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Abstract11

Visible and near infrared spectroscopy (VIS-NIR) is increasingly being12

transferred from laboratory to industry for in-line and portable applications13

in various domains. By intensively using VIS-NIR spectroscopy, some ab-14

normal observations may certainly arise. It is then important to properly15

handle outliers to elaborate effective prediction models. The objective of16

this study is to investigate the potential of using a robust method called17

Roboost-PLSR to improve prediction model performances for a viticulture18

application. This work focuses on a case study to predict sugar content in19

grape berries of three different grape varieties of Vitis Vinifera in a maturity20

monitoring context. Hyperspectral images were acquired of grape berries of21

Syrah, Fer-Servadou and Mauzac varieties. Reference measurements of sugar22

levels were made in the laboratory by densimetric baths. Performances of23

RoBoost-PLSR models were compared to performances of reference models24
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using Partial Least Square Regression (PLSR). Reference prediction criteria25

using PLSR were obtained for all varieties with these following values: Syrah26

(R2
p = 0.971; RMSEp= 5.36 g/L), Fer-servadou (R2

p = 0.788; RMSEp= 11.6927

g/L) and Mauzac (R2
p = 0.690; RMSEp = 15.61 g/L). Prediction qualities28

are improved with RoBoost-PLSR: Syrah (R2
p = 0.990; RMSEp=3.14 g/L),29

Fer-Servadou (R2
p = 0.848; RMSEp= 10.20 g/L) and Mauzac (R2

p = 0.927;30

RMSEp= 7.58 g/L). Results confirm that Roboost-PLSR method allows a31

better consideration of outliers within the calibration set.32

Keywords: Robust regression, Chemometrics, Spectroscopy, Grapes,33

maturity34

1. Introduction35

It is increasingly common that visible and near-infrared (VIS-NIR) spec-36

troscopy transfers from laboratory to industry for in-lign and portable ap-37

plications in various domains. By intensively using VIS-NIR spectroscopy,38

some abnormal observations may certainly arise. Among these, observations39

are called leverage points when they have a strong impact on the construc-40

tion of a prediction model. When they are detrimental to the prediction41

model, they are called outliers. It is then important to properly handle these42

outliers to elaborate effective prediction models. In chemometrics, Partial43

Least Square Regression (PLSR) (Wold et al., 2001) is a widely-used tool.44

Particularly, PLSR is effective when dealing with high-dimensional data such45

as spectral data, where the sample number is lower than variable number.46

Besides, the PLSR method performs admirably when the relationship be-47

tween explanatory variables and response variable to be predicted is linear.48
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However, estimating this linear relationship may be disturbed in presence of49

outliers (Serneels et al., 2005a).50

These outlier data are generally due to variations of measurement condi-51

tions (view angle, reference, sensor temperature), physico-chemical variations52

in measured samples or experimental errors (annotation, operator). All these53

variations require efforts to identify and remove outliers from the calibration54

set. In addition, inspecting each observation manually is complicated and55

time-consuming in the case of large databases.56

These problems are also found in agronomy, where the use of VIS-NIR57

spectroscopy is tending to be more frequently used (Ryckewaert et al., 2021).58

Indeed, rich spectral information is an added value to predict biochemical59

variables to assess agronomic parameters for various agronomic applications.60

This technological trend operates at different scales depending on the objec-61

tives: prediction models can be used at fruit scale for quality control, at the62

leaf/canopy scale for plant health monitoring or at the plot scale for produc-63

tion monitoring. Multiple use cases of spectral data encourage a particular64

development on the management of outliers.65

Robust methods have been developed to address this issue (Serneels et al.,66

2005b; Hubert and Branden, 2003; Filzmoser et al., 2008, 2020; Griep et al.,67

1995; Metz et al., 2021). Indeed, this type of method aims at reducing the68

outlier impact automatically on PLSR model calibration. Recently, a method69

called Roboost-PLSR has been developed (Metz et al., 2021) and has shown70

its effectiveness to manage PLSR model calibration in the presence of outlier71

data.72

This article highlights the interest of RoBoost-PLSR method to improve73
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prediction models for agronomic applications and more particularly in the74

