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Abstract 

 

The estimation of multi-exponential relaxation time �� and their associated amplitudes  !  at the voxel 

level has been made possible by recent developments in the field of image processing. These data are 

of great interest for the characterization of biological tissues, such as fruit tissues. However, they 

represent a high number of information, not easily interpretable. Moreover, the non-uniformity of the 

MRI images, which mainly directly impacts  !, could induce interpretation errors.  In this paper, we 

propose a post-processing scheme that clusters similar voxels according to the multi-exponential 

relaxation parameters in order to reduce the complexity of the information while avoiding the 

problems associated with intensity non-uniformity. We also suggest a data representation suitable for 

the visualization of the multi-��  distribution within each tissue. We illustrate this work with results for 

different fruits, demonstrating the great potential of multi-��  information to shed new light on fruit 

characterization.  
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1. Introduction  

 ��  relaxation times and the associated signal amplitudes, obtained from a multi-spin echo signal, 

provide information on the microstructure and composition of samples. Since one voxel generally 

contains several types of tissue or different water pools with specific properties, the signal actually 

corresponds to a multi-exponential decay. In the case of brain imaging, multi-exponential ��s are used 

for the quantification of myelin in the brain [1], where three major components can be identified: 

water trapped between the layers of the myelin sheath; intra/extracellular water; and cerebro-spinal 

fluid. In the case of fleshy fruit, water in different cell compartments limited by membranes has 

different chemical and physical properties, and therefore different ��  times and self-diffusion 

coefficients.  

 

Several mechanism govern relaxation. Additionally to molecular mobility, relaxation times depend on 

chemical exchange of water protons with macromolecules and solid surfaces. Consequently, relaxation 

times of water solutions in different cell compartments depend on their particular composition (solute 

type, concentration, pH) [2]. Relaxation times also depend on diffusional exchanges of water molecules 

between compartments separated by a membrane. These exchanges are modulated by their diffusion 

coefficients, cell membrane permeability and compartment size. In the case of slow and intermediate 

diffusional exchange, the resulting water relaxation signal is multi-exponential, reflecting water 

compartmentalization.  

 

Assuming that a voxel in MRI image, or a sample in NMR experiment, represents a single tissue, �� 

decay signal components can be assigned to the water in the principal subcellular tissue compartments 

(vacuole, cytoplasm, cell wall) [3] or to the vacuoles of cell populations with distinct volume 

distributions [4, 5]. Several NMR studies successfully accessed information about water distribution 

and status and associated structural changes at cell and tissue levels in different fruits and vegetables 

undergoing physiological changes or subject to processing. For example, changes in structure and 

compositions in plant tissues were characterized during their development [6], ripening [7], drying [8] 

and thermal  processes [9]. Such studies have also been performed by MRI, for example, in assessing 

fruit characteristics during development (in the case of apple and peach) [4], where changes in vacuole-



related transverse relaxation rates were mostly explained by cell/vacuole size. During apple storage, 

multi-relaxation times were correlated with the mechanical properties of the sample [10]. It is 

therefore possible to use MRI to access information on water status and distribution at the subcellular 

level on a whole fruit. 

 

However, in the latter MRI studies [4, 10], multi-exponential ��s were estimated at region of interest 

(ROI) level in order to increase the signal to noise ratio (SNR), to the detriment of spatial resolution. 

Indeed, the  �� distribution for each water pool was estimated by the computation of an inverse 

Laplace transform, a procedure that is very sensitive to noise. Alternatively, a “discrete” model 

considering each component as a single ��  with unknown value and amplitude has proven to be 

effective, at least for the estimation of the mean ��  values of each distribution [11]. The number of 

components within each voxel can be considered to be known  and of low value, bi or tri-exponential 

models are mostly used for biological tissues. However, this  -exponential model is still not 

straightforward to invert, in order to estimate the underlying relaxation time parameters, in the 

presence of noise.  

 

A recently proposed method allows a joint estimation of relaxation time values �� and their amplitudes 

"# in each voxel to be carried out following a discrete model [12]. This work paves the way for the 

exploitation of multi-exponential information at voxel level in MRI. However, in the case of a  -

exponential model, it is the total of 2  variables that is estimated in each voxel. The analysis of these 

results, consisting of multiple ��  and "#  maps, is consequently not straightforward and requires a 

post-processing scheme to be able to benefit from the information in an efficient way. Moreover, the 

intensity non-uniformity that is inherent in the MR images [13] is transferred automatically to the "# 

maps, a fact which may disrupt the analysis.  

 

In this paper, we propose a post-processing scheme of the multiple ��  and "#  maps that clusters 

similar voxels in order to reduce the complexity of the information while avoiding the problems 

associated with intensity non-uniformity. Moreover, it is found that these clusters of voxels sharing 

the same ��  distribution and "#  values also corresponds to different tissues of the fruit. We also 

propose a data representation suitable for the visualization of the ��  distribution within each cluster. 

We illustrate this approach with results for three different fruits, demonstrating the great potential of 

multi-��  information to shed new light on fruit characterization. A further important outcome of this 

work is the simplification it offers of the estimation method proposed in [12] by reducing the number 

of tuning parameters. Finally, we propose the use of a criterion designed for model order selection in 

order to determine the optimal number of components. 



