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Abstract 23 

Hyperspectral imaging is an emergent technique in viticulture that can potentially detect 24 

bacterial diseases in a non-destructive manner. However, the main problem is to handle the 25 

substantial amount of information obtained from this type of data, for which reliable data 26 

analysis tools are necessary. In this work, combination of multivariate curve resolution-27 

alternating least squares (MCR-ALS) and factorial discriminant analysis (FDA) is proposed to 28 

detect the Flavescence dorée grapevine disease from hyperspectral imaging.  29 

The main purpose of MCR-ALS in this work was providing chemically meaningful basic 30 

spectral signatures and distribution maps of the constituents needed to describe both healthy 31 

and infected images by Flavescence dorée. MCR scores (distribution maps) were used as 32 

starting information for FDA to distinguish between healthy and infected pixels/images.  Such 33 

an approach is presumably more powerful than the direct use of FDA on the raw imaging data, 34 

since MCR scores are compressed and noise-filtered information on pixel properties, which 35 

makes them more suitable for discrimination analysis. High levels of correct pixels 36 

discrimination rates (CR=85,1%) for the MCR-ALS/FDA discrimination model were obtained. 37 

The model present a lesser ability to determine infected leaves than healthy leaves. 38 

Nevertheless, only two images were misclassified. Therefore, proposed strategy constitutes a 39 

good approach for the detection of the Flavescence dorée that could be potentially used to detect  40 

other phytopathologies 41 

 42 

Keywords: Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS), Factorial 43 

Discriminant Analysis (FDA), Hyperspectral imaging, vineyard diseases, Flavescence dorée 44 

 45 

 46 
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1. Introduction 47 

Epidemiological surveillance is a crucial issue in agriculture and especially in viticulture. As a 48 

matter of fact, the grapevine (Vitis vinifera) is sensitive to a wide range of biopests. To cope 49 

with these threats, preventive chemical control is required. To reduce the use of chemical inputs 50 

while ensuring the protection of the vineyard, it is necessary to implement more parsimonious 51 

spraying practices. The development of sustainable crop protection systems is closely related 52 

to the knowledge regarding the physiological state and the health status of the vineyard 1.  53 

To date, the evaluation of sanitary risks is conducted by visual and tactile inspection, which is 54 

time consuming and labour intensive. The analysis of light-matter interaction can provide 55 

information related to physiological properties such as hydric status, nitrogen content, 56 

pigmentation or even cellular structure 2. Therefore, optical instruments and especially 57 

multispectral (MSI) and hyperspectral imaging (HSI) are relevant tools for the automated and 58 

non-invasive detection of phytopathology 3–6. In this context, conventional analysis of 59 

hyperspectral and multispectral images, such as determination of spectral vegetation indices 60 

(SVIs) 7, performs only a limited use of the substantial amount of information available with 61 

this type of data. Therefore, in order to successfully interpret these images, the application of 62 

advanced data processing tools is necessary. In this work, we will focus on the application of 63 

HSI to discriminate an important vine disease: the Flavescence dorée” (FD, also known as 64 

“yellowing”).  65 

FD is a phytopathology caused by the bacteria Candidatus phytoplasma vitis that can spread 66 

fast through a leafhopper (Scaphoideus titanus).  It represents a very serious threat, since 67 

without proper management; it can lead to the complete loss of the harvest or even the death of 68 

the vine stocks. Recently, spectral imaging have been used to detect FD. Albetis et al. 6 69 

evaluated the potentiality of Unmanned Aerial Vehicle (UAV) multispectral imagery for the 70 

airborne detection of FD symptoms under field conditions. For this purpose, they analysed 71 
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several spectral bands, vegetation indices, and biophysical parameters. However, the specific 72 

detection of FD appears to be limited. Al-Saddik et al. 5 used a portable spectroradiometer (350–73 

2500 nm) to collect hyperspectral reflectance data of healthy and symptomatic leaves. The aim 74 

of this study was to develop specific spectral disease indices (SDIs) for the detection of FD 75 

disease in grapevines, thereby, reaching discrimination accuracies of more than 90%. However, 76 

the SDIs were dependent on the disease infestation state and the grapevine variety considered; 77 

the best wavelengths selected were different from one case to another, and hence no single best 78 

index for FD in all situations was identified. To deal with these limitations, this work aims to 79 

propose a new general methodology (i.e. not depending of the variety) to discriminate between 80 

healthy and infected leaves based on HSI measurements and data analysis methods.  81 