case of monitoring grape berry maturity of Vitis Vinifera. For this purpose,75

Roboost-PLSR method was compared to the reference method PLSR to pre-76

dict sugar content in grape berries of three different grape varieties.77

2. Materials and methods78

2.1. Biological material and reference measurements79

Grape berries were collected during a campaign carried out in Gaillac80

(France), in summer 2020. The sampling started one or two weeks after ve-81

raison and preharvest, on three plots corresponding to three different grape82

varieties of the experimental vineyard Domaine Expérimental Viticole Tar-83

nais: with two red grape varieties (Syrah and Fer Servadou) and one white84

grape variety (Mauzac). Thirty bunches were randomly sampled in each plot85

about once a week.86

Figure 1: Picture of densimetric baths used for maturity degree sorting of grape berries.

In the laboratory, grape berries were cut from bunches at the pedicel level87

to preserve entire fruits. Grape berries were then sorted in batches with same88
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maturity degree using sodium chloride (NaCl) baths to achieve a densimetric89

sorting (see fig. 1). Indeed, the increase in berry density during ripening is90

mainly due to sugar accumulation in berries (Lanier and Morris, 1978a,b).91

To this end, twelve NaCl baths with increasing concentrations from 70 to92

190 g/L were used to classify berry density corresponding to sugar concen-93

trations from 110 to 279 g/L (Bigard, 2018). First, berries were immersed94

in the highest NaCl concentration solution. Then, floating fruits were re-95

moved and immersed in a solution of lower concentration, whereas sinking96

fruits were removed and sorted into the density level corresponding to the97

NaCl solution. The procedure was repeated for all baths in order to obtain98

twelve classes of homogeneous maturity. Sugar content measurements were99

performed on berry musts (one must corresponds to one hundred berries)100

with a refractometer (HI-96816, Hanna Instruments).101

2.2. Spectral acquisition102

Before preparing a hundred berry must, these berries were placed on103

a tray for spectral acquisition. Reflectance spectra were acquired with a104

hyperspectral camera (Specim IQ, Specim, Finland) having a spectral range105

from 400 nm to 1000 nm and a spectral resolution equal to 7 nm (see Fig 2).106

Figure 2: Hyperspectral acquisition of grape berries.
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For each sample, reflected light intensity (Is(λ)) was measured at each107

wavelength λ. The camera was positioned 1.5 m from the scene. Dark current108

image (Ib(λ)) was also recorded for each measure. A certified reflectance109

standard (Labsphere, SRS-40-010) was used as a reference reflected intensity110

(Io(λ)) to standardise images from non-uniformities of instrumentation (light111

source, lens, detector). Illumination was provided using a halogen lamp112

(Arrilite 750 Plus ARRI, Munich, Germany). Constant angles of -50◦ and113

50◦ were maintained between the halogen lamp axes and the hyperspectral114

camera axis. From these measurements, a reflectance image (Rs(λ)) was115

obtained for each sample where each pixel of this image is a reflectance116

spectrum:117

Rs(λ) =
Is(λ)− Ib(λ)

I0(λ)− Ib(λ)
(1)

2.3. Image preprocessing118

A segmentation process was implemented to retrieve berry reflectance119

spectra from images. First, three reference spectra were defined, correspond-120

ing to each grape variety, by calculating an averaged spectrum from a manual121

selection of an area of a berry. Then, the segmentation was performed by122

comparing each image pixel with these previously defined spectra (see fig.123

3).124
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Figure 3: Segmentation by using spectral similarity threshold.

To this end, Spectral Angle Mapper (SAM) (Kruse et al., 1993; Yuhas125

et al., 1992) was selected to evaluate spectral similarity between the refer-126

ence spectrum defined for a given grape variety and spectra contained in127

hyperspectral images. Indeed, this criterion corresponds to an angle between128

two spectra (assimilated to vectors) and is favourably independent to inten-129

sity levels. The angle α defined between the corresponding variety reference130

spectrum y and the spectrum of a given pixel x, was calculated as follows:131

α = cos−1

∑
λ xy√∑

(x)2
∑

(y)2
(2)