 

2. Material and methods 

2.1 MRI image acquisitions   

Images were acquired at ambient temperature on an apple, a tomato and a peach using a Multi-SE 

sequence [14] on a 1.5T MRI scanner (Magnetom, Avanto, Siemens, Erlangen, Germany) , with �$=6.5 

ms, bandwidth of 260 Hz/pixel, 512 (tomato and apple) or 256 (peach) echoes per echo train and a 

repetition time of 10s. The median planes of the fruits were imaged with a slice thickness of 5 mm and 

a voxel size of 1.19 × 1.19 mm2 for the tomato and apple, and 0.79 x 0.79 mm2 for the peach. The 

number of averages was one for the apple and the tomato. For the peach with its smaller voxel size, 

the number of averages was four in order to compensate for the loss of signal and to recover a similar 

SNR. A head-array coil composed of 4 elements was used and its images were combined using a spatial 

matched filter [15]. In addition, data were acquired in a regular cartesian scheme and no post-

processing was applied in order to obtain a non-stationary Rician noise.  

 

2.2 Estimation of multi-exponential %& and '( maps  

2.2.1 Estimation algorithm 

In order to estimate the multi- �� and amplitude "# maps, we used the method described in [12]. It 

relies on a discrete model with an a priori known number of components.  The method is based on the 

maximization of the likelihood of the data under the Rician noise hypothesis while imposing spatial 

regularity in the solutions in order to reduce the effects of the noise.  The transverse relaxation signal 

in voxel ) at time * without noise is modeled as: 

  

+,- = . "#/,01- 3456⁄8
/9: 

 

 

 

(eq. 1) 

 

where "#/, and  ��/, are respectively the amplitude and the relaxation time of component ; in voxel 

) ,  and   is the number of components. This model is based on the hypothesis that indirect and 

stimulated echoes do not interfere with the acquired signal [16]. The proposed method can be 

summarized as the minimization of a criterion:   

 



< = −log(@) + CDEF 

 

(eq. 2) 
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(eq. 3) 

 

and  

CDEF = . PQ . . RQST,Q − TUQV
U∈X6

O
,9:

Y
Q9:

 

 

 

(eq. 4) 

@ is the likelihood of L,-, the signal measured in voxel ) at time *.  N, is the standard noise deviation 

at voxel ) and is assumed to be known.  HIJK  is the Rician probability density function, � is the number 

of echoes, Z  the number of voxels.  For CDEF,   H is the number of parameters in each voxel equal to 

2 , T,Q parameters [ at voxel ) (either "#/, or  ��/, ), \, the set of neighboring voxels of ), and PQ a 

scalar that controls the weight of the regularization term for component [.  In order to use the 

optimization scheme proposed in [12], the penalty function RQ  must be a symmetric convex function. 

L2-L1 regularization, which corresponds to  RQ(^) = _^� + `Q� is very interesting since it enables the 

preservation of the transitions between different tissues [17, 18]. However, tuning of the scalars PQ 

and `Q might turn out to be impracticable since it comes down to the choice of a 2H-uplet whose 

components might be interdependent. In order to overcome this issue, we propose, as suggested in 

[19],  to define a new regularization term, CDEFD ,  based on the relative difference of the parameters. 

This is written: 

CDEFD = P . . . RST,Q − TUQV
U∈X6

O
,9:

Y
Q9:

 

 

 

(eq. 5) 

with  

RST,Q, TUQV = ST,Q − TUQV�
T,Q + TUQ + `bT,Q − TUQb 

 

 

(eq. 6) 

With this new definition of the regularization criterion, the number of tuning parameters reduces to 

two, P and `,  whatever the number of components  .  As explained in Appendix 1, the use of the 



chosen regularization function does not require the modification of the optimization algorithm 

proposed in [12]  since the same minimization scheme proposed for < can be used in order to minimize 

 −log(@) + CDEFD . 

 

2.2.2 Initialization 

The initialization of the estimation algorithm is an important step since non-adequate values could 

lead to estimation errors. Since we could draw on recorded measurements taken from regions of 

interest in fruits in previous experiments [20, 21], we initialized the algorithm with a priori known 

values for the relaxation times, ��/c , and relative amplitude values, C#/c . These values were the same 

for each voxel. The use of relative amplitude values for the initialization is relevant since they depend 

only on the observed object and not on parameters associated with the MR system such as receiver 

gain or the type of coil used, nor on spatial variations due to e# and e:non-uniformities. The initial 

amplitude values "#/,c  at each voxel ) were deduced using the following formula: 

 

"#/,c = L,3f C#/c
∑ C#/c 013f 345i⁄8/9:  

 

 

(eq. 7) 

Hence, this approach automatically takes the MRI acquisition process into account (ie the total gain of 

the reception scheme including its spatial non-uniformities which are part of L,3f ).  For all subsequent 

analysis, we used the values of 80, 300 and 600 ms for the ��/c  and for the corresponding C#/c , we used 

0.06, 0.27 and 0.67. 