The data analysis workflow proposed in this work relies on two steps:  82 

a) Multivariate curve resolution-Alternating Least Squares (MCR-ALS) 8,9 model to 83 

provide chemically meaningful spectral signatures and related distribution maps of the 84 

image constituents. This unmixing method allows a global differentiation between 85 

infected and healthy images. However, some components related to the two different 86 

class types (infected and healthy pixels) may overlap, and hence, a supervised 87 

discrimination method is necessary to achieve a harder separation between them.   88 

b) Factorial discriminant analysis (FDA) 10 model on MCR scores (distribution maps). 89 

This supervised classifier will help to discriminate between infected and healthy images, 90 

using previous pixel labelling (classes infected or healthy).  91 

Previous studies have already shown the capability of the application of MCR-ALS combined 92 

with supervised classification methods to the analysis of imaging data 11,12. These works 93 

demonstrated that the use of MCR outputs as starting information for classification methods 94 

allows a compound-wise selection and preprocessing of the input information to be submitted 95 

to the classification algorithm. This is due to the fact that MCR results are chemically 96 
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meaningful and express concentrations or spectra of the pixel constituents in the images.  Such 97 

a specificity of the method allows discarding components related to background signal 98 

contributions in the classification task. In this work, FDA is chosen as the supervised classifier 99 

because it is one of the simplest and fastest approach for discrimination that has proven its 100 

efficiency for various analytical chemistry applications 13,14. However, to the best of our 101 

knowledge this is the first time that MCR-ALS combined with such a classification method is 102 

used as phytopathology detection model. This study demonstrates that the proposed 103 

methodology has the potential to improve disease detection in agriculture applications.  104 

2. Material and Methods  105 

2.1 Samples 106 

Leaves were collected during September 2020 on previously identified plots with Flavescence 107 

Dorée. All cultivars were sampled with a similar proportion of red and white varieties. In total 108 

109 leaves were collected on the field. The number of leaves from the different varieties 109 

selected for this study are summarised in Table 1. 110 

 111 

TABLE 1 112 

 113 

Infected leaves were chosen in order to represent at best the variability of the available 114 

symptoms in terms of severity and stages of infections. Leaves were selected when foliar 115 

symptoms were undoubtedly caused by FD from vines exhibiting clear symptoms of FD on 116 

other organs. Each leaf and each vine from which they were extracted were diagnosed by a 117 

phytopathology expert. Leaves were extracted from the front face, in the middle of the canopy 118 

so that to avoid the younger and older organs which can present different physiological 119 
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behaviour. Regarding the healthy leaves, they were selected in the same regions and they were 120 

asserted absent of symptoms of FD or any other visible pathology. However, some of the 121 

healthy sample can exhibit light forms of mechanical or chemical wounds (due to protection, 122 

management operations) and some slight damage caused by insects.    123 

2.2 Image acquisition 124 

Acquisitions of leaf images were performed with a hyperspectral camera (IQ, Specim, Finland). 125 

Imaging of grapevine leaves was carried out in the spectral range of 400-900 nm, with a spectral 126 

resolution of 7 nm. Images in RGB were also registered. Illumination was provided by a 127 

halogen lamp (Arrilite 750 Plus ARRI, Munich, Germany). Constant angles of -50° and 50° 128 

were maintained between the halogen lamp and the hyperspectral camera. These angles were 129 

chosen to optimise the intensity of the reflected beam and to reduce specular reflection. 130 

For each sample image, the intensity of the reflected light (I(λ)) was measured. The Dark current 131 

(In(λ)) i.e. signal without light, was recorded from all measured spectra and then subtracted. A 132 

white reference (SRS99, Spectralon®) (I0(λ)) was measured to standardise spectra and prevent 133 

nonlinearities of all the instrumentation components (light source, lens, fibbers and 134 

spectrometer). From these measurements, a reflectance image (R(λ)) was calculated for each 135 

sample, as follows: 136 

)(I-)(I

)(I-)I(
)(

n0

n




 R                                                                              Equation 1 137 

