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In Silico Prediction of Food Properties:
A Multiscale Perspective
Olivier Vitrac1*, Phuong-Mai Nguyen2 and Murielle Hayert1

1Université Paris-Saclay, INRAE, AgroParisTech, UMR 0782 SayFood, Massy, France, 2LNE, French National Laboratory of
Metrology and Testing, Trappes, France

Several open software packages have popularized modeling and simulation strategies at
the food product scale. Food processing and key digestion steps can be described in 3D
using the principles of continuum mechanics. However, compared to other branches of
engineering, the necessary transport, mechanical, chemical, and thermodynamic
properties have been insufficiently tabulated and documented. Natural variability,
accented by food evolution during processing and deconstruction, requires
considering composition and structure-dependent properties. This review presents
practical approaches where the premises for modeling and simulation start at a so-
called “microscopic” scale where constituents or phase properties are known. The
concept of microscopic or ground scale is shown to be very flexible from atoms to
cellular structures. Zooming in on spatial details tends to increase the overall cost of
simulations and the integration over food regions or time scales. The independence of
scales facilitates the reuse of calculations and makes multiscale modeling capable of
meeting food manufacturing needs. On one hand, new image-modeling strategies without
equations or meshes are emerging. On the other hand, complex notions such as
compositional effects, multiphase organization, and non-equilibrium thermodynamics
are naturally incorporated in models without linearization or simplifications. Multiscale
method’s applicability to hierarchically predict food properties is discussed with
comprehensive examples relevant to food science, engineering and packaging.
Entropy-driven properties such as transport and sorption are emphasized to illustrate
how microscopic details bring new degrees of freedom to explore food-specific concepts
such as safety, bioavailability, shelf-life and food formulation. Routes for performing spatial
and temporal homogenization with and without chemical details are developed. Creating a
community sharing computational codes, force fields, and generic food structures is the
next step and should be encouraged. This paper provides a framework for the transfer of
results from other fields and the development of methods specific to the food domain.

Keywords: prediction, food properties, multiscale, packaging, diffusion properties, thermodynamics

1 INTRODUCTION

Food engineering and modeling tend to be more difficult than in other areas as foodstuffs are
inherently complex objects; biological processes initially define their organizations, structures, and
compositions. They evolve rapidly during harvesting, transportation, and distribution. Food
processing profoundly changes all the properties of food: composition, structure, physical states
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of the constituents, degradation, and production of new chemical
compounds (Datta, 2016). In other words, successful modeling
should capture the evolution of the physicochemical properties
with the degree of processing but also the effects of the initial
biological variability and of supply chain fluctuations. Storage,
preservation, final preparation and digestion of processed foods
also profoundly alter these properties (Bornhorst et al., 2016).
Modeling in food addresses usually only one part of the
complexity: only the evolution of an “averaged” food product
is sought and not the variability between food products.
Thermodynamic, transport and mechanical properties are
therefore “averaged” over a representative structure,
composition, and assumed constant or dependent on
macroscale state variables (e.g., temperature, water content,
etc.). With the rapid progress in modeling and simulation in
other engineering disciplines, including materials, polymer
science, and soft matter, this chapter argues that the implicit
paradigm of averaging any aspect of food transformation may be
challenged in the future. The lack of extensive and freely
accessible “mechanistic” food properties databases motivated
the quest for alternatives to classical modeling (Nesvadba
et al., 2004). When they exist, they do not consider
compositional and structure effects essential to processed
foods characteristics. Moreover, simulating flows, transfer,
reactions, creation of structures and their mechanical
properties in realistic conditions remains beyond the reach of
conventional approaches without adequate parameterization on
real-life food products (Roos et al., 2016).

Directly calculating physicochemical properties of foods from
pure phase data or atomistic structures paves the way to the direct
simulation (from first principles) of their processing and
preservation regardless of the food or its process. In this new
perspective, the incomplete macroscale model in food is
supplemented by an explicitly given microscopic model. Such
a framework differs from earlier semi-empirical models tabulated
in Ref. (Gulati and Datta, 2013). This article reviews a selection of
techniques enabling the emergence of macroscopic behaviors
from the knowledge of structures or molecules and their
potential applications in food engineering. Indeed, the
popularization of high-throughput measurement techniques
encourages the development of modeling techniques capable
of using directly as inputs 3D images from X-ray
microcomputed tomography, laser-scanning confocal
microscopy in UV, visible and midinfrared ranges Raman
confocal microscopy). Ideally, the approaches need to be
sufficiently robust and tailored to accommodate various
strategies (fully or partially in silico) to replace food missing
properties and incorporate chemical and structural food
characteristics. The growing development of equation-free
multiscale computation (Kevrekidis and Samaey, 2009), along
with the widespread use of parallel and cloud computing, makes
the passthrough to the scale where the decision is taken possibly
without requiring an explicit macroscopic-level step. “Food
system analysis” at any step of its transformation, storage, oral
processing and digestion may nourish innovation in food but also
reaches external communities, including medical communities,
industry and authorities. Linked decisions across the scales with

arbitrary levels of entanglement (Gear et al., 2003) could be used
to evaluate the impact of existing or future practices.