In order to evaluate the sensitivity of the results regarding the initialization, we estimated "# and �� 

on the apple with different initial values, by testing all the combinations of ��/c ± j��/c  and C#/c ± jC#/c  

with j =0.1 and 0.2 (variations of 10% and 20% around the initial values). This corresponds to 2�81: 

different initialization given the constraint ∑ C#/c = 1.8/9:  We estimated for each voxel the standard 

variation of all the estimated values for each parameter. 

  

2.2.3 Noise measurement 

We place ourselves in the context of conventional MR image acquisition using a single-channel RF coil 

with a reconstruction using a Fourier transform and the computation of magnitude images. This results 

in a stationary noise, that is N, = N# in each voxel, with Rayleigh statistics in background where no 

signal is present [22]. We neglected other unwanted fluctuations of the signal linked for example to 



pulse errors, which may make the noise vary with the intensity of the signal, especially in the case of 

multi-echo acquisitions.  .  The estimator based on the first moment of the Rayleigh distribution gives: 

 

N# = m2p 1Zq
1� . . L,-

3
-9:,∈ℬ

 

 

 

(eq. 8) 

where Zq is the number of voxels in the background.  The measured SNR, defined as the mean value 

of the first echo divided by N#, was 116, 145 and 180 for apple, tomato and peach respectively.  

 

2.2.4 Tuning the regularization parameters 

The tuning of P and ` was realized using a virtual object described in Appendix 2. It is composed of 

five different virtual tissues, whose "#  and ��  values are in accordance with those observed in 

tomatoes in previous studies [14] for which a three exponential relaxation model was considered.  

 

Images were simulated using similar parameters to those described in section 2.1 for the MR images. 

Stationary noise with a Rician distribution was incorporated into the simulated images. The SNR was 

set at 150.  

 

The investigated value sets of the regularization parameters b and d  were, respectively, from 0.1 to 3 

in steps of 0.1 and from 0.5 to 12 in steps of 0.5. We tested all value combinations.  We initialized the 

algorithm with the actual values of the "#  and �� parameters and, to provide indicators of the 

performance of the algorithm, we computed the bias e  and standard deviation $  of the relative 

estimation errors. e was defined as the mean of the absolute values of the biases over each region 

and parameter, in order to avoid any error compensation between regions or parameters (see 

Appendix 3).  

We retained b  and d  values for which e was low and in a relatively smooth region of the space (b , 

d ) in order to obtain a robust selection. Detailed results are presented in Appendix 4. The retained 

values were  b = 0.4  and d = 7,  which gave a total absolute bias e and a standard deviation $ of 

1.6% and 2.4%. Finally, the value of b was adjusted for each set of images in order to take the actual 

value of the noise N# into account and ensure comparable weights between −log(@) and CDEFD : 

P ← P N#�N� 
(eq. 9) 

 



This transformation was deduced from equation (24) in [12].   

2.2.5 Choice of the number of components 

The estimation algorithm relies on a a priori known number of components. In order to set it, we used 

the Bayesian Information Criterion (BIC) which is a criterion used for model order selection among a 

set of models [23]. It represents a compromise between the likelihood, the number of variables (model 

complexity). Indeed, the addition of parameters to the model (the increase of   in our case) might 

increase the likelihood but may also result in overfitting. To compensate this, the BIC criterion 

introduces a penalty term which takes into account the number of variables and the data size. It writes:  

ew = −2log(@) + xQ log(xy), (eq.10) 

where xQ and xy  stands respectively for the number of variables and the number of data. The model 

order which gives the lowest BIC criterion is chosen. 

The expression of the BIC in our case, averaged over all voxels, is: 

ew zzzzz = − 2Z log {G G HIJK(L,-|+,-, N�)3
-9:

O
,9:

} +   log(")   

(eq.11) 

 

We computed the BIC criterion on each fruit for #=1 …5. 

 

2.3 Classification of voxels 

 

As explained previously, a post-processing scheme is proposed in order to enable the exploitation of 

the estimated maps which contain too much information for visual inspection to be able to offer 

optimal analysis and better characterization of the fruit tissues. We propose to collect similar voxels 

using a classical classification algorithm as explained below.  

 

2.3.1 Classification  

For the classification of the voxels, we focused on unsupervised algorithms. Indeed, the overall idea 

was to include as little a priori information as possible in order to determine what information was 

provided by the multi-exponential data. Among the available classification methods, we chose the K-

Means clustering algorithm which aims to divide observations into a selected number of clusters where 

each observation belongs to the cluster with the nearest mean [24]. This method calls for the a priori 

specification of the number of classes. It was our view that the appropriate number of classes, or at 

least a good approximation of it, could be set by looking at the results for a range of class numbers 



using a systematic trial and error approach. We accordingly increased the number of classes 

progressively until the visual results became too noisy to be interpreted. 

 

Two normalization stages were applied beforehand. First, in order to get rid of spatial variations in the 

amplitudes linked to $%  and $&  non-uniformities, we adopted an approach similar to that in the 

initialization stage and relied on the relative values of each component rather than on their absolute 

amplitudes. Indeed, under the hypothesis that non-uniformity does not depend on the component 

and can be considered to be a multiplicative term, the signal with non-uniformities '*,-  can be written 

as: 

 

'*,- (.*) = /* 0 1%2*∗ 45, 6789⁄;
2<&  

 

 

(eq. 12) 

where /* stands for the non-uniformity factor in voxel >  and1%2*∗  for the unbiased amplitude. The 

estimated amplitudes actually correspond to 1%2* = /*1%2*∗  and thus might be corrupted by spatial 

variations. In order to get rid of /*  we computed for each component and for each voxel the ratio ?%2* over the sum of the estimated amplitudes, which can be written as: 

 

?%2* = 1%2*∑ 1%2*;2<& = /*1%2*∗∑ /*1%2*∗;2<& = 1%2*∗∑ 1%2*∗;2<&  

 

 

(eq. 13) 

and gives rise to values that no longer depend on the multiplicative bias. 