 3. Data analysis 138 

The proposed workflow for data analysis follows the three following steps: 139 

a) Image preprocessing  140 

b) MCR to recover basic spectral signatures and distribution maps of pure compounds 141 

contributions, allowing differentiation between infected and healthy images.  142 
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c) FDA model using the MCR scores (concentration profiles) resulting from the MCR 143 

results to predict the class (infected or healthy) of the images. 144 

These steps are described in detail in the following subsections 145 

3.1 Image preprocessing 146 

In HSI (Hyperspectral Imaging), the generated data can be arranged into a data cube in which 147 

the x-and y-axis correspond to the pixel coordinates and the z-axis corresponds to the 148 

wavelengths values registered in each pixel. Data preprocessing is required to improve the 149 

signal quality and to compress the acquired raw data for further analysis.  150 

Firstly, the pixels in the images were binned by a factor of 4 in x and y. This spatial binning 151 

produced an image of 128x128 pixels from an original image of 512x512. Afterwards, a mask 152 

was create for each image to extract only the vegetation pixels.  The Spectral Angle Mapper 153 

(SAM) 15 was used for this purpose. To identify vegetation pixels, SAM compare image spectra 154 

to a reference spectrum by calculating the spectral angle between them. Smaller angles 155 

represent closer matches to the reference spectrum, and hence the corresponding pixels are 156 

classified as vegetation pixels, whereas pixels further away than the specified maximum angle 157 

threshold are not classified.  158 

Finally, A matrix Di (n,m) of dimension n equal to (x × y) pixels by 175 wavelengths was 159 

generated per each image.  160 

3.2 Multivariate Curve Resolution/ Factorial Discrimination Analysis (MCR/FDA) model  161 

Before using MCR-ALS and FDA methods, the dataset was divided into two sets of samples: 162 

training and independent test sets. The training sets were used to build the models. The test sets 163 

were left for external validation and are not used to build the models. Healthy and infected 164 

images were both divided with the same split ratio of 2/3 and 1/3 respectively for training and 165 
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test, as detailed in Table 1. This division was made randomly and assuring a similar distribution 166 

of all classes in both training and test sets. 167 

3.2.1  Multivariate Curve Resolution- Alternating Least Squares (MCR-ALS) 168 

The goal of the MCR-ALS algorithm is the decomposition of the image data D into distribution 169 

maps (relative amounts or concentration) and pure spectra of the constituents present in the 170 

imaged sample 8,9,16. In matrix form, the hyperspectral images can be described by a bilinear 171 

model based on the Beer-Lambert law (Equation 1). Where the  matrix D contains the pixel 172 

spectra obtained after the preprocessing described in section XX. Each spectra is then 173 

decomposed into a set of concentration profiles (C matrix) corresponding to pure spectra 174 

(ST matrix) of the constituents present in the image. E is the matrix associated with noise or 175 

experimental error (residuals). 176 

D = CST + E                                                                                                                 Equation 2 177 

Figure 1 shows the application of MCR-ALS to an individual image data D. It can be observed 178 

that every row of the resolved ST matrix corresponds to the pure spectrum of an image 179 

constituent, while every column of the resolved C matrix of concentration profiles corresponds 180 

to the related pixel-to-pixel variation of its chemical concentration. It is worth mentioning that 181 

each column of the resolved C matrix can be refolded appropriately in order to recover the 182 

original two-dimensional spatial image structure and then pure distribution maps are obtained. 183 

 184 

FIGURE 1 185 

 186 

In order to recover the bilinear model expressed in Equation 1, MCR-ALS begins with 187 

determining the number of signal contributions in the original data set D by Singular Value 188 
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Decomposition (SVD) 17.  Afterwards, an initial C or ST matrix with as many profiles as the 189 

number of components estimated for D is constructed to initiate the iterative resolution process. 190 

In this work, the initial ST was generated by a pure variable selection method based on Simple-191 

to-use Interactive Self-modelling Mixture Analysis (SIMPLISMA) 18.  Such estimate ST and 192 

the matrix D are used to initialise the least squares alternating optimisation of the profiles in 193 

matrices C and ST of the bilinear model under the constraints until convergence is achieved. 194 