The manuscript borrows several concepts and techniques that
we have developed to fill in the gaps in continuum numerical
approaches, and more generally, to introduce chemical
information, which does not fit well in evolutive equations,
governed essentially by conservation equations. From a
thermodynamic point of view, we address in this paper
problems which are entropy-driven and therefore not directly
related to heat transfer or mechanical work. The vantage point
adopted in the proposed computational framework suggests that
two multiscale problems coexist: spatial and temporal. Abundant
literature describes the first one. It is approached from the
perspective of mathematical homogenization and applied to
the prediction of diffusion coefficients. This technique should
not be confused with techniques for averaging over volume
elements. It does not focus on the observation scale to define
heterogeneities but instead defines a very large equivalent
medium in which local variations become negligible. The
mathematical tool is asymptotic analysis. The same concept is
required to predict temporal evolutions at the food scale from
scales close to the vibration of atoms or molecules. The coherent
macroscopic behavior emerges from the interactions of
microscopic agents (solutes, macromolecules, cells). Therefore,
spatial and temporal microscopic details are not smoothed out
but rather integrated up to the scale of the food, usually using a
procedural computing approach. The feasibility of combining
chemical-level, microscopic-level and food-level is illustrated in
the interactions between the food and its packaging. The chosen
methodologies have sufficiently low computational cost to
operate in loops and support food production problem-
solving: e.g., resource and waste minimization, valorization by-
products, safety, security and health issues (Bazilian et al., 2011).
But what are the challenges and opportunities of modeling across
scales?

1.1 The Scale Problem
It is tempting to think that all scales can be modeled continuously
from atoms to the cycle of production, distribution, and
consumption of food by a population of consumers. The
grounds why this is not possible in a classical sense are
illustrated in Figure 1 regarding the farthest scales from the
observer (human scale): either in the direction of atoms or on the
scale of a sufficiently large system (including more than one single
food).

At the finest scale, there are more molecules/entities in a 1 L
water bottle (55.6 moles, i.e., 3.3 × 1025 molecules; i.e., 1026

atoms) than stars/entities in the observable universe [from
1022 to 1024 according to the European Space Agency (ESA,
n.d.)]. The most extensive simulation of a biophysical system at
the atomic scale on an exascale supercomputer (130,000 cores)
included only 109 atoms/entities (Jung et al., 2019). If it were
water, a cube of 215 nm side would contain this number of atoms.
A water cube of 42 nm edge would require a more reasonable
power of 1,000 cores. These volumes are insufficient to represent
any food transformation (freezing/thawing, cooking, flow in a
pipe), but they are sufficient to access fundamental properties at
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the nanometric scale. For example, the coalescence of two
drops of 58.5 nm in diameter has been recently simulated at
the atomic scale (Perumanath et al., 2019). The role of
thermal fluctuations in the construction of a common
liquid-gas interface has been demonstrated. This example
illustrates three critical properties:

• Structural chemical information can only be maintained on
scales commensurable with molecules and segments of
polymers; beyond, structural and chemical information
will have to be encoded using the principles of
thermodynamics and mechanics on a larger scale.

• Statistical physics or mechanics can describe phenomena
below the thermodynamic limit (TL), that is, when thermal
fluctuations are significant. TL is much larger than
molecules and also applies to colloidal systems (Frenkel,
2014).

• The union of systems smaller than TL does not allow the
reconstruction of a macroscopic system by sampling. The
property of additivity or extensivity is recovered only
beyond TL.

There are no absolute rules to define the critical length scale for
TL; TL tends to be longer in the presence of long-range forces or

FIGURE 1 | (A) Spanning of spatial and timescales associated with foods and identification of the time scale gap between thermodynamically controlled
phenomena and out-of-equilibrium evolution of macroscopic systems. (B) Illustrations of techniques to simulate the phenomena on both sides of the thermodynamic
limit (TL): grid and meshless ones above TL, atomistic or coarse-grained below TL. (C) Strategies of simulation across the scales.
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for systems with large surface-to-volume ratios in monophasic
systems (Sheehan and Gross, 2006; Frenkel, 2014). In emulsions,
foams, and suspensions, TL is much larger and reaches few
micrometers.

The continuum scale (CS) lies between TL and an upper limit
called “large scale” (LS). The “single-scale” approach is associated
with finite-element and finite volume techniques. At these scales,
there is no need to assemble forces on discrete systems and to
assess the concept of thermodynamic and mechanic equilibrium
locally. Statistical formulations are cast in conservation equations
and resolved generically with the machinery of differential and
integral calculus. Therefore, the food properties and driving
forces are effective and capture most of the microscopic details
in one single formulation. The properties are allowed to vary
either with position, time, and intensive variables such as
temperature, pressure, or local concentrations. The effective
porous medium formulation describes well the effective heat
transfer properties in heterogeneous food products such as dry
foods. However, it is less efficient in deriving transport and
mechanical properties as it does not consider phases spatial
arrangement and morphology (Datta, 2007). Similarly, the
corresponding driving forces (e.g., osmotic or swelling
pressures) are well described for systems with low TL values
(i.e., randommixtures of molecules). However, they may be more
difficult to derive for systems presenting an organization at
nanoscale or memory effects (i.e., dislocation, plasticity, glassy
state) (Lucarini et al., 2020). Two examples easily illustrate the
loss of details of the continuum approach at the food scale. The
fracture of dry foods (e.g., chips) or rehydration of dry foods (e.g.,
cereals) will be described at continuum scale from the classical
macro-strain without considering the anisotropic “micro strain”
in cell walls and the effect of drying on the rigidity of cell walls.
Similar microscopic effects occur when a native starch suspension
is heated in a heat exchanger (Plana-Fattori et al., 2016).
Gelatinization and swelling of starch granules will modify the
viscosity locally and finally at a much larger scale. Microscopic
gradients persist when two components with different viscosities
are thermomixed such as during chocolate conching (Greiner
et al., 2014).