 

Second, in order to assign similar weightings to each variable in the classification process, the 

normalized parameter value  .*AB  was computed using the following procedure: 

 

.*AB = .*Amax CD.*AE*∈[&…G]H   
 

 

(eq. 14) 

 

The K-Means algorithm was applied to the set .*AB = {"I2*B , ?%2*B }. The Matlab  [25] implementation 

was used with default values and 60 replicates, that is, the number of times the clustering is repeated, 

each repetition having a new set of initial centroids. 

 



2.3.2 Representation of class characteristics  

In order to provide a representation of the "I  values for each class, the distribution of the relaxation 

times was computed as follows: for each "I  interval of width 20 ms, the corresponding ?%s were 

added for each component. The sum was divided by the number of voxels in each class in order to 

obtain comparable amplitude scales between classes. Thus, the distribution K was expressed as: 

 

K(ℎ) = 1N 0   O 0     ?%2**|P(Q)R6I89SP(QT&) U    ;
2<&  

 

 

(eq. 15) 

 

where V denotes the set of "I value intervals. This distribution is the sum of # distributions, each of 

the latter being obtained from the histogram of "I   values of one component, weighted by the 

corresponding relative amplitudes.  

2.3.3 Statistical tests 

The differences between the classes were assessed statistically using a univariate approach. We 

focused on the difference between each pair of classes, which corresponds to the univariate post-hoc 

analysis of a multivariate analysis.  The Shapiro-Wilk test was first used to determine if "I2  and ?%2  values were normally distributed within each class. As they were not, the Kruskal-Wallis test was 

performed. The alpha level was set to 0.01 and the Bonferonni correction was used as the control for 

multiple comparisons between each pair of classes. 

 

3. Results 

3.1 WXYZ\Y^_`bX \Z cdX _ef\Yhcd^ _`i bd\hbX \Z j 

3.1.1 Estimation performance 

We compared our results with those obtained using the method proposed in [12] where a L2 

regularization function was used (kA(n) = nI), implying the tuning of  = 2# parameters. We used 

the phantom images and initialized the results to the true value.  The values of $A  and qA  are reported 

in Table 1 for all the parameters. We found very similar results showing that the new regularization 

scheme that we proposed, that is a L1-L2 regularization function based on the relative difference of 



the parameters, did not lower the performance with the benefit to reduce the number of tuning 

parameters to two, whatever the number of components.   

    1%& "I& 1%I "II 1%r "Ir $A   
(in %) 

L2 regularization 

[12]. 
2.67 4.15 1.49 1.36 0.85 0.3 

Current method 1.65 3.14 1.57 1.44   0.86 0.32 qA   
(in %) 

L2 regularization 

[12]. 
3.27 5.44 3.84 3.1 1.81 0.76 

Current method 3.62 5.15 1.99 2.23 0.9 0.5 
 

Table 1: Bias and  standard deviation of the relative estimation errors for the regularization scheme 

proposed in [12] and for the current method. 

3.1.2 Choice of C 

Figure 1 represents $/#ttttt for the three fruits for #=1 … 5 and, separately for each fruit, for #=2 … 5 for 

better visualization of the results in this range.  These results clearly show the interest of multi-

exponential estimation compared to mono exponential one since much lower BIC criterion were 

obtained for # > 1. For each of the three fruits, the lowest BIC value was observed  for # = 3 and this 

number was consequently chosen for the analysis.  However since this choice corresponded to a mean 

value over all the voxels, it was interesting to visualize the optimal number of components in each 

voxel. Figure 2 represents the number of components corresponding to the lowest BIC values for each 

voxel, for tomato, peach and apple from left to right. For peach, it can be observed that a three 

components model gave the lowest BIC for a majority of voxels, while a two components model would 

be the most appropriate in the zone around the stone, and four components would better suit some 

voxels in the pericarp area. For apple, for most of the voxels a two or a three components model would 

be the best, except for very few voxels for which four components would give the lowest BIC. Finally, 

for tomato, the results were similar as those observed on the apple, with a higher number of voxels 

corresponding to a four components model and some voxels even to a five  components model.  

 

3.1.3 Robustness of the initialization 

Variation of the initialization on the apple was realized using # = 3  which led to 32 different 

initialization sets. Table 2 shows the mean standard deviation (computed over all the voxels) expressed 

in percentage of the mean estimated value for each parameters and for a variation of 10% and 20% of 

the initialization. 

 



Variation of the initial values 1%& "I& 1%I "II 1%r "Ir 

10% 

20% 

5.79 

10.7 

5.22 

8.95 

5.27 

9.37 

4.05 

7.74 

2.8 

5.49 

1.02 

1.88 

Table 2: Relative mean  standard deviation (in %) for each parameters for the 32 different initialization 

sets of values in the case of apple.  