By defining a spectral similarity threshold, berry spectra were retrieved132

from the images (see fig. 3). Finally, for each image a berry average spectrum133

was computed, to consider a unique sugar content.134

2.4. Data analysis135

2.4.1. Regression methods used136

RoBoost-PLSR (Metz et al., 2021) was used as a robust regression method137

to predict sugar contentY from spectral dataX. The purpose of this method138

is to define the outlyingness for each individual. This measure is expressed as139
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a weight which is integrated in the calibration of the RoBoost-PLSR model.140

This methods reduces outlier effect on model calibration by weighting them.141

A particularity of this method is that outliers are defined latent variable142

by latent variable. For each model with one latent variable, observation143

weights are calculated according to three criteria: X residuals, Y residuals144

and leverage points with the hyperparameters α, β and γ respectively. In this145

study, sixty-four combinations of values for α, β and γ were tested to optimise146

the model with these following possible values: 2, 4, 6, and infinite. RoBoost-147

PLSR was compared to the reference regression method PLSR (Wold et al.,148

2001).149

Calculations were performed with the R software (version 3.6.1 (Core Team,150

2013)), rnirs package for PLSR (https://github.com/mlesnoff/rnirs) and151

roboost package for RoBoost-PLSR (https://github.com/maxmetz/RoBoost-PLSR).152

2.4.2. Calibration and test set definition153

To compare PLSR method with RoBoost-PLSR method, models were154

established from three data sets corresponding to the three different grape155

varieties. For each grape variety, data were split into two sets, one calibra-156

tion set and one test set. The calibration set was formed with 75% of the157

whole data set whereas the test set was formed with the remaining 25%.158

This partitioning was chosen in order to have a sufficient amount of data to159

evaluate the criteria on the test set. As showed in table 1, the total number160

of observations was different depending on the grape variety.161
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Table 1: Number of observations constituting the whole data set, the calibration set and

the test set, for the three grape varieties, Syrah, Fer and Mauzac.

Number of observations Syrah Fer Mauzac

Whole dataset 126 63 85

Calibration set 95 48 67

Test set 31 15 18

Besides, test sets were created avoiding abnormal observations according162

to (Metz et al., 2021).163

2.4.3. Assessment criteria164

PLSR models were calibrated by performing a cross-validation procedure165

(Browne, 2000). For each grape variety, a k-fold cross-validation with five166

blocks was defined on the corresponding calibration data set.167

Model evaluation was performed using several criteria: root-mean-square168

error (RMSE), median absolute deviation (MAD) and determination coeffi-169

cient R2. Besides, the number of latent variables was optimised thanks to170

the RMSE parameter and was chosen to be lower than twenty. These criteria171

were calculated thanks to the following equations:172

RMSE =

√∑N
i=1(ŷi − yi)2

N
(3)

MAD = median(|yi − ỹ|) (4)
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R2 = 1−

∑N
i=1(ŷi−yi)

2

N∑N
i=1(yi−ym)2

N

(5)

with ŷi the predicted value, yi the observed value, ym the average of all re-173

sponse values and N the total number of observations. RMSEcv, MADcv and174

R2
cv denoted criteria obtained in the cross-validation step whereas RMSEp,175

MADp and R2
p denoted those obtained with the independent test set.176

Likewise PLSR, RoBoost-PLSR models were calibrated by performing a177

k-fold cross-validation procedure with five blocks. However, so-called robust178

evaluation criteria were calculated by using a procedure of trimming (Filz-179

moser and Nordhausen, 2021) Trimming consisted in sorting out observations180

according to their weights before removing a percentage of observations hav-181

ing the weaker weights. Moreover, this percentage was adapted to each of182

the three grape varieties: 5% for Syrah, 15% for Fer and 20% for Mauzac.183

Among these new criteria, r-RMSEcv and r-R2
cv were defined, corresponding184

respectively to the trimmed RMSE and the trimmed coefficient of determina-185

tion. The MAD calculated previously (eq. 4) was retained as it is considered186

a criterion for evaluating robustness.187

So-called robust evaluation criteria were chosen according to Filzmoser188

and al work (Filzmoser and Nordhausen, 2021). MAD, considered as a ro-189

bustness evaluation criterion, was computed. r-RMSEcv and r-R2
cv were com-190

puted as follows:191

r-RMSEcv =

√∑Nt

i=1(ŷi − yi)2

Nt

(6)
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r-R2
cv = 1−

∑Nt
i=1(ŷi−yi)