Complex food simulators can be assembled from low-level
mechanistic components for one particular food product. The
concept of “large-scale” (LS) occurs when the same model is used
for a broader range of food products. Its strict definition is more
elusive and would correspond to situations where the underlying
assumptions of at least one constitutive model cease to be verified.
This model can be involved in either the prediction of effective
properties or driving forces. The reasons could be: the raw
biological materials are different (different variety, maturity,
different tissues), the morphologies are different (different
distributions for dispersed systems), the properties of the
continuous phase are different (e.g., the addition of a
thickening agent, fat replacers), different pretreatments (higher
shrinkage, compaction), aging effects, etc.

1.2 Continuum vs. Discrete Descriptions
The core of this article is to highlight the different strategies to
derive properties for food considered not as a uniform rigid body

but as a soft matter organized at different scales. The choice of
considering a discrete collection of interacting entities (molecules,
phases) or an equivalent homogeneous continuum depends not
only on the problem and the choice of the end-user but also on
whether the chemical information needs to be considered
explicitly or not. At this point, it is essential to note that no
measurement is required for none of these methods beyond some
information on the food composition and the spatial organization
of phases herein. Counterintuitively, asymptotic analysis linking
microscopic descriptions and standard mathematical
formulation in simulation software (Comsol Multiphysics,
OpenFoam, Fluent) are more abstract and require a minimum
mathematical background. Conversely, particle methods used
below TL (e.g., molecular or coarse-grained approaches) or
above TL (Lagrangian descriptions) are more flexible and look
more physical in particular to describe surface effects
(coalescence, wetting, capillarity, adsorption, adhesion). The
article presents both approaches, and both are sources of
unavoidable errors. Replacing measured properties by
computed properties (see calculable properties in Table 1)
requires rigorous constructions and proper validation. The
present article illustrates both methodologies when the sought
property (transport coefficient, thermodynamic property) is:

• either a scalar or a symmetric tensor (anisotropic diffusion
without no drift);

• either defined as a unique value or as a distribution of values.

1.3 Problems in Food that Could be
Resolved by Modeling at Multiple Scales
The concepts of modeling across the scales are still emerging in
food, and the examples covering from molecular to very large
scales are scarce in the literature. The authors developed
experience in the field initially from molecules (Vitrac et al.,
2006; Durand et al., 2010; Gillet et al., 2010; Vitrac and Gillet,
2010) to consumer exposure (Vitrac et al., 2007; Vitrac and
Leblanc, 2007) with the intent of encouraging the industry and
authorities to use high throughput predictive techniques for
compliance testing and risk assessment. From our experience,
the main obstacles to the generalization of large-scale modeling in
food applications are:

- the lack of case studies showing how to combine deterministic
and non-deterministic modeling in food engineering
curriculum;

- the lack of a computational framework to combine tools
obtained with different approaches (statistical physics,
deterministic, stochastic);

- the difficulty to separate the phenomena occurring at different
scales;

- the resistance of some practitioners and professionals who
think that food cannot be reduced to algorithms.

In related areas of food engineering, we argue that “modeling
across the scales” has already produced very encouraging and
competitive results. Table 2 lists the technological and societal
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challenges identified in the literature, which can be considered
resolved or in the process of being resolved. The list is not
exhaustive and indicates the dynamics of this theme for the
coming decade. It is important to note that the most crucial point
is not so much the multiscale modeling itself but the ability to reverse
engineer the property being studied. The problem is no longer:
“which property I need to supply to my model, but what does the
model tell me about the property that could achieve the desired effect.”
The introduction of the chemical and biochemical information allows
tackling formulation and shelf-life determination problems from a
mathematical point of view without the constraint of available raw
materials or technologies. Food design becomes then a virtual activity
supported by reusable libraries of self-similar problems. The chosen
solution could be refined without extra costs for specific markets and
consumers. Predictive property modeling methods are well
documented in the literature but have not been implemented in
the multiphysics software used by the food science and food
engineering community.

2 THE PROBLEM OF SPATIAL
HOMOGENIZATION

Spatial homogenization is essential for modeling from 2D and 3D
images. This section describes the general principles of spatial

homogenization, as shown in Figure 2. The approach is applied
to transform heterogeneous structures into effective media,
whose properties can be encoded into commercial simulation
software. Homogenization theory was elaborated in the 70s and
80s for composite materials; its application to structured foods
(solid and semi-solid) is a natural extension. Classical
homogenization is preferred to alternative approaches as it has
received more formal proofs than other methods such as volume
averaging and does not suffer complex entropy constraints for
closure, such as the hybrid mixture theory (Battiato et al., 2019).

2.1 General Formulation
Homogenization (time- or spatial-) aims to calculate effective
properties for processes spanning over several time scales (e.g.,
combing rare events along with fast evolutions) or over
heterogeneous structures. Any spatial-homogenization problem
(not time-dependent) along the dimensionless coordinate x (so-
called slow variable) is recast as:

L(x, y � x

ϵ)uϵ(x) � f(x) for x ∈ Ω ⊂ Rn, (1)

where L() is a differential operator (linear or not) and y is the fast
variable (fine-scale mapping) inducing the local fluctuations of
the property. uϵ is the field (e.g., concentration, strain,
temperature) calculated at the scale of the microstructure, so-

TABLE 1 | List of input data in continuum mechanics model which can be predicted in silico from molecular and atomistic descriptions.