The convergence criterion can be a maximum number of iterations or a value related to the 195 

difference in fit improvement between consecutive iterations.  196 

The quality of the MCR results are described by the explained variance (% r2), which are 197 

calculated according to the following expressions:  198 

% r2 = 100 × (1 −
𝛴𝑒𝑖𝑗

2

𝛴𝑑𝑖𝑗
2 )                                                                                                 Equation 3 199 

where 𝑒𝑖𝑗 is equal to 𝑑𝑖𝑗-𝑑𝑖𝑗
∗ ,  𝑑𝑖𝑗

∗  are the values of the data set reproduced by the bilinear model 200 

and 𝑑𝑖𝑗 the original values in the original data set D. In order to consider that MCR results of 201 

an analysis are adequate, the variance explained must be sufficiently high and the concentration 202 

profiles and spectra obtained must be chemically meaningful and show shapes consistent with             203 

the variation in the original data sets. 204 

MCR-ALS can also be used to analyse simultaneously several images in a single multiset 205 

structure to provide more reliable results 9,19. Resolved features would define much better 206 

general traits analysed together than if they were analysed individually. In this study, the 207 

multiset structures were obtained by setting different images Di one on top of each other to 208 

form a column-wise augmented matrix Daug. The bilinear model in Equation 1 is now extended 209 

to the augmented data set as shown in Equation 4: 210 

Daug=[D1;D2;...;Dn]=[C1;C2;...;Cn]ST+[E1;E2;...;En]=CaugST+Eaug                    Equation 4 211 
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where Caug is a column-wise augmented matrix formed by as many submatrices Ci as images 212 

in the multiset, and ST is a single data matrix of pure spectra, assumed to be common and valid 213 

for all the images in the multiset. The concentration profiles in each of these submatrices can 214 

be also refolded conveniently to recover the related distribution maps of each image (see Figure 215 

1b). 216 

The MCR-ALS analysis of a single image or an image multiset takes the benefit of the use of 217 

constraints on 𝐂 or/and 𝐒T to obtain chemically meaningful and more accurate spectral 218 

signatures and distribution maps. In this study, the most common constraints in image 219 

resolution, such as non-negativity and normalisation, were used. Moreover, the constraint of 220 

correspondence among species to encode the information related to the presence/absence of 221 

some components in the different Ci submatrices in the multiset structures was also applied 9,16.  222 

MCR-ALS distribution maps (C matrix) and pure spectra (ST matrix) are excellent low 223 

dimension, noise-filtered meaningful basis of the pixel and the spectral space of the image, 224 

which may be further used to obtain additional information.  In this work, the MCR scores 225 

(distribution maps) were fed into the FDA to predict the type-class (healthy or infected) of the 226 

images. 227 

It is worth mentioning that a multiset structure containing all the training dataset from both 228 

healthy and infected images (DtrFH) was used for the MCR approach. Then, the distribution 229 

maps related to the multiset structure containing all the test dataset (DtestFH) were calculated 230 

by a single non-negative least-squares step taking MCR pure spectra obtained in the training 231 

stage (STtr).  232 

3.2.2 Factorial Discrimination Analysis (FDA) 233 

The aim of FDA 10 is to predict the membership of an individual to a group of samples according 234 

to pre-defined groups. This method searches for relationships between a qualitative variable 235 
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(healthy or infected) and a group of quantitative explanatory variables (wavelengths, 236 

intensities…). The use of the qualitative variable within a population allows the division of this 237 

population into different groups, with each individual assigned to one group.  Discrimination 238 

of the groups consists of maximising the variance between their gravity center. For each group, 239 

the distance from the different gravity center of the groups is calculated and then, the sample is 240 

assigned to the group where its distance between the centre of gravity is the nearest. Comparison 241 

of the assigned group to the real group is an indicator of the quality of the model, and hence, 242 

discrimination rate (CR) is taken as a criterion of goodness for the developed model 243 

