi, 1997	
P_p _{rep}	Parameter	sensitivity of photosynthesis and senescence to excess O_3 during reproductive growth	_	not estimated by author	2	Kobayashi, 1997	
			m2 leaves . m ⁻² soil	dutiioi			dailu
LAI(d)	Output variable	Daily LAI	m2 leaves . m Soli		3	Kobayashi, 1997	daily crop season
LAImax	Input variable	maximum LAI	m2 leaves . m ⁻² soil		3	Kobayashi, 1997	maximum
_		constant rate of LAI decrease from the end of vegetative growth (<=>		not estimated by			
P_α _r	Parameter	senescence)	-	author	3	Kobayashi, 1997	
~			nmol.m ⁻² .s ⁻¹				instantaneous
O _{3,up}	Output variable	Instantaneous O ₃ uptake rate (flux)				Ewert&Porter, 2000	(second)
[O _{3,a}]	Input variable	Instantaneous O ₃ concentration at the leaf surface	ppb or nmol.mol ⁻¹		4	Ewert&Porter, 2000	hourly average
g _{s c}	Input variable	Stomatal conductance for CO ₂	mol.m ⁻² .s ⁻¹		4	Ewert&Porter, 2000	hourly
P_f _{DO3}	Parameter	ratio of diffusion rates for O3 and CO2	-	0.93	4	Ewert&Porter, 2000	
		short-term O_3 dose effect factor [0,1] inhibiting photosynthesis and accounting for the damage caused during the current and previous					
f _{03,s} (d)	Output variable	hours	-		5	Ewert&Porter, 2000	hourly
£ (1.)	0.000	short-term O_3 dose effect factor [0,1] accounting for the damage			-	5	haudu
f _{03,s} (h)	Output variable	caused during the current hour	-				hourly
Ρ_γ1	Parameter	O ₃ short-term damage coefficient	-	0.06		Ewert&Porter, 2000	
Ρ_γ2	Parameter	O ₃ short-term damage coefficient	(nmol.m ⁻² .s ⁻¹) ⁻¹	0.0045	6	Ewert&Porter, 2000	
Ρ_γ3	Parameter	O ₃ long-term damage coefficient	(nmol.m ⁻² .s ⁻¹) ⁻¹	0.5	10	Ewert&Porter, 2000	
A _{C,O3}	Output variable	Rubisco-limited rate of carboxylation (during photosynthesis) reduced by O3 effect $% \left({\left[{{{\rm{D}}_{\rm{B}}} \right]_{\rm{B}}} \right)$	μmol.m ⁻² .s ⁻¹		8	Ewert&Porter, 2000	instantaneous (second)
Ac	Output variable	Rubisco-limited rate of carboxylation (during photosynthesis)	µmol.m ⁻² .s ⁻¹		8	Ewert&Porter, 2000	instantaneous (second)
f _{LA}	Output variable	factor accounting for leaf age [0,1]	-			Ewert&Porter, 2000	daily
f _{LS}		factor accounting for leaf senescence [0,1]	-				daily
t _{i,ma}	Output variable	life-span of a mature leaf	°C.day				daily
	Input variable	thermal time from sowing to fully expanded leaf stage	°C.day				daily
t _{l,ep}	Input variable	thermal time from sowing to emergence	°C.day				daily
t _{l,em}		thermal time during which the leaf is senescing	°C.day				daily
t _{l,se}	Input variable		C.udy				daily
f _{03,1}	Output variable	long-term O ₃ impact factor [0,1] accelerating senescence	- °C dau				daily
t _i	Output variable	life-span of the leaf	°C.day				
a _l	Output variable	leaf age	°C.day			Ewert&Porter, 2000	daily
P_f _{detox}	Parameter	detoxified fraction of O ₃ flux	-	0.9		van Oijen et al., 2004	
QO _{3,up}	Output variable	Daily damaging O ₃ uptake rate (flux)	g O ₃ .m ⁻² ground.day	1	12	van Oijen et al., 2004	daily instantaneous
gs	Input variable	Stomatal conductance for CO ₂ and O3 (supposed to be equal)	mol.m ⁻² .s ⁻¹		12	van Oijen et al., 2004	(second)
[O _{3,aph}]	Input variable	photoperiod average of ambient ozone concentration	ml O ₃ .m ⁻³		12	van Oijen et al., 2004	daily average
RUE(d)	Input variable	Daily radiation use efficiency with no O ₃ impact	g biomass.MJ ⁻¹		13	van Oijen et al., 2004	daily
RUE ₀₃ (d)	Output variable	Daily radiation use efficiency reduced by O ₃ impact	g biomass.MJ ⁻¹			van Oijen et al., 2004	
F ₀₃ (d)	Output variable	O ₃ effect factor [0,1] inhibiting photosynthesis	-			van Oijen et al., 2004	