Properties Application (References) Comments and limitations

Rheology • Newtonian Keffer et al. (2004) Due to the limitations of the accessible time frames, transport
coefficients (viscosities, diffusivities) are calculated at very high
shear rates far beyond those applicable experimentally

• Non-Newtonian Cummings and Evans (1992)

Mechanics • Elasticity Datta (2016), Cummings and Evans
(1992), Misof et al. (1997)

Tg values are overestimated bymolecular modeling due to the high
cooling rates applied

• Glass transition temperature: Tg Han et al. (1994) Elasticity can be directly studied at the molecular scale. Plasticity
and ruptures can be studied out-of-equilibrium on small systems
under strong strain rates. The observed irreversibility can differ
from those observed macroscopically due to finite size effects and
studied time scales shorter than relaxation times

• Thermo-mechanical behaviors Shenogina et al.
(2012)

• Food structuring Dickinson (2012)

Transport • Permeability Venable et al. (2019) Random walks can be studied for diffusivities greater than
10−14 m2·s−1. See Section 3.2, Section 4.3 and Section 4.4• Diffusivities Vergadou and Theodorou (2019),

Dubbeldam and Snurr (2007)
• Solubilities Vergadou and Theodorou (2019)

Thermodynamic properties • Phase diagram Fan et al. (1992), gelation Lu et al.
(2008)

See Section 4.2.4 and Section 4.3

• Surface tension Nagata et al. (2016), emulsion
stability Dickinson (2008)

• Chemical potentials Boulougouris et al. (1999),
Widom (1963)

Thermal properties • Heat capacities Brewer and Peltzer (2019) Studies are scarce, in particular in foods and biological products
• Thermal conductances Rajabpour et al. (2019)

Quantum properties: reactivities and refined
descriptions of molecular interactions

• Detailed properties of water Chen et al. (2017) A very active field for catalysis
• Mesophases transitions Lee et al. (2007)
• Dissociation constants Jang et al. (2009)
• Carcinogenic potential of contaminants in food

Hatch and Colvin (1997)
•Antihypertensive properties Zhou et al. (2013)
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TABLE 2 | Inspirational challenges of holistic modeling across the scales.

Challenges Methodology Examples and comments Ref.

Modeling the multiscale ocean Multi resolution simulation is achieved
using nested grids (structured or not)

Subgrid-scale parameterization is of
general interest for complex multiphysics
problems

Haidvogel et al. (2017)

Exascale computing for
computational biology

• Volume reconstruction from serial
electron microscopy modalities (block-
face scanning electron microscopy,
electron tomography)

Predictive multiscale models, transforming
how the behaviors of organisms and
ecosystems are studied, ultimately leading
to new innovations and discoveries

Lee and Amaro (2018)

• Filling volumes with molecular-level
details

• Zooming in on many different
membranes and cytosolic proteins
interactions at the atomistic scale

Sustainable chemical product
engineering

• Multiobjective optimization coupled with
modeling at various detail levels
(computer-aided molecular design
tools)

• Linked decisions including social
preferences, corporate social
responsibility and public policies

Zhang et al. (2018), Heintz et al. (2014),
Gerbaud et al. (2017)

• Application to the use of renewable raw
materials and bio-based commodity
molecules

Molecular level decision in process
design

• Statistical associating fluid theory to
predict the properties of mixtures

• Application to solvent extraction and
extractive distillation

Burger et al. (2015), Kossack et al. (2008),
Papadopoulos and Linke (2006),
Charpentier (2010)

• Hierarchical optimization

Virtual product-process design
laboratory

• Hierarchical modeling finalized by an
experiment-based stage

• Personal-care product design: e.g.,
emulsified or blended systems with
controlled properties

Bernardo and Saraiva (2015),
Kontogeorgis et al. (2019), Kontogeorgis
and Folas (2010), Ge et al. (2018), Lee et al.
(2014), Conte et al. (2011a), Jonuzaj et al.
(2019), Torres et al. (2020),
Arrieta-Escobar et al. (2019), Mattei et al.
(2014)

• Four levels: pure component properties,
mixture properties based on linear
mixing rules, idem with non-linear
mixing rules, stability check

• The approach still contains some
heuristics and correlations, which should
be replaced by more detailed modeling

more general applications Tam et al.
(2016), Kalakul et al. (2018), Conte et al.
(2011b)

Materials with microstructure-
controlled properties

• Single scale models (ab initio, molecular
or atomistic, hybrid and quasi-
continuum, and continuum models)

• An integrated vision of what should be a
widely usable framework in multiscale
computational materials engineering is
lacking

Matouš et al. (2017)

• Virtual material testing • Hierarchical, concurrent multiscale
models and model reduction

• Microstructure-statistics-property
relations combined with image-based
(data-driven) multiscale modeling and
co-designed simulations might
transform the materials science and
engineering field. of innovative products

• Innovation in material design • Image-based models
• Verification, validation, and uncertainty

quantification

• High-performance computing and
software engineering

Solving the product-energy-water-
process nexus related to drying
processes

• 3D high-resolution models supported
by X-ray micro-computed, MRI, laser
scanning microscopy

• Materials properties and modeling
considering real life structures, changes
with time, and heterogeneities

Defraeye (2014)

• 3D coupled heat transfer models on
elementary representative volumes

• Integrated modeling towards energy-
smart drying: minimizing drying time and
energy use, maximizing product quality
and safety, optimized process/
equipment design, operation, and
control

• Coupling modeling with multi-objective
optimization

• Drying of fruits, paddy rice, paper and
wood, sand, catalysts, ceramics

Integrated food packaging design • Failure Mode Effects and Criticality
analysis

• Safety aspects cover all types of
packaging and applications

Zhu et al. (2019a), Nguyen et al. (2013),
Nguyen et al. (2017c), Nguyen et al. (2019)

(Continued on following page)
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called microscale. ϵ � d
ℓ

represents the ratio between the
microscale d and the macroscale ℓ (see Figure 2A).