In this work, FDA was performed to determine the affiliation of each pixel/image whether to 244 

the healthy or to the infected class. High correlations can occurred among the wavelengths or 245 

intensities of the pixels/images, therefore, MCR scores (distribution maps) coming from the 246 

augmented CtrFH matrix obtained by MCR-ALS have been used as the pixel input information 247 

for FDA. Therefore, no variable reduction algorithm such as PCA or ICA need to be done due 248 

to the fact that MCR scores (concentration profiles) are compressed and noise-filtered 249 

information on pixel properties. The gravity centre of each sample type in the model was 250 

calculated from these training sample scores. The Mahalanobis distance 20 from  each to each 251 

level of  the gravity centres was measured. Finally, test samples were  assigned  to  the  group  252 

with  the nearest gravity centre. 253 

3.3 Software 254 

All data processing has been performed in MATLAB platform (Version 2015b, MathWorks 255 

Inc., Natick, MA, USA). The application of MCR-ALS has been performed using the MCR 256 

GUI (multivariate curve resolution graphical user interface) developed by the chemometrics 257 

group of  Universitat de Barcelona and IDAEA-CSIC 21, which is can be downloaded from the 258 

MCR webpage http://www.mcrals.info/.  FDA analysis method has been applied using in-house 259 

routines, partly based on the PLS Toolbox (Eigenvector Research Inc., Manson, WA, USA).  260 

http://www.mcrals.info/
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4. Results and discussion 261 

4.1. MCR.  Global differentiation between infected and healthy images  262 

The first MCR-ALS analysis was focused on identifying significant contributions with a 263 

specific reflectance signature for each leaf type (healthy and infected). For that purpose, two 264 

multisets were built, one formed by the 47 training images corresponding to the infected leaves 265 

from all varieties (DaugtrF), and the other multiset formed by the 25 training images 266 

corresponding to the healthy leaves from all varieties (DaugtrH). MCR-ALS was applied 267 

separately to each of these multiset structures using non-negativity constraints in concentration 268 

and spectra profiles and spectra normalisation.  269 

Table 2 summarises the number of resolved components and the explained variance obtained 270 

from the MCR-ALS analyses of both multisets. Resolution of three contributions was necessary 271 

in both cases. The inclusion of a different number of contributions gave solutions worse 272 

mathematically or unreliable spectra or distribution maps.  273 

 274 

TABLE 2 275 

 276 

Figure 2a and b show the MCR-ALS resolved distribution maps (with their corresponding RGB 277 

images) and pure spectra of each analysed multiset, respectively. To simplify, resolved 278 

distribution maps of only one image per variety is shown.  It can be seen that the blue and red 279 

contributions present resolved pure spectra rather similar in both multisets, with a Pearson 280 

correlation coefficient higher than 0.90. The blue contribution shows a low intensity plateau in 281 

visible region (from 400 to 700 nm) and then an increment of the intensity in the near infrared 282 

region that ends rather stable from 750 to 900 nm. This contribution seems to present the typical 283 
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profile related to the cell structure of the leaf. The red contribution presents a peak at 550 nm 284 

and a low intensity between 600 and 640 nm, which could correspond to the pigment content, 285 

especially anthocyanins and chlorophyll. The green contribution presents a greater spectral 286 

dissimilarity between the two multisets. Remarkably, the component from the infected leaf 287 

multiset (Figure 2a) has a characteristic peak located at 700 nm, a second peak located at 650 288 

nm and lower intensity values at 400 nm and 500 nm. This green contribution could be 289 

attributed to a difference in slope level in the red-edge region, an imbalance between 290 

chlorophyll a and chlorophyll b, and an appearance of carotenoids. For the healthy multiset 291 

(Figure 2b), the green present values in the visible region that oscillate between 0.6 and 0.4 and 292 

the slope in the near infrared region increases from 750 to 800 nm. Therefore, this component 293 

seems to reflect an intensity level in the pigment region. 294 

The distribution maps use a graduated colour scale per column, where the blue colour 295 

corresponds to small concentration values and the red colour to large values. Differences 296 

between the scores of white and red wine varieties can be observed for the infected multiset 297 

(Figure 2a). Unlikely, there is no visible differences between the white and red grape varieties 298 

on the healthy multiset (Figure 2b). This seems to show that the spectra obtained vary according 299 

to the grape variety at the onset of the disease. For example, the white varieties (Chardonnay, 300 