2

Nt∑Nt
i=1(yi−ym)2

Nt

(7)

With ŷi the predicted y, yi the observed y, ym the average y and Nt the192

number of retained observations. The r-RMSE was chosen as the criterion193

to minimise during cross-validation.194

3. Results and discussion195

3.1. Data visualization196

Sugar content distributions measured on grape berries of the three vari-197

eties (Fer Servadou, Mauzac and Syrah) can be seen in Figure 4.198
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Figure 4: Sugar content (g/L) histograms for the three grape varieties: Fer Servadou (FE),

Mauzac (MA) and Syrah (SY)

For the three varieties, sugar content values are similar and comprised199

between 100 and 300 g/L. Most values lie between 150 and 200 g/L which200

correspond to expected sugar contents for grape berries at different maturity201

stages. As sugar content values cover the same range for the three varieties,202

comparing results obtained for each grape variety is relevant.203
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Figure 5: Reflectance spectra of the whole data set

Reflectance spectra comprised between 400 nm and 1000 nm of the whole204

data set are shown in figure 5. The two varieties Syrah and Fer Servadou are205

similar over the whole spectral range. However, Mauzac spectra differ from206

the two other varieties. Mainly, reflectance values are higher in the spectral207

range comprised between 500 nm and 680 nm. Moreover, the spectrum slope208

is steeper around 700 nm.209

Syrah and Fer Servadou are red grape varieties and are known to possess210

high anthocyanin contents. Besides, visible light is largely absorbed by an-211

thocyanins which causes low reflectance values between 500 nm and 700 nm,212

as can be seen on spectra for these two varieties. Spectra visualisation con-213

firms the establishment of prediction models by variety.214
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3.2. Prediction models215

3.2.1. PLSR models216

Table 2 presents the values of the four criteria, latent variable number217

(nLV), prediction error (RMSEcv), median (MADcv) and determination co-218

efficient (R2
cv), based on the cross-validation of the three grape variety PLSR219

models.220

Table 2: Selected criteria obtained for cross-validation of PLSR prediction models on

calibration data set: latent variable number (nLV), prediction error (RMSEcv), median

(MADcv) and determination coefficient (R2
cv)

Model Variety nLV RMSEcv (g/L) MADcv (g/L) R2
cv

PLSR

Syrah 6 9.31 8.09 0.937

Fer Servadou 7 19.45 15.84 0.623

Mauzac 5 28.78 18.40 0.298

Results show large disparities between grape varieties. Indeed, Syrah has221

the best results with a higher R2
cv of 0.937 and lower RMSEcv and MADcv ,of222

respectively 9.31 g/L and 8.09 g/L. For Fer Servadou variety, RMSEcv and223

MADcv have values equal to 19.45 g/L and 15.84 g/L, which are nearly twice224

as large as the Syrah values. For Mauzac variety, RMSEcv value is equal to225

28.78 g/L and MADcv value is 18.40 g/L. These values are two to three times226

higher than the ones obtained for Syrah.227

Likewise, determination coefficient values differ between the three grape228

varieties. R2
cv obtained for Fer Servadou and Mauzac varieties are equal to229

0.623 and 0.298 respectively, much lower than Syrah result, especially for230

Mauzac. High discrepancies can be seen among the three grape varieties.231
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3.2.2. RoBoost-PLSR models232

Table 3: Selected criteria obtained for cross-validation of RoBoost-PLSR prediction mod-

els on calibration data set: trimming, hyperparameters, latent variable number (nLV),

prediction error (r-RMSEcv), median (MADcv) and determination coefficient (r-R2
cv)

Model Variety Trimming Hyperparameters (α; β; γ) nLV r-RMSEcv (g/L) MADcv (g/L) r-R2
cv

RoBoost-PLSR

Syrah 5% Inf; 4; 6 6 8.57 6.86 0.951

Fer 15% Inf; 4; Inf 7 12.5 14.3 0.844

Mauzac 20% Inf; 4; 6 6 12.1 15.50 0.794

The table 3 shows parameters from cross validation of RoBoost-PLSR233

method. These parameters are trimming percentage, hyperparameters (α, β,234

γ), latent variable number, r-RMSEcv, MADcv and r-R2
cv. Hyperparameter235

values α, β and γ are respectively equal to infinite, 4, 6 for Syrah; infinite,236