Invoking Eq. 1 on the entire macroscale domain can be
particularly expensive (typically O−n or more) and possibly not
achievable for very small scales ϵ≪ 1 or when the properties need
to be updated regularly. The cost is usually reduced by assuming a
separation of scales between the microscopic details and the
macroscale domain simulated (ϵ≪ 1). It implies that beyond a
critical scale ϵc, uϵ converges to the macroscale solution U, which
can be calculated at a much lower cost by solving the
homogenized version of Eq. 1:

�L(x)U(x) � f(x). (2)

Finding an explicit homogenized equation �L(x) from
microscopic details may be a difficult mathematical problem
and requires an adequate closure problem. Such equation exists
as soon as y≫ ϵc

ϵ (see Figure 2B) and is associated with effective
properties, whose meaning is similar in various physical
problems, but whose values reflect different microstructures
and underlying phenomena, such as transport on distances
smaller than the mean-free-path of molecules or transports
controlled by rare events (e.g., trapping, surface adsorption,
interactions with macromolecules). Many software packages

can evaluate U(x) using finite differences, finite volumes,
finite elements, or higher-order spectral techniques based on
proper property values. It is worth noticing that the volume
source/sink term f(x) appearing on the right-hand side of Eqs
1, 2 is assumed to be macroscopically imposed and, therefore,
not subjected to microscopic fluctuations. Otherwise, the
homogenization procedure cannot converge to a unique
solution.

2.2 Identification of Homogenized
Properties When Microscopic and
Macroscopic Scales are Separable
2.2.1 Principles
The microscopic quantities aϵ(x, y � x

ϵ) (static) or
aϵ(x, y � x

ϵ, t) (dynamic) may be diffusivities (this example),
permeabilities, elasticity moduli, reaction rate constants, etc.
They converge to the effective properties when y≫ 1. It is worth
noticing that homogenization does not aim at averaging the
microscopic quantity aϵ(x), but the underlying conservation
laws instead. By considering transport phenomena and due to
the intertwining with other microscopic phenomena such as ad/
absorption, aϵ(x) should only be envisioned as the property

TABLE 2 | (Continued) Inspirational challenges of holistic modeling across the scales.

Challenges Methodology Examples and comments Ref.

• Concurrent engineering • The whole approach has been
developed for alcoholic beverages, but it
requires additional sophistication (e.g.,
oxidation reactions) to be extended to
more general food

• 3D Geometry optimization

• Safe-by-design and eco-design
approaches are combined into one
single multiobjective optimization
problem under constraints of geometry,
shelf-life, etc.

Integrated food safety • Coupling computational fluid dynamics,
heat transfer, and predictive
microbiology at different scales

Effects of food composition are not
considered

Laguerre et al. (2013), Duret et al. (2014),
Stavropoulou and Bezirtzoglou (2019),
Wallace et al. (2010)

Safety and health aspects as
design criteria in a novel chemical
product design framework

Computer-Aided Molecular Design
(CAMD)

• Sweetener Ten et al. (2016)

• Forward Problem (Group contribution
method)

• New solvent

• Inverse Problem (Inherent safety index,
multiple-objective optimization)

• Ligand screening, receptor-based
approaches

Digestion-based food process
design

Coarse-grained molecular modeling Emulsification in intestinal fluids Bornhorst et al. (2016), Mustan et al.
(2015), Holmboe et al. (2016), Vila Verde
and Frenkel (2016), Birru et al. (2017a),
Birru et al. (2017b), Clulow et al. (2017),
Suys et al. (2017), Tuncer and Bayramoglu
(2019)

Computer-aided drug design and
release systems

Various hierarchical and coupled modeling Adhesive and packaging, transdermal
devices, controlled release systems
(nanoparticles, liposomes . . .), biomarkers

Nag and Dey (2010), Gautieri et al. (2010),
Ozbolat and Koc (2010)

Carcinogenic and anticarcinogenic
substances

Various collative and mechanistic
modeling

Identification of carcinogenic and
antioxidant molecules

Baer-Dubowska et al. (2005), Shahidi
(2015)
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relating the microscale flux jϵ(x, t) � aϵ(x)∇uϵ(x, t) with the
microscale driving force ∇uϵ(x, t).

The corresponding microscopic advection-diffusion problem
reads:

zuϵ(x, y, t)
zt

+ ∇ · [b(xϵ)uϵ(x, y, t)]
� ∇ · [aϵ(xϵ)∇uϵ(x, y, t)] − f(x). (3)

FIGURE 2 | (A,B) Principles of homogenization of scale y at scale x: illustration of microscopic fluctuations of the local scalar uϵ(x, y) and its low-frequency
approximation U(x); example of periodic structure at several resolutions/scales. (C) Principles of the quadrature on a triangular mesh based on local microscopic values
calculated on square microcells (orange). Circles show interpolation nodes.
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By assuming that a and b vary smoothly over a periodic cell (of
volume V) larger than ϵc, Eq. 3 homogenizes as:

zU(x)
zt

+ ∇ · [�b(x)U(x)] � ∇ · [A(x)∇U(x)] − f(x), (4)

where �b is the average of b over V and A is the homogenized
operator (stiffness matrix), defined as z

zxi
[aij z

zxj
] � ∇ · [A∇], and

capturing the effective transport properties along each coordinate.