Colombars and Loin de l'oeil) have abnormally high values for the red component (figure 2a) 301 

might due to the fact that these varieties have low anthocyanin levels but still retain the 302 

Chlorophyll pigments. Therefore, it could explain why these leaves retain their green colouring 303 

in contrast to the red grape varieties (see RGB images in Figure 2). Indeed, very low scores for 304 

the third component will translate into a redder and greener colouration of the leaves. 305 

 306 

FIGURE 2 307 
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 308 

Once, the basic spectral signatures that differentiate between infected and healthy images are 309 

resolved, MCR-ALS analysis of the multiset formed by both infected and healthy training 310 

images (DaugtrFH) was performed. In this case, the correspondence among species constraint 311 

was also used since the presence/absence of constituents in each sample was known. From this 312 

information, a matrix containing 72 blocks, (representing the 47 infected and the 25 healthy 313 

training images analysed simultaneously) and 4 columns (representing the number of 314 

constituents: both common blue and red contributions and the specific contributions for each 315 

multiset) coding the presence (1) or absence (0) of each constituent in each image was 316 

introduced as information in the resolution process. The absent constituents in the image were 317 

then forced to have null concentration profiles.  318 

 1 2 3 4 

47 blocks Flavescence Dorée 1 1 1 0 

25 blocks Healthy 1 0 1 1 

 319 

Figure 3 shows the MCR-ALS resolved distribution maps (corresponding to the same images 320 

in Figure 2) and pure spectra of the DaugtrFH multiset. The resolved spectra in Figure 3 are 321 

rather similar to the pure spectra obtained from the MCR-ALS analyses of both infected and 322 

healthy multisets (see Figure 2). Blue distribution maps refer to absent constituents in images 323 

and the rest of the maps are consistent with those obtained in Figure 2, matching the relative 324 

concentration of the different constituents in the images. A rather similar fit to previous MCR-325 

ALS analysis (see Table 2) was obtained (r2% = 99.96), strongly supporting the MCR results. 326 

The introduction of the correspondence among species constraint does not perturb the natural 327 

https://www-sciencedirect-com.sire.ub.edu/science/article/pii/S0003267008007034#fig3
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behaviour of the dataset. On the contrary, it improves the accuracy of the resolved profiles and 328 

reduces ambiguity. 329 

 330 

FIGURE 3 331 

 332 

In order to validate this model, distribution maps related to the multiset structure containing all 333 

the test dataset (DtestFH) were calculated by a single non-negative least-squares step using the 334 

pure spectra obtained in Figure 3 (STtrFH). Satisfactory results (calculated r2%= 99.95) with 335 

consistent distributions maps (data not shown) are obtained, validating the MCR results. 336 

Now, the basic spectral signatures and distribution maps of pure compounds contributions of 337 

both infected and healthy images can be estimated. However, some components related to the 338 

two different class types (infected and healthy pixels) may overlap. Thus, this unsupervised 339 

method is not sufficient to distinguish between these two class-type, and hence an appropriate 340 

method for discrimination is required. Therefore, the MCR scores of both training (CaugtrFH) 341 

and test (CaugtestFH) sets were used for discriminant analysis. In practice, the FDA enables 342 

to determine the relation between these scores and the most probable class of the samples.  343 

4.2. FDA model. Class assignement at pixel and leaf scale.  344 

The FDA model is calibrated based on the MCR scores of training dataset (CaugtrFH). Once 345 

the MCR/FDA model is  estimated, it was used to predict the class (infected or healthy) of each 346 

pixel in the test dataset (CaugtestFH). At pixel level, the discrimination rate (CR) of test set is 347 

equal to 85.1%. Both infected and healthy test pixels were correctly classified into their 348 

corresponding class with more than of 75% and 95% in accuracy, respectively. For infected 349 

pixels, a lower CR value is obtained, consequently, the model present a lesser ability to 350 

determine infected than healthy pixels. This can be attributed to the labelling process. Indeed, 351 
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leaves affected by Flavescence dorée are entirely labelled as infected, i.e. every pixel of the leaf 352 

is labelled the same. Indeed, at early stages, infected leaf images most likely include healthy 353 

pixels or pixels presenting slight symptoms that were labelled in a single infected class and then 354 