4, infinite for Fer Servadou; and infinite, 4, 6 for Mauzac. Hyperparameters237

α, β and γ are selective criteria for outlier detection respectively on X, Y238

and leverage points. The lower the hyperparameter, the higher the outlier239

number identified by the model. Conversely, an infinite value means no240

outlier identified. This implies that there is no outlier detected by cross-241

validation on X for the three grape varieties (α = Inf). However, this is not242

the case for Y (i.e. measures of sugar content), where β = 4 for the three243

grape varieties and means that several outliers are detected. Indeed, outliers244

could be introduced during sugar content measurements by densimetric bath.245

Finally, based on hyperparameter γ values, no leverage point is identified for246

Fer Servadou variety whereas some are detected for Mauzac and Syrah.247

Among the three grape varieties, Syrah obtains the best results with a248

r-RMSEcv equals to 8.57 g/L which corresponds to the lowest value. Further-249
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more, this value is slightly lower than the one obtained with the PLSR model250

(see table 2). Regarding Fer Servadou and Mauzac varieties, r-RMSEcv values251

are close to each other with values equal to 12.5 g/L and 12.1 g/L respec-252

tively. These results are improved compared to the values previously obtained253

with PLSR cross-validation (see table 2) and closer to Syrah value. Indeed,254

during the cross-validation procedure, RoBoost-PLSR deals with outliers by255

attributing weights to observations.256

Besides, the same analysis can be done for r-R2
cv values. Syrah obtains257

the best value with 0.951 whereas Fer Servadou and Mauzac obtain 0.844258

and 0.764. Again, these values are lower and closer to each other than the259

ones previously obtained with PLSR cross-validation (see table 2).260

Finally, the comparison of both cross-validation results, PLSR (table 2)261

and RoBoost-PLSR (table 3), indicates that RoBoost-PLSR decreases the262

prediction quality discrepancies between grape varieties. This result confirms263

the presence of outlier points among Fer Servadou and Mauzac data sets.264

3.2.3. Observed vs. predicted values of calibration models265

The visualisation of observed values by predicted values shown in fig-266

ure 6 helps to better understand criteria values obtained in cross-validation267

(tab 2 and 3). It provides a means to assess model quality, observation by268

observation.269
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Figure 6: Sugar content observed values versus predicted values based on (*, red) PLSR

and (•, blue) RoBoost-PLSR for the three grape varieties: (a) Syrah, (b) Fer, (c) Mauzac

Figures 6a, 6b and 6c compare predicted values of the calibration data270

set obtained with RoBoost-PLSR and PLSR for Syrah, Fer and Mauzac271

respectively.272

Regarding Syrah variety (fig. 6a), relationship between predicted Y and273

observed Y is linear and point dispersion is the lowest obtained for the three274
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varieties and this with RoBoost and PLSR. The same holds true for Fer275

Servadou variety (fig. 6b), where a linear tendency between predicted Y and276

observed Y can be noticed. However, several points obtained with PLSR277

deviate from this tendency. These same points are further deviated from the278

linear trend with RoBoost-PLSR. The identified points deviating from the279

linear tendency are possibly outliers (also called vertical outliers) or leverage280

points.281

As far as Mauzac is concerned (fig. 6c), the relationship between pre-282

dicted Y and observed Y deviates from a linear tendency with several points283

strongly dispersed. Some points deviate more strongly from this trend than284

previously. These same points are even further apart with RoBoost-PLSR,285

while an improvement appears on the majority of the other points. These286

points are clearly identified by the RoBoost-PLSR method as vertical outliers287

or leverage points. These points are weighted when building the prediction288

model with RoBoost-PLSR. RoBoost-PLSR thus improves the linearity be-289

tween predicted and observed values.290

By comparing these three figures (6a, 6b and 6c), calibration data set291

which have the best predictions are Syrah first, then Fer Servadou and finally292