2.2.2 Intuitive Homogenization Procedure
The simplest case arises from the homogenization of Eq. 3 in one-
dimension (n � 1) at steady-state and in the absence of advection,
which reads:

d

dx
[aϵ(xϵ) d

dx
uϵ] � f ∈ L2(0, 1)with uϵ ∈ H1

0(0, 1). (5)

By setting F(x) � ∫x
0

fdx and Cϵ a constant, the double

integration of Eq. 5 leads to:

∫1
0

duϵ

dx
dx � ∫1

0

F(x) − C

aϵ(xϵ) dx � 0. (6)

By invoking the separation of scales for ϵ → 0 and that the

problem is periodic along y, one gets C � ∫1
0

F(x)dx and

dU
dx � lim

ϵ→0
duϵ

dx . The macroscale solution of the Dirichlet periodic
problem reads hence:

d

dx
[〈 1

aϵ
〉
−1

d

dx
U] � fwithU ∈ H1

0(0, 1). (7)

Thus the homogenized transport coefficient A � 〈 1
aϵ〉

−1,
where 〈X〉 represents the volume average of X. The
following result can be generalized for arbitrary
boundary conditions and dimensions. The homogenized

matrix corresponding to Aϵ � [ aϵ11 aϵ12
aϵ21 aϵ22

] (stratified

anisotropic 2D media) is [see p 16 of Ref. (Zhikov et al.,
1994)]:

A �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈 1
aϵ11

〉
−1

〈a
ϵ
12

aϵ11
〉〈 1

aϵ11
〉
−1

〈a
ϵ
21

aϵ11
〉〈 1

aϵ11
〉
−1

〈aϵ22〉 + 〈 1
aϵ11

〉
−1
〈a

ϵ
21

aϵ11
〉〈a

ϵ
12

aϵ11
〉 −〈a

ϵ
12a

ϵ
21

aϵ11
〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (8)
The presented results generalize standard approximations for

effective media, such as the Maxwell Garnett and the Maxwell-
Rayleigh approximations for spherical and non-spherical
inclusions. For symmetric positive definite matrix, the
following inequalities (known as Voight-Reiss’ inequalities) hold:

〈Aϵ−1〉−1 ≤A≤ 〈Aϵ〉. (9)

The first equality A � 〈(Aϵ)−1〉−1 holds only if ∇ × (Aϵ−1) � 0,
the second A � 〈Aϵ〉 only if ∇ · Aϵ � 0.

Though the studied transport equation does not include any
thermodynamic consideration, particular cases of two-phase
systems can be treated with the previous procedure. Soft and
hardcore inclusions are coded as Aϵ(x) � 0 and Aϵ−1(x) � 0,
respectively, with nonzero values outside inclusions:
]1I≤Aϵ(x)≤ ]2I with ]1, ]2 > 0.

2.2.3 Asymptotic Expansions in the Absence of
Microscopic Discontinuities
Explicit solutions exist only in rare cases such as periodic stratified
media, but they cease to operate in large dimensions. Alternatively,
the microscale solution uϵ(x,y) can be envisioned as a first-order
approximation of the solution of the homogenized problem U(x):

uϵ(x, y) ≈ U(x) + ϵδu(x, y). (10)

Equation 10 accepts a statistical interpretation:
uϵ(x, y) ≈ U(x) + (uϵ(x, y) − 〈uϵ(x, y)〉over y), so that
zuϵ(x,y)

zy � o(zU(x)
zx ). The exact calculation of expansions involves

total derivatives. The procedure is accelerated by highlighting the
composition properties of the microscale differential operator:

Δϵ � ∇ · [Aϵ∇] � ( z

zxi
+ ϵ−1 z

zyi
)aϵij( z

zxi
+ ϵ−1 z

zyi
)

� ϵ−2Δ1 + ϵ−1Δ2 + Δ3, (11)

where:

Δ1 � z

zyi
(aϵij z

zyi
);Δ2 � z

zyi
(aϵij z

zxj
) + z

zxi
(aϵij z

zyi
);

Δ3 � aϵij
z2

zxjzxj
. (12)

The expressions Eq. 11 and Eq. 12 applied to approximation
Eq. 10 (by assuming that the macroscale solution is twice
differentiable up to the boundary) lead to:

Δϵ[U + ϵδu] � ϵ−1(Δ1δu + Δ2U) + ϵ0(Δ3U + Δ2δu)Δ2 + ϵΔ3δu.

(13)

The separation of scales (ϵ → 0) enforces that Δ1δu � −Δ2U,
which can be resolved as a periodic boundary value problem to
the independent variable y. By denoting its general solution
{ϕk}k�1...m, one gets δu(x, y) � ϕk(y) zU

zxk
. This solution

introduced in Eq. 13 and averaged over all possible
solutions leads to the following homogenized coefficients:
aij � 〈aij + aik

zϕj
zyk

〉. A second-order approximation can be
derived for periodic macroscale solutions U. The results are
very general, but it requires that U is of class C2. This property
fails to be verified if the homogenized medium includes
barriers (e.g., cell walls), strong partitioning, or large jumps
in transport properties.