As expected, the parameters corresponding to the longest "I are less sensitive to the initial values, 

especially "Ir for which the standard deviation is smaller than 2% of the mean value. With a variation 

of 20% of the initial values, the standard deviation goes up to 10.7% for 1%& what remains acceptable. 

These results highlight the importance of the initialization, while showing that by remaining within a 

reasonable range of variation for the initialization, the results vary in a relatively small way. 

3.2 yz and ~� maps on fruit 

The estimated  "I and 1% maps for apple, tomato and peach are shown in Figures 3, 4 and 5 

respectively.  For all these fruits, the different structures could be clearly observed, particularly on the "II and "Ir maps which displayed the greatest contrasts between the tissues. In the apple, the core 

and vascular bundles could be distinguished from the other tissues on both the "I and 1% maps, while 

in the mesocarp tissue, the "II and "Ir values progressively increased from the inner region to the 

region near the cuticle. The endocarp corresponded to the star-shaped hole in the fruit center. In the 

tomato, the locular tissue containing the seeds and the placenta were distinguishable from the 

equatorial and radial pericarps. Last, in the peach, it was possible to see the seed but not the endocarp, 

the latter appearing as a lack of MRI signal in the middle of the fruit, while the values for "II and "Ir 

showed a smooth gradation without strong contrasts from the seed to the cuticle.   

3.3 Classification and T2 distribution 

3.3.1 Results for apple 



Figure 6 represents the classification results on apple using six classes and the corresponding "I 

distributions. The p-values for each variable and each pair of classes are given in Table 3.   

 

 "I&   � ! "##   � # "#%   � % 

R G 2.46E-03 2.11E-63 2.58E-76 1.16E-39 7.43E-78 7.24E-66 

R B 8.72E-137 1.28E-56 1.54E-13 4.97E-04 8.16E-13 1.08E-24 

R C 8.97E-161 1.27E-282 6.34E-273 9.45E-165 1.52E-275 2.51E-253 

R Bk 4.59E-278 0.00E+00 0.00E+00 6.07E-277 0.00E+00 0.00E+00 

R Y 2.98E-75 1.17E-91 5.31E-85 8.60E-72 2.93E-79 2.37E-86 

G B 7.31E-101 1.00E+00 5.85E-18 8.29E-14 1.72E-19 9.06E-06 

G C 8.75E-116 1.40E-73 2.95E-56 2.36E-40 4.39E-56 8.30E-57 

G Bk 2.83E-226 5.27E-148 4.07E-124 2.07E-124 1.75E-115 1.50E-130 

G Y 1.22E-63 5.80E-42 6.65E-34 2.25E-36 5.99E-30 1.14E-37 

B C 1.00E+00 1.45E-53 1.49E-120 1.24E-88 2.36E-124 2.33E-83 

B Bk 6.68E-25 8.14E-119 2.00E-195 6.31E-183 1.01E-189 6.92E-159 

B Y 1.31E-12 1.42E-38 2.25E-56 4.53E-56 2.00E-52 2.16E-49 

C Bk 4.88E-38 3.84E-26 5.86E-25 5.27E-36 3.46E-21 1.28E-27 

C Y 2.61E-15 1.57E-10 5.32E-09 2.47E-13 4.97E-07 6.56E-11 

Bk Y 2.91E-01 8.17E-01 1.00E+00 7.75E-01 1.00E+00 8.39E-01 

 

Table 3: p-values for each pair of classes and each variable in apple. Values > 0.01 are shown in grey. 

Single initials are used to designate colors of classes except black (Bk).   

 

Although no spatial information was introduced for the classification step, the region obtained appears 

spatially consistent in the classification map. It is to be noted that the use of amplitude proportions 



rather than absolute values made it possible to group voxels together in a single class despite their 

differing absolute values, the latter being the consequence of MR non-uniformities that can clearly be 

seen in the second and third amplitude images in Figure 3.  

Looking at distribution, it appears that each component contributed to only one peak, which means 

that the ranges of low, medium and high "# did not overlap across the set of voxels. Thus, in each 

curve, the three different components could clearly be distinguished, except for that shown in yellow 

which corresponds to only a few voxels situated in (or between) the seeds. 

The apple mesocarp was divided into three different classes, of which two (red and green) were 

imbricated one in the other, while the third (cyan) bordered the core. These classes differed in "## and 

"#%, where progressive increases occurred in mean values from ~233 to 318 ms ("##), and from 529 to 

695 ms ("#%), from cyan to red through green. The class shown in blue corresponded to the core. In 

the black zone, both petal and sepal bundles could be distinguished.  

Statistical analysis showed that there was no statistical difference between the black and yellow classes 

which could be considered as one class (p-values >0.01). For the four other classes, only two variables 

showed no statistical differences,  � ! between green and blue and  "#!  between blue and cyan. For 

the other cases, the p-values exhibit a statistical difference between these classes. This is particularly 

interesting for the red, green and cyan classes. They correspond to the same tissue in the apple (the 

mesocarp) and reveal that it is not homogeneous.   

