

Geomorphological alteration of urban rivers assessed by hydrological modelling

Mohamed Saadi, Anouaar Cheikh Larafa, Frédéric Gob, Ludovic Oudin,

Pierre Brigode

► To cite this version:

Mohamed Saadi, Anouaar Cheikh Larafa, Frédéric Gob, Ludovic Oudin, Pierre Brigode. Geomorphological alteration of urban rivers assessed by hydrological modelling. 4es Rencontres HydroGR, Dec 2021, Antony, France. hal-03537380

HAL Id: hal-03537380 https://hal.inrae.fr/hal-03537380v1

Submitted on 20 Jan 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Geomorphological alteration of urban rivers assessed by hydrological modelling M. Saadi^{1,2}(m.saadi@fz-juelich.de), A. Cheikh Larafa^{2,3}, F. Gob³, L. Oudin², P. Brigode⁴

¹FZJ/IBG-3, ²SU/METIS, ³UPS/LGP, ⁴UCA/Géoazur

2021-12-08 | 4^{es} Rencontres HydroGR 2021

1 Context and objectives

3 catchments located within the Seine river basin

Aulne (34 km²) Mérantaise (20 km²) Morbras (51 km²)

1000

1 Context and objectives

Incision/widening marks on the Mérantaise (below) and the Morbras (right)

	Comparison of 2015	Incision (m)		Widening (m)	
	Xsections to	Mean	Max	Mean	Max
Mérantaise	1980 Xsections	0.41	1.26	1.31	<mark>4.91</mark>
	Regional model	0.11	-	0.51	-
Morbras	1964 Xsections	0.39	1.05	0.75	<mark>3.10</mark>
	Regional model	0.43	0.58	0.98	<mark>2.50</mark>
Aulne		-	-	-	-

Comparison of the Mérantaise width and depth in 1884/1907, 1980 and 2015 in two close locations

JÜLICH Mitglied der Helmholtz-Gemeinschaft

Climate forcing (1959-2018)

Evolution of TIA

Long-term streamflow time series (1959-2018)

2.1 | Climate forcing and land cover evolution

Required data	Source	Time period	
Precipitation (hourly)			
Potential evapotranspiration (hourly)	SAFRAN (Vidal et al., 2010; 8 km resolution)	1959-2018	
Land cover (yearly)	LGP (land cover, polygons) and CORINE database <u>(land</u> <u>cover</u> at 100 m + <u>imperviousness</u> at 20 m)	Mérantaise: 1900-2015 Morbras: 1949-2015 Aulne: 1990-2015	
Discharge (hourly)	LGP + INRAE + CD94	Morbras: 2007-2018 Aulne, Mérantaise: 2011-2018	

2.2 | TIA time series: Recipe

Step 1: Estimate CPD from CORINE and LGP databases

2.1 | Climate forcing and land cover evolution

Required data	Source	Time period	
Precipitation (hourly)			
Potential evapotranspiration (hourly)	SAFRAN (Vidal et al., 2010; 8 km resolution)	1959-2018	
Land cover (yearly)	LGP (land cover, polygons) and CORINE database <u>(land</u> cover at 100 m + imperviousness at 20 m)	Mérantaise: 1900-2015 Morbras: 1949-2015 Aulne: 1990-2015	
Discharge (hourly)	LGP + INRAE + CD94	Morbras: 2007-2018 Aulne, Mérantaise: 2011-2018	

2.2 | TIA time series: Recipe

Step 2: Estimate TIA us

year 2006

Step 1: Estimate CPD from CORINE and LGP databases

sing: TIA (%) = 68.5
$$\left(1 - \sqrt{1 - \frac{\text{CPD}(\%)}{100}}\right)$$

Step 3: Correct the estimations of TIA using the observed TIA for the

2.1 | Climate forcing and land cover evolution

Required data	Source	Time period	
Precipitation (hourly)			
Potential evapotranspiration (hourly)	SAFRAN (Vidal et al., 2010; 8 km resolution)	1959-2018	
Land cover (yearly)	LGP (land cover, polygons) and CORINE database <u>(land</u> <u>cover</u> at 100 m + <u>imperviousness</u> at 20 m)	Mérantaise: 1900-2015 Morbras: 1949-2015 Aulne: 1990-2015	
Discharge (hourly)	LGP + INRAE + CD94	Morbras: 2007-2018 Aulne, Mérantaise: 2011-2018	

2.2 | TIA time series: Recipe

Step 2: Estimate TIA us

year 2006

Step 4: Interpolation and extrapolation

JÜLICH Mitglied der Helmholtz-Gemeinschaft

Step 1: Estimate CPD from CORINE and LGP databases

sing: TIA (%) = 68.5
$$\left(1 - \sqrt{1 - \frac{\text{CPD(\%)}}{100}}\right)$$

Step 3: Correct the estimations of TIA using the observed TIA for the

2.3 | Hydrological model MU5H

Parameters

 $I_{max}, \theta_1, \theta_3$: Reservoir capacities (mm) θ_2 : Potential exchange parameter (mm) θ_4 : Base time of unit hydrographs (h)

RR = f(SMAR-50) for TIA $\in [0,0.002]$

 $R^2 = 0.83$

Slope = 0.24

ntercept = 0

SMAR-50 (-)