Mauzac. This confirms the results obtained in cross-validation (table 3).293

3.3. Model prediction on independent test sets294

For each grape variety, PLSR and RoBoost-MLSR models previously pa-295

rameterized during cross-validation steps and calibrated with calibration data296

sets are now tested on the test data sets.297

18



Table 4: Performance evaluation of PLSR and RoBoost-PLSR prediction models on test

data sets: latent variable number (nLV), prediction error (RMSEp), median (MADp) and

determination coefficient (R2
p)

Model Variety nLV RMSEp (g/L) MADp (g/L) R2
p

PLSR

Syrah 6 5.36 4.99 0.971

Fer Servadou 7 11.69 12.04 0.788

Mauzac 5 15.61 10.97 0.690

RoBoost PLSR

Syrah 6 3.14 3.38 0.990

Fer Servadou 7 10.20 10.50 0.848

Mauzac 6 7.58 9.36 0.927

Table 4 outlines the prediction quality of both PLSR and RoBoost-PLSR298

models, applied to the test data sets of each grape variety. To this end,299

the following criteria are presented: latent variable number (nLV), RMSEp,300

MADp and R2
p.301

First of all, a higher heterogeneity among results can be noticed for PLSR302

models than for RoBoost-PLSR ones. Regarding PLSR models, Syrah has303

the best performances, with the lowest RMSEp and MADp values, equal to304

5.36 g/L and 4.99 g/L respectively, and the highest R2
p value, equals to 0.971.305

Fer Servadou and Mauzac have RMSEp and MADp values, two to three times306

higher than Syrah ones. RMSEp are equal to 11.69 g/L and 15.61 g/L for Fer307

and Mauzac respectively, whereas MADp values are 12.04 g/L and 10.97 g/L308

respectively. Moreover, R2
p are lower than for Syrah, with respective values of309

0.788 and 0.690. As said before during cross-validation step (section 3.2.1),310

discrepancies among varieties arise with PLSR models.311
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As far as RoBoost-PLSR models are concerned, all three varieties pre-312

dictions are improved compared to PLSR models. This is all the more true313

in the case of Mauzac and Syrah. Indeed, Syrah obtains R2
p, RMSEp and314

MADp values equal to 0.990, 3.14 g/L and 3.38 g/L respectively. Besides,315

Fer Servadou obtains R2
p, RMSEp and MADp values equal to 0.848, 10.20316

g/L and 10.50 g/L. Lastly, Mauzac obtains R2
p, RMSEp and MADp values317

equal to 0.927, 7.58 g/L and 9.36 g/L. These last results outperform PLSR318

models and lead to performances close to Syrah ones.319

It is worth noticing that PLSR model allows to predict sugar content for320

Syrah in an effective way. This implies that there is a limited number of321

outlier points in the data set. The same does not hold true for Fer Servadou322

and Mauzac, as noticed in figure 6. In all cases, RoBoost-PLSR method323

allows to build predictive models with higher performances than PLSR when324

dealing with outliers points among calibration data sets.325

4. Conclusion326

The potential of RoBoost-PLSR method to calibrate prediction models327

in the presence of outliers in an agronomic context was studied. The method328

was evaluated on a case of Vitis Vinifera grapes berry maturity context and329

especially to predict berry sugar content. RoBoost-PLSR method was com-330

pared to the reference method (PLSR) on spectral data from berries of three331

grape varieties (Syrah, Mauzac, Fer Servadou). For these three varieties,332

results obtained from RoBoost-PLSR method outperformed those from the333

PLSR method. The improvements in the prediction of sugar content for Fer334

Servadou and Mauzac are the most significant due to a potentially higher335
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outliers number in the calibration set.336

This study validates the use of the RoBoost-PLSR method for monitoring337

grapes berries maturity in the laboratory. The advantage of this method is338

to provide good prediction models despite outliers presence. Despite optimal339

measurement conditions, outliers were identified as detrimental to the model340

calibration. This method could be challenged on data collecting directly in341

the field where measurement conditions most often lead to outliers. This342

would open up multiple possibilities for the use of VIS-NIR spectroscopy343

for agronomic applications. Other robust methods could be compared ti344

RoBoost-PLSR in such an application context. This method also contributes345

to perspectives in other disciplines where multivariate data is involved such346

as analytical chemistry.347
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