  

3.3.2 Results for tomato 

Figure 7 represents the classification results for tomato using six classes and the corresponding "# 

distributions. The p-values for each variable and each pair of classes are given in Table 4.   



  

 "#!   � ! "##   � # "#%   � % 

R G 3.73E-03 9.71E-81 4.29E-115 6.89E-10 1.36E-116 6.39E-42 

R B 4.17E-33 5.55E-38 9.77E-36 3.52E-99 9.61E-42 8.88E-112 

R Y 3.36E-124 4.78E-211 3.84E-305 1.64E-153 6.46E-296 1.52E-221 

R Bk 2.64E-81 1.28E-03 3.11E-17 6.28E-04 2.47E-07 1.54E-09 

R M 1.16E-52 8.26E-103 3.09E-05 1.00E+00 3.78E-04 1.42E-49 

G B 8.62E-52 2.47E-01 1.00E+00 9.46E-78 1.00E+00 1.63E-55 

G Y 7.15E-131 3.99E-71 5.31E-104 2.63E-134 2.13E-96 2.13E-127 

G Bk 8.72E-78 5.93E-98 2.55E-195 3.76E-24 2.33E-153 3.95E-82 

G M 6.11E-46 5.48E-42 4.03E-07 1.00E+00 1.83E-49 2.07E-19 

B Y 9.39E-175 3.99E-15 8.69E-37 3.70E-02 3.09E-29 1.00E+00 

B Bk 1.22E-139 2.82E-51 1.64E-73 2.86E-117 3.68E-64 1.10E-148 

B M 2.15E-102 3.77E-22 1.39E-04 1.33E-38 6.73E-37 3.90E-01 

Y Bk 1.17E-01 2.95E-223 0.00E+00 3.24E-171 0.00E+00 1.06E-269 

Y M 9.99E-02 7.73E-06 1.46E-50 3.53E-36 2.36E-123 6.57E-01 

Bk M 4.55E-04 5.75E-118 2.53E-20 5.60E-03 1.00E+00 1.55E-72 

 

Table 4: p-values for each pair of classes and each variable in tomato. Values > 0.01 are shown in grey. 

Single initials are used to designate colors of classes except black (Bk).   

 

The different tissues could be distinguished on the classification map. The placenta appears in yellow, 

the locular tissue in black and the seeds in magenta. The voxels in red are in the peripheral area lying 

just under the cuticle. The core, the radial and the equatorial pericarp have been placed in the same 

class, shown in green. The class shown in blue corresponds to a particular zone that covers both the 

locular tissue and pericarp and which probably indicates an internal defect in the fruit.   



Statistical analysis showed that for each pair of classes, at least one variable was statistically different. 

However, some similarities were found between the green and blue classes, for which , only the lowest 

one among "# values was different.  

It can be observed in the distribution that the highest "## and "#% values were found in the locular 

tissue and the lowest in the placenta which is in accordance with observations in [26]. The distribution 

in the seeds suggests a two-component behavior, however this should not be over-interpreted since 

the number of voxels in this class is rather low. Further, given the small seed size and the spatial 

resolution of the MRI images, the partial volume effect is likely to have biased the results. The 

difference between the blue and green zones, which could be expected to be gathered regarding their 

spatial arrangement, was the effect, not of  "##, "#% or � !, but of the amplitudes and the higher blue-

zone values in  "#!.  

3.3.3 Results for peach 

Figure 8 represents the classification results for peach using five classes and the corresponding "# 

distributions. The p-values for each variable and each pair of classes are given in Table 5.     



 

 "#!   � ! "##   � # "#%   � % 

R G 1.00E+00 1.81E-123 5.00E-192 2.25E-03 2.44E-210 5.13E-89 

R B 7.37E-97 5.12E-94 1.99E-71 2.74E-153 1.98E-77 1.04E-40 

R C 1.86E-19 1.98E-17 3.51E-17 8.11E-11 1.06E-12 4.36E-17 

R Bk 4.82E-03 1.65E-84 1.35E-60 2.14E-55 6.70E-85 1.19E-83 

G B 3.54E-103 0.00E+00 0.00E+00 3.99E-139 0.00E+00 7.50E-237 

G C 7.05E-21 1.11E-49 9.84E-60 3.12E-08 2.11E-53 3.33E-43 

G Bk 3.11E-04 5.70E-235 2.12E-235 2.82E-73 2.71E-03 6.38E-207 

B C 1.08E-53 1.52E-01 1.49E-02 1.00E+00 8.96E-01 6.56E-05 

B Bk 2.28E-56 2.10E-10 8.86E-07 2.86E-213 3.00E-201 1.42E-26 

C Bk 3.02E-11 1.00E+00 1.00E+00 3.86E-41 5.33E-56 1.00E+00 

 

 Table 5: p-values for each pair of classes and each variable in peach. Values > 0.01 are shown in grey. 

Single initials are used to designate colors of classes except black (Bk).   

 

The spatial distribution of the classes was concentric with a decrease in "## and "#% values from the 

periphery to the center, as can be seen in the  "# distributions. Moreover, it can be observed that the 

distance between the peaks decreased from the periphery to the center suggesting that the 

differentiation between the characteristics of the water pools was more marked in the peripheral 

regions of the mesocarp. The black class represents the seed for which, obviously, the one component 

model seemed a better fit.  