used in the calibration. Therefore, the model for FD could be depreciated by the presence of 355 

healthy samples, hence the lesser accuracy in discrimination. 356 

In order to better evaluate the capacity of the MCR/FDA strategy to discriminate between 357 

infected and healthy leaves, pixel-wise decisions are summarised at the scale of the leaf. Indeed 358 

the chemical information is relevant/ consistent at the scale of the spectrum/pixel. However, on 359 

a pythopathological view, it is more sensible to consider at the scale of an organ (i.e. the leaf in 360 

this case). Considering the characteristics of the symptoms and the development of the disease, 361 

it is proposed to consider that a leaf is infected if more than 50% of its pixels are classified as 362 

such. Therefore the CRs for images are calculated as the percentage of correct predictions to 363 

the total number of pixels for each image (see Table 3).  On the other hand, a healthy leaf should 364 

exhibit in total very few abnormal pixels. Therefore, it is considered that a leaf is healthy if 75% 365 

of its pixels are healthy (to take into account the fact that some part of the leaf could be less 366 

vigorous but still unaltered by any disease). 367 

 368 

TABLE 3 369 

 370 

From Table 3, a satisfactory CR higher than 74 % for all healthy leaves can be observed except 371 

for the image DtestgH2 (63.3 %). Similar results are obtained for infected leaves. Only the 372 

image DtestcoF2 presents a CR lower than 50 %. However, DtestgF7, DtestfF1, DtestcF1, 373 

Dtest1F2 and DtestF3 show also CR lower than 60 %. This lesser accuracy for infected images 374 

could be explained by the greater variability induced by the diversity of severity stages of the 375 

pathology. In addition, the model was calibrated using a single multiset, that included diverse 376 
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red and white grape varieties that exhibit different visible symptoms. Nevertheless, since 377 

discrimination results obtained for almost all images are satisfactory, the MCR/FDA strategy 378 

could be considered adequate and future leaves are expected to be properly classified into their 379 

corresponding class.  380 

For a better evaluation of the lowest CR results of both DtestcoF2 and DtestgH2 images, Figure 381 

4 a and b shows their predicted distribution maps (CtestcoF2 and CtestgH2, respectively) 382 

alongside their corresponding RGB images. It can be seen that DtestcoF2 which presents only 383 

25.2 % of infected pixels exhibits early and slight symptoms (as shown by a general low-level 384 

green hue), and hence its uncertain state could explain its low accuracy. Likewise, DtestgH2 385 

image does not have the appearance of a healthy leaf due to the presence of some stains 386 

(possibly confounding factors such as stresses or fungal diseases). This suggests that possibly 387 

a binary discrimination assignment without an external class for confounding factors is 388 

insufficient for this application, which could also explain the lower CR for this particular leaf. 389 

Moreover, as way of example Figure 4 c and d shows two examples of good predictions for 390 

both DtestgF1 and DtestgH1 images.  391 

 392 

 393 

FIGURE 4  394 

 395 

In summary, it can be said that the combination of HSI and the method MCR-ALS with FDA 396 

model proved to be efficient to distinguish between infected and healthy images. However, to 397 

evaluate the discriminant potential of the proposed approach, larger data sets showing a greater 398 

variability of symptoms and infection stages is required. Moreover, confounding factors such 399 

as abiotic stresses or other phytopathology exhibiting similar symptoms should be also tested. 400 
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Ultimately, the processing of images representing canopies rather than isolated single leaves 401 

should be taken into consideration to guarantee its feasibility in field conditions. 402 

 403 

5. Conclusions 404 

The strategy of combining MCR-ALS and FDA proved its interest for the discrimination 405 

between healthy and infected leaves by Flavescence dorée based on the use of hyperspectral 406 

images. For the first time, this strategy was applied as a phytopathology detection approach.  407 