2.2.4 Homogenizing With Microscopic Discontinuities
via a Variational Formulation
In the presence of jumps in aϵ(x), the homogenizing problem is
better solved using a weak formulation of the partial differential
equations. The sufficient condition is that uϵ fulfills Dirichlet or
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Neumann boundary conditions at jumps. For a sufficiently
smooth and periodic aϵij(x, xϵ), the solution of the microscale
problem at steady-state minimizes the standard variational
minimization problem:

min
u∈H1

0(V)
⎡⎢⎢⎢⎢⎢⎣1
2
∫
V

∑
i,j

aϵij(x, xϵ) zu

zxi

zu

zxj
dV − ∫

V

f(x)u(x)dV⎤⎥⎥⎥⎥⎥⎦. (14)

The solution of Eq. 14 is inferred efficiently via a top-down
approach sketched in Figure 2C. Standard finite-element
techniques (triangular mesh) are used to solve the macroscale
problem. The effective macroscale operator herein is
approximated by solving the microscale problem only on a
small subset of elements taken at quadrature points. This
strategy is known as the heterogeneous multi-scale method
introduced by W. E. and B. Engquist (Engquist and Huang,
2003) and discussed in Ref. (Weinan et al., 2005). The overall
cost does not increase as ϵ decreases and generalizes naturally to
time-dependent and nonlinear problems.

2.2.5 Limitations
Capturing the microscale statistics adequately is essential as the
whole approach relies on an approximation of the separation of

scales (ϵ≪ 1), for which A evolves only smoothly with the
position. Due to the independence of microscopic and
macroscopic scales, there is no need to apply microscale fluxes
with intensities as large as those applied at the macroscale.
Indeed, macroscale fluxes describe an evolution of the
macroscopic system, whereas microscale ones describe its
evolution at some equilibrium states. The concept of
equilibrium differs here from strict thermodynamic
equilibrium as it assumes an equilibrium of microscale fluxes/
forces without enforcing stronger concepts, such as microscopic
reversibility or time reversibility. The concept of equilibrium can
be approached numerically by introducing a micro time scale and
by refining the microscale solutions iteratively until reaching a
steady state.

2.3 Formulation With Non-Separable Scales
The main interest of homogenized coefficients is that they can be
used for a broad range of problems, different boundary
conditions, and source terms. When microscopic and
macroscopic scales are not fully separable, the concept of
homogenized coefficients is, however, no longer applicable.
Nevertheless, the concept of the homogenized conservation
equation still holds. The term A∇U in Eq. 4 can be replaced
accordingly by the macroscale flux �J averaged at each iteration
over the microscopic structure.

zU

zt
+ ∇ · [�bU] � ∇ · [�J] + f(x). (15)

In the general case and the presence of fluctuations of
microscale fluxes, �J involves both an averaging over the cell
and a temporal averaging.

Significant works exemplifying the techniques of
homogenization in food or in structures of general interest are
listed in Table 3. We regret the lack of implementation of
homogenization techniques in standard software packages, as

TABLE 3 | Example of spatially homogenized properties in food or related
geometries.

Effective property References

Diffusion coefficients in porous media Auriault and Lewandowska
(1997)

Multicomponent gas diffusion in apples Ho et al. (2011)
Permeabilities through spheres and polyhedron
packaging

Boutin and Geindreau (2010)

Thermal conductivity for particulate foods Chinesta et al. (2002)
Elasticity modulus from confocal microscopy
images of food

Kanit et al. (2006)

TABLE 4 | Examples of direct description of the behavior of multiphasic food properties.

Method Examples (references)

Hybrid mixture theory (HMT) • Rheological properties of blueberry puree Nindo et al. (2007)
• Stresses during drying of corn kernels Takhar et al. (2011)
• Phase-change and thermomechanics during frying Bansal et al. (2014), Sandhu and Takhar (2018), during extrusion

Ditudompo and Takhar (2015), during freezing Zhao and Takhar (2017)
• Unsaturated fluid transport in food Takhar (2014), Takhar (2016), Ozturk and Takhar (2018)
• Hydro-thermomechanics of starch during extrusion

Discrete element method (DEM) • Discrete simulation of fragmentation in expanded breakfast cereals Hedjazi et al. (2014)
• Modeling of grain postharvest operations Boac et al. (2014)

Smoothed particle hydrodynamics (SPH) • Food fragmentation during chewing Harrison and Cleary (2014), Harrison et al. (2014a) and flavor release Harrison et al.
(2014b)

• Coffee extraction in a percolation flow Ellero and Navarini (2019)
• 3D food printing Makino et al. (2017)
• Drying of apple tissues Karunasena et al. (2014) and of single cells (apple, potato) Rathnayaka et al. (2018)

Dissipative particle dynamics (DPD) DPDmethodology is usually applied at the supramolecular scale, where the properties of the food are less specific. A general
methodology has been developed to devise interaction parameters in DPD models from arbitrary dynamics (at atomistic
scale or from another coarse-grained simulation). Eriksson et al. (2009) The applications are numerous, from evaluating the
permeability of the skin to chemicals Otto et al. (2018) to digestion phenomena Palkar et al. (2020)
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well as the lack of standard food structures to develop or test
algorithms.