Statistical analysis showed that the green, red and blue classes could be considered to differ and this, 

as for apple, indicates a heterogeneity in the mesocarp tissue. The blue and cyan classes could be 

considered to be similar which is consistent with their location.  

 

 



4. Discussion 

Using the method described in [12] we were able to estimate the multi-"# relaxation parameters in 

each voxel. Thanks to the spatial regularization scheme, the ill-posed inverse problem could be solved 

despite the presence of noise. We provided a simplification of this method by reducing the number of 

scalar parameters needing to be tuned. However, we can propose a number of possible improvements 

to this method that can be explored further.  

The initialization scheme is a well-known problem that could not be fully automated and required a 

degree of prior knowledge to set the parameters. Varying the initialization up to 20% led to acceptable 

variation in the estimated results in the case of apple. However, this point remains an important 

question and to this day not fully resolved. Nevertheless, by choosing to use amplitude proportions 

rather than absolute values in the initialization, we have provided a solution which is dependent 

neither on the receive coil nor the position of the fruit in the MR system. Further, the initialization step 

could be improved by using measurements taken from a large ROI to produce the initial estimate, 

giving a higher SNR.  

The signal model used in this study assumes that indirect and stimulated echoes do not interfere with 

the acquired signal. However, the MSE sequence employs 180° refocusing pulses, which are imperfect 

and are sensitive to static and Radio Frequency and magnetic field imperfections, leading to corruption 

of relaxation curves by unwanted signals and to the introduction of T1 dependence on the T2 

relaxation decay [27]. The application of constant crusher gradients and the use of non-selective 

rectangular refocusing pulses only partially correct for this effect. The extended phase graph (EPG) 

algorithm for simulating and correcting undesired signal [28] can be considered in future 

investigations. 

The proposed method requires knowledge of the number of components, which must be the same for 

all voxels. The use of the statistical BIC criterion converged to the same number of components as in 

choice that we would have made a priori given our previous knowledge on the subject. However, the 

analysis of this criterion at the voxel level revealed that the optimal solution would be to consider a 

variable number of components in the image. However, since the spatial regularization assumes similar 

number of components in all voxels, we noticed that over estimating the number of components in 

some voxels will be compensated by the estimation of small amplitude values of the added 

component.    

In the classification stage, the use of the relative amplitudes was very efficient in eliminating the effects 

of the spatial variation in intensity that was the result of the non-homogeneities of the MR system. 



This, coupled with the use of relative amplitudes for initialization, gives our approach robustness 

regarding MR configuration and fruit position.   

With regard to the choice of the number of classes, it appears that this was not a critical issue since it 

was possible to observe results involving different numbers of classes so as to select the optimal 

number of classes for spatial consistency. Moreover, the use of statistical analysis provided 

supplementary information on the actual differences between the classes. Figure 9 shows results for 

different numbers of classes for apple, from 5 to 8. The solution with 6 classes appeared optimal since 

it represented a compromise between the number of zones providing the greatest spatial consistency 

and that required to avoid an overly noisy result. 

Previous studies have shown MRI relaxometry to be effective in discriminating between different fruit 

tissues [26, 29, 30] and in accessing their heterogeneity [4, 21, 31] in relation to spatial variations in 

biophysical and metabolic traits. However, thus far, multi-exponential relaxation times for tissues 

and/or tissues regions have been compared using an approach in which ROIs were selected manually 

from homogeneous regions of mono-exponential T2 maps and were considered to have homogeneous 

multi-exponential T2. The main limitation of this approach is that the latter condition is not always 

met. The post-processing classification scheme proposed in the present study overcomes this 

constraint. It has made it possible to confirm the heterogeneity of the apple and peach mesocarps 

observed in [4], providing improved accuracy in the delimitation of regions with similar relaxation 

parameters. It offers a promising tool to reveal greater detail in the spatial variations of multi-

exponential relaxation parameters and, thereby, in water status and distribution at the subcellular 

level. This would probably assist in the elucidation of the nature of the relaxation mechanism that 

produces different multi-exponential transverse relaxation times throughout the mesocarp regions, 

which is still an open question. Last, this detection and classification method would be of benefit to 

the detection via MR relaxometry of the microstructural changes in fruit or tuber tissues that cause 

imperfections using the localized modifications in relaxation parameters 

 

 

5. Conclusion 

Fleshy fruits are generally considered as an assemblage of homogeneous tissues, due to the complexity 

involved in accessing experimental data on spatial variations in tissue characteristics using current 

analytical methods. However, the heterogeneity of fruit tissues is an important factor in physiological 



processes as well as in fruit processing capability and quality. MRI relaxometry has great potential in 

providing a spatial analysis of tissue microstructure, making it possible to access information at the 

cellular and subcellular scales via multi-exponential relaxation times. 

Despite this potential, the estimation of the relaxation parameters is an ill-posed problem and the 

exploitation of the results, which take the form of a number of parameter maps, may be not 

straightforward. We therefore first proposed a simplification of the method set out in [12] to estimate 

"#s and their associated amplitudes, by reducing the number of spatial regularization parameters 

needing to be tuned. The number of component was chosen using a statistical criterion.  A classification 

scheme based on K-Means was used to group voxels exhibiting similar values.  MR non-uniformities 

did not affect the results thanks to the use of relative amplitudes. The classes were spatially consistent, 

demonstrating the relevance of our approach. Statistical analysis showed that most of the chosen 

classes were different. In order to visualize the characteristics of each class we proposed the 

representation of "# value distributions, which paves the way for further interpretation concerning  

tissue properties.   