		cost coefficient of detoxification	g CH ₂ O g ⁻¹ detoxified	0.375		van Oijen et al., 2004	,
P_C _{detox}	Parameter		g.g ⁻¹	0.373			daily
f _{LV}	Input variable	fraction of assimilates allocated to leaf growth and maintenance		-		van Oijen et al., 2004	udily
P_f _{repair}	Parameter	fraction of assimilates allocated to leaves that is used in repair	g.g ⁻¹	0.05		van Oijen et al., 2004	
Ca	Input variable	ambient CO ₂ concentration	ml CO ₂ m ⁻³		14	van Oijen et al., 2004	daily
Ci	Input variable	leaf internal CO ₂ concentration	ml CO ₂ m ⁻³		14	van Oijen et al., 2004	daily instantaneous
O _{3,up,II}	Output variable	Damaging instantaneous O_3 uptake rate within the leaf layer II (flux)	nmol.m ⁻² .s ⁻¹		15	Lebard, 2005	(second)
[O _{3,a,II}]	Input variable	Instantaneous O_3 concentration at the leaf surface in leaf layer II	ppb or nmol.mol ⁻¹		15	Lebard, 2005	hourly average
P_Kd	Parameter	Coefficient of instantaneous detoxification and repair	ppb or nmol.mol ⁻¹	49.4	15	Lebard, 2005	
	Output variable	Factor of senescence effect on the threshold of damaging instantaneous O3 uptake	-		15	Lebard, 2005	instantaneous (second)
Facsen		Maximum rate of carboxylation reduced by absorbed O ₃	µmol.m ⁻² leaf.s ⁻¹		18	Lebard, 2005	instantaneous (second)
	Output variable						instantaneous
Facsen V _{Cmax,03}			umol.m ⁻² leaf.s ⁻¹		16	Lebard, 2005	
V _{Cmax,O3}	Output variable Output variable	Maximum rate of carboxylation	µmol.m ⁻² leaf.s ⁻¹		16	Lebard, 2005	(second)
			μmol.m ⁻² leaf.s ⁻¹ μmol.m ⁻² leaf.s ⁻¹	95		Lebard, 2005 Lebard, 2005	(second) instantaneous (second)
V _{Cmax,03} V _{Cmax}	Output variable	Maximum rate of carboxylation Maximum rate of carboxylation for an optimum nitrogen content in		95	16		(second) instantaneous

Annex 2: Table of Parameters, Input and Output variables of the STICS O3 module

Name	Input variable / Output variable / Parameter			Value (for parameters only)	Equation	Comment
QO _{3,up}	Output variable	Daily damaging O ₃ uptake	nmol O3.m ⁻² ground.day ⁻¹		20	
RT	Input variable	Canopy resistance for CO ₂	(mol.m ⁻² .s ⁻¹) ⁻¹		20, 21	
[O _{3,aph}]	Input variable	photoperiod average of ambient ozone concentration	nmol.mol ⁻¹ or ppb		20	
P_kdif ₀₃	Parameter	ratio of diffusion rates for O_3 and CO_2	-	0.93	20	From Ewert & Porter (2000)
P_f _{detox}	Parameter	detoxified fraction of O ₃ flux	-	0.9	20	From van Oijenet al. (2004)
photoperiod	Input variable	Daily interval period during which the plants are exposed to light	hour		20, 25	
RT	Input variable	Canopy resistance for CO ₂	(mol.m ⁻² .s ⁻¹) ⁻¹		21	
rc	Input variable	Stomatal resistance for CO ₂	(mol.m ⁻² .s ⁻¹) ⁻¹		21	
raa	Input variable	Aerodynamic resistance for CO ₂	(mol.m ⁻² .s ⁻¹) ⁻¹		21	
rac	Input variable	Boundary layer resistance for CO ₂	(mol.m ⁻² .s ⁻¹) ⁻¹		21	
CO _{3,up}	Output variable	Damaging cumulative amount of O ₃ uptake	mmol O3.m ⁻² ground		22	
EBMAX ₀₃	Output variable	Maximum radiation use efficiency under O ₃ effect	g biomass.MJ ⁻¹		23	
EBMAX	Input variable	Maximum radiation use efficiency without O ₃	g biomass.MJ ⁻¹		23	
fFO3	Output variable	O3 dose effect factor on photosynthesis response to the cumulative effect of O ₃	(mmol O3.m ⁻² ground) ⁻¹		23, 24	
P_kdoseO3	Parameter	coefficient for the O3 dose effect factor calculation	10 ⁶ .(nmol O3) ⁻¹ .m ⁴ ground.day	0.003	24	estimated from Lebard (2005) with data from Lebard (2005) and Farage et al. (1991) and Cardoso Vilhena et al. (2004)
FO _{3,up}	Output variable	Instantaneous damaging O ₃ uptake rate (flux)	nmol O3.m ⁻² ground.s ⁻¹		25	