2.4 Hybrid Mixture Theories and Discrete
(Lagrangian) Methods to Describe
Multiphasic Systems
Averaging and homogenization methods (Battiato et al., 2019)
have the same objective to characterize the macroscopic
properties of heterogeneous media by applying filtering
procedures to instantaneous equations similar to statistical
methods in turbulence. A great deal of work, including those
of S. Whitaker (Whitaker, 1986; Whitaker, 1996; Whitaker and
Whitaker, 1999), has shown how the treatment of the classical
local equations of mechanics could be reduced to averaged
equations, for example, obtaining the law of Darcy from the
Navier-Stokes equation. Closing the averaged equations requires
defining a priori characteristic scales of time and space. In
addition to the properties that are difficult to average, the
constitutive homogenized equations do not exist for all
problems and all situations. Several features are challenging to
implement, including local thermodynamic equilibrium with
possibly chemical reactions, non-Newtonian flows, flows in
elastoporous media, large deformations (swelling or
shrinkage), flows and fluxes affected by macroscopic strain,
inertial flow in cavities, multiphasic turbulent flows, etc.

Two families of approximations and simulations have been
proposed to address non-heuristically previous limitations, with
examples listed in Table 4. The first is the hybrid mixture theory
(HMT). This macroscale theory uses constitutive equations,
which are neither homogenized nor averaged over the
microscale but directly formulated at the macroscale and
subjected to the second law of thermodynamics. The approach
has been first developed by Hassanizadeh and Gray in seminal
papers (Hassanizadeh and Gray, 1979a; Hassanizadeh and Gray,
1979b; Hassanizadeh and Gray, 1980). All conservation equations
are averaged using the Whitaker procedure to obtain macroscale
field equations, but each variable remains defined precisely in
terms of its microscale counterpart. The structure of the theory of
mixtures of Bowen (Bowen, 1980; Bowen, 1984) has been
implemented to consider the impenetrable/immiscible
properties of porous media. Constitutive relations are required
to close the formulation, but the approach can be seen as a
natural extension of the classical theories of gas mixtures. The
formulation is well adapted to describe immiscible and
incompressible flows in deformable and rigid solids. For
example, capillary pressure can be derived from the free
energy of the mixture as a function of temperature, the
strain of the solid, and fluid volume fractions. However,
HMT proposes closure only for the macroscopic scale and
not across the scales. One practical consequence is the lack of
conservation of interfacial areas in fractal structures.
Hierarchical averaging procedures have been proposed to
estimate wetting properties from the microscopic geometry
of pores (Gray and Miller, 2005; Miller and Gray, 2005; Gray
and Miller, 2006; Miller and Gray, 2008; Gray and Miller,
2009). Though these theories are complex, they highlight the

risk of consistency loss in too coarsened models. Keeping
thermodynamic constraints across the scales is essential.

The second family relies on discrete methods to represent
inertial flows and complex interactions between solids and
fluids. They offer a competitive alternative to the complex
description with continuous methods of free surfaces and
situations where surface tension dominates (e.g., foaming,
coalescence). Discrete mechanics is based on connected
objects, points, segments, surfaces, volumes (beads). The
positioning of these objects in space is unnecessary, the
referential is only local, and the objects are located in
relation to each other (Lagrangian description). The
corresponding methodologies are essentially meshless, and
no spatial discretization is required. Because the variations are
numerous, only two methods are briefly presented: discrete
element method (DEM) and smoothed particle
hydrodynamics (SPH). Both methods rely on collision
operators. DEM is the oldest methodology (Cundall and
Strack, 1979) and describes dry cohesionless granular flows
while accounting for the exact shape of particles. Conversely,
SPH is a particle-based continuum method well suited for
flows and deformation problems. Continuous media are
represented by overlapping particles representing a volume
of fluid or solid. The methodology has been initially developed
for astrophysical problems (Gingold and Monaghan, 1977;
Cleary and Monaghan, 1990). The methodology outperforms
any continuous methods to describe free surface flows.

Inherently in the original formulation, the concept of a
“blurred” particle suffers several challenges at boundaries and
in computational efficiency. It is, therefore, common to represent
also solid interfaces with fixed particles. As DEM and SPH
simulation methodologies do not rely on statistical ensembles,
their original flavors are unsuitable for entropy-driven
phenomena. Fluctuations are recovered in Dissipative Particle
Dynamics (DPD), which targets all soft-matter and flow
phenomena occurring at nanoscale, typically 10 nm–10 μm
and 1 ns–1 ms (Español and Warren, 2017). The DPD model,
introduced initially by Hoogerbrugge and Koelman
(Hoogerbrugge and Koelman, 1992) and subsequently
equipped by Español and Warren with a proper statistical
mechanics model (Español and Warren, 1995), gained rapid
popularity due to its algorithmic simplicity and versatility.
Quoting Español and Warren, “just by varying at will the
conservative forces between the dissipative particles, one can
readily model complex fluids like polymers, colloids,
amphiphiles and surfactants, membranes, vesicles, and phase
separating fluids. Due to its simple formulation in terms of
symmetry principles (Galilean, translational, and rotational
invariances), it is a very useful tool to explore generic or
universal features (scaling laws, for example) of systems that do
not depend on molecular specificity but only on these general
principles”. Hence, the interactions in DPD schemes conserve
both linear and angular momentum locally. Finally and to be
exhaustive, several SDPD “smooth DPD” strategies (Uma et al.,
2011; Shang et al., 2012; Donev et al., 2014; Donev and Vanden-
Eijnden, 2014) have been explored to get an overlap with SPH
methodology.
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3 THE PROBLEM OF TIME
HOMOGENIZATION

Quoting Gorban (Gorban et al., 2006), the first coarse-graining
algorithm was proposed one century ago by Paul and Tanya
Ehrenfest in their paper for the scientific Encyclopedia
(Ehrenfest et al., 2014). The operation proposed by the
authors transforms the continuous probability density in
phase space