RR per class of SMAR-50

2.3 | Hydrological model MU5H

Parameters

(a)

0.6

0.4

0.3

0.2

C) 88 (-)

Legend

 $I_{max}, \theta_1, \theta_3$: Reservoir capacities (mm) θ_2 : Potential exchange parameter (mm) θ_4 : Base time of unit hydrographs (h) **θ**₅: Quick-flow/slow-flow split parameter (-)

(b)

- 80.5

0.1

Legend

Saadi et al. (2020, WRR)

 $AE = E_i + E_s$

GR4H (Ficchi et al., 2019)

Ρ

Ei

 \mathbf{E}

2.4 Change in flow competence due to urbanization

Actual evolution of the catchment

yearly TIA

$$\Theta_{\rm urb} = 0\%$$

Catchment response if there were no urbanization (nonurbanized)

1. Q_{cr} is estimated from the nonurbanized simulation using

$$Q_{cr} = 0.6 \cdot \frac{1}{N} \cdot \sum_{y} Q_{d,max,y} (\theta_{urb} = 0)$$
 Pfaundler et al. (2011)

2. Total competent flow (TCF) for the observed and simulated discharge

3. Relative change in TCF due to urbanization

 $\frac{\sum_{y=2}^{y+2} \text{TCF}_{ev,y}(\theta_{urb} = \text{Obs. TIA}) - \sum_{y=2}^{y+2} \text{TCF}_{ev,y}(\theta_{urb} = 0\%)}{\sum_{y=2}^{y+2} \text{TCF}_{ev,y}(\theta_{urb} = 0\%)}$ $\Delta_{\rm rel} \rm TCF_{ev,y} (\%) = 100^{-1}$ JÜLICH Mitglied der Helmholtz-Gemeinschaft

3.1 | Model calibration

Acceptable calibration and control performances!

JÜLICH Mitglied der Helmholtz-Gemeinschaft

3.2 | Yearly evolution of catchment urbanization

The Aulne illustrates the case of nearnonurbanized situation The Mérantaise shows a "smooth" gradient of urbanization that reaches a significant level by the 1980s The Morbras catchment shows a strong gradient of urbanization with TIA doubling in ~30 yrs (1960-1990)

JÜLICH Mitglied der Helmholtz-Gemeinschaft

3.3 | Yearly evolution of TCF_{ev} vs. of urbanization

No substantial urbanization, no change in TCF_{ev}

Increased TCF_{ev} due to urbanization (44%-320%), but without a significant trend

Increase in TCF_{ev} for the Morbras catchment (-4%-96%), with a significant trend (p < 0.001)

3.4 | Monthly evolution of TCF_{ev}

No substantial urbanization, no change in $\mathrm{TCF}_{\mathrm{ev}}$

No clear seasonality of the effect of urbanization on $\mathsf{TCF}_{\mathsf{ev}}$

A substantial effect of urbanization from late spring to fall

4 Conclusion

Divor	2015 X-sections compared to	Incision (m)		Widening (m)	
River		Mean	Max	Mean	Max
Mérantaise	1980 X-sections	0.41	1.26	1.31	4.91
Morbras	1964 X-sections	0.39	1.05	0.75	3.10

JÜLICH Mitglied der Helmholtz-Gemeinschaft

Morbras

Model underestimates the competent flow

Evidence for the effect of urbanization

With a significant trend!

Thank you for your attention! **Questions?**

References

Coron, L., Thirel, G., Delaigue, O., Perrin, C., Andréassian, V., 2017. The suite of lumped GR hydrological models in an R package. Environ. Model. Softw. 94, 166–171. (région) (1107). Office fédéral de 2021. Physically consistent conceptual rainfall-runoff model for urbanized catchments. J. Hydrol. 599, 126394.

https://doi.org/10.1016/j.envsoft.2017.05.002 Edijatno, Nascimento, N. de O., Yang, X., Makhlouf, Z., Michel, C., 1999. GR3J: a daily watershed model with three free parameters. Hydrol. Sci. J. 44, 263–277. https://doi.org/10.1080/02626669909492221 Ficchì, A., Perrin, C., Andréassian, V., 2019. Hydrological modelling at multiple sub-daily time steps: Model improvement via flux-matching. J. Hydrol. 575, 1308–1327. https://doi.org/10.1016/j.jhydrol.2019.05.084 Gupta, H.V., Kling, H., Yilmaz, K.K., Martinez, G.F., 2009. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 377, 80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003 Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I — A discussion of principles. J. Hydrol. 10, 282–290. https://doi.org/10.1016/0022-1694(70)90255-6 Pfaundler, M., Dübendorfer, C., Zysset, A., 2011. Méthodes d'analyse et d'appréciation des cours d'eau. Hydrologie – régime d'écoulement niveau R l'environnement (OFEV), Berne. Saadi, M., Oudin, L., Ribstein, P., 2020. Beyond imperviousness: The role of antecedent wetness in runoff generation in urbanized catchments. Water Resour. Res. 56, e2020WR028060. https://doi.org/10.1029/2020WR028060 Saadi, M., Oudin, L., Ribstein, P.,

https://doi.org/10.1016/j.jhydrol.2021.126394