MCR-ALS enables to extract some relevant signatures that can discriminate healthy leaves from 408 

leaves infected by Flavescence dorée. The pure component resulting from this model can be 409 

interpreted concerning the visible symptoms of FD and to some associated physiochemical 410 

disruptions. The relative abundances of these components within the leaves (MCR scores) can 411 

be processed with FDA and provide an efficient discrimination of the leaves. 412 

To improve the proposed strategy and reach a practical application in viticulture, some aspects 413 

such as confounding factors, progressive infection stages and feasibility in the field should be 414 

taken into account. Another development to improve these results, would be to upgrade the 415 

labelling process, e.g. by selecting areas of the leaves clearly identified as infected rather than 416 

assigning a class to the whole leaf. Nonetheless, Hyperspectral imaging combined with the 417 

proposed data processing approach has the potential to be a valuable strategy to detect grapevine 418 

diseases.  419 
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9. Figure captions 474 

Figure 1. MCR application to a) an individual hyperspectral image, b) an image multiset 475 

structure. 476 

Figure 2. MCR-ALS results for a) the multiset of training infected dataset (DaugtrF) and b) 477 

the multiset of training healthy datset (DaugtrH). Left plots: related MCR-ALS distribution 478 

maps with their corresponding RGB images. Right plots: resolved pure MS spectra. Varieties 479 

in italics correspond to white varieties. 480 

Figure 3. MCR-ALS results for the multiset of both infected and healthy training (DaugtrFH). 481 

Left plots: related MCR-ALS distribution maps with their corresponding RGB images. Right 482 

plots: resolved pure MS spectra. Varieties in italics correspond to white varieties. 483 

Figure 4 Predicted distribution maps of: a) DtestcoF2,b) DtestgH2, c) DtestgF1 and d) 484 

DtestgH1  images with their corresponding RGB images.  485 

 486 

 487 

 488 

 489 

 490 

Table 1.  Total number of leaves images selected from the different varieties and the number 491 

of images both in the training and in the independent test set for the MCR-ALS/FDA models 492 
(see section 3.2 for more information).  493 

 494 

Varieties 
Flavesc. Dorée Healthy 

Total Training Test Total Training Test 

Gamay (g) 19 12 7 10 7 3 

Fer (f) 10 7 3 5 3 2 

Duras  (d) 9 6 3 3 2 1 
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Chardonnay (c) 12 8 4 11 7 4 

Colombard (co) 10 7 3 5 3 2 

Loin de l'œil (l) 10 7 3 5 3 2 
Varieties in italics correspond to white varieties 495 

 496 

 497 

 498 

 499 

 500 

 501 
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 504 

 505 

 506 

 507 

 508 

 509 

 510 

 511 

Table 2. Number of resolved components and variance explained by MCR-ALS analysis of 512 

DaugtrF and DaugtrH multiset structures. 513 

 514 

Multiset Explained 
variance 

Resolved 
components 

DaugtrF 99.91 % 3 
DaugtrH 99.97 % 3 

 515 

 516 
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 529 

 530 

 531 

Table 3. Discrimination Rate (CR) of infected and healthy images of the test dataset. 532 

Infected 

Dabcd* 
CR 

Healthy 

Dbacd* 
CR 

DtestgF1 95.1 DtestgH1 97.7 

DtestgF2 94.2 DtestgH2 63.3 

DtestgF3 93.2 DtestgH3 74.7 

DtestgF4 90.8 DtestfH1 94.6 

DtestgF5 73.5 DtestfH2 99.9 

DtestgF6 78.6 DtestdH1 99.3 

DtestgF7 53.8 DtestcH1 99.9 
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DtestfF1 53.1 DtestcH2 99.9 

DtestfF2 88.4 DtestcH3 99.4 

DtestfF3 83.9 DtestcH4 99.9 

DtestdF1 93.9 DtestcoH1 97.2 

DtestdF2 90.4 DtestcoH2 98.9 

DtestdF3 94.0 DtestlH1 100 

DtestcF1 53.5 DtestlH2 99.8 

DtestcF2 73.8   

DtestcF3 86.4   

DtestcF4 91.3   

DtestcoF1 51.7   

DtestcoF2 25.2   

DtestcoF3 94.2   

DtestlF1 81.7   

DtestlF2 55.6   

DtestlF3 50.1   
*Image code Dabcd; a= training (tr) or test ; b=variety; c=flavescence doré (F) or healthy (H) and d=sample number 533 
 Varieties in italics correspond to white variety. Images in red present low CR results. 534 
 535 
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 537 