The initialization of the estimation algorithm is a matter that still remains to be solved. Inappropriate 

initialization has the potential to generate biased estimations.  The approach we propose assumes that 

the number of components is the same in each voxel which may not be the case.  For the classification 

step, it would be possible to introduce classification methods such as Markov fields or Gaussian 

mixture models with automatic estimation of the number of classes. Compared to the K-Means 

method, Gaussian mixture clustering would have the additional advantage of taking the variance of 

the measurements into account and would also calculate a probability for each voxel’s membership of 

each class. On the other hand, the use of Markov fields would add the spatial information required to 

achieve clustering, offering a definitive way to eliminate the possible impact of noise on the clustering.   

 

Appendix  

 

Appendix 1 

 

The minimization of &  (eq. 1) is not straightforward. Indeed, the terms are not quadratic,  −log()) 

because of the expression of the Rician probability function, and �+,- because of the properties of 

functions ./ . Morever the problem is non-separable since �+,-  depends on all the voxels 

simultaneously. In [12]   a method is proposed that is carried out iteratively. At each iteration, −log())   



is majorized by a quadratic function and �+,-by a function which makes the problem separable. An 

adapted Levenberg-Marquardt algorithm is used at each iteration to impose a sufficient decrease of 

the objective function and the non-negativity of the parameters. 

 

Interestingly,  it has been shown in [19] that a majorant function of �+,-+  at iteration 0 can also be 

established. It is written as:  

 

1234 = 5 6 6 6 729:/ − 79:/; + 9>/; ? ?#

29:/ + 79:/; + 9>/; ? + @A29:/ − 79:/; + 9>/; ?A>∈CD

E

:F!

G

/F!
 

The same approach as in [12] can thus be used for this regularisation term. 

 

Appendix 2 

 

The parameters of the estimation algorithm were tuned using a virtual object shown in Figure A2-1. It 

is composed of five different virtual tissues, the amplitudes and "# values of which are given in Table 

A2.1.  These values are in accordance with those observed in tomatoes in previous studies [14] for 

which a three-exponential relaxation model was used.  

 

 

Region H !(a.u) "#!(ms) H #(a.u) "##(ms) H %(a.u) "#%(ms) 

1 95 88 459 356 1015 716 

2 96 76 410 433 1024 870 

3 109 78 375 303 1004 685 

4 108 50 482 202 756 508 

5 71 50 339 218 908 627 

Table A2-1 : Amplitudes and "# values for the different tissues 

 

Appendix 3 

 

The tuning of the algorithm parameters was carried out using absolute bias I and standard deviation � defined as follows, where    is the number of tissues, !" the number of voxels for tissue #, $%&∗  and $%& the actual and estimated values of parameter ) in voxel *:  

 



 + = +&,,,  with 

 

+& = 1 - . 1!" - $%& − $%&∗$%&∗  %∈" .2
"34  

 
 

 

(eq.A3.1) 

and � = �&,,,  with 

 

�& = 1 - 5 1!" − 1 - 6$%& − $%&∗$%&∗ − 1!" - $%& − $%&∗$%&∗  %∈" 78
%∈"

2
"34  

 
 

 

(eq.A3.2) 

 

Appendix 4 

 

Figure A4.1 shows + and � as functions of b  and d , expressed in percentages. We retained b  and 

d  values for which + was low and in a relatively smooth region of the space (b , d ) in order to obtain 

a robust selection. The retained values, outlined by dotted lines, were  b = 0.4  and d = 7. 
T 
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CAPTIONS 

 

Figure 1: Mean BIC in function of the number of components @ used in the model, on top left for the 

three fruits (@=1…5), the other subplots are for one fruit each (@=2…5) 

Figure 2: Maps of the optimal values of number of components for the tomato, peach and apple, 

from left to right 

Figure 3: Results for an apple. Amplitudes are shown on the top row and  A8s on the bottom row, 

with the shortest A8 shown in the left column and the longest in the right. 

Figure 4: Results for a tomato. Amplitudes are shown on the top row and  A8s on the bottom row, 

with the shortest A8 shown  in the left column and the longest in the right. 

Figure 5: Results for a peach. Amplitudes are shown on the top row and  A8s on the bottom row, with 

the shortest A8 shown in the left column and the longest in the right. 

Figure 6: Classification map and relative amplitudes as a function of A8 values for each class in apple. 

Figure 7: Classification map and relative amplitudes as a function of  A8 values for each class in 

tomato. 

Figure 8: Classification map and relative amplitudes as a function of  A8 values for each class in peach. 

Figure 9: Classification results for apple with 5, 6 ,7 and 8 classes from left to right and top to bottom. 



Figure A2.1: virtual phantom 

Figure A4.1  + and � as functions of b  and d, computed on phantom simulations where the 

initialization is equal to the actual value. The square with a dotted outline indicates the chosen 

values.  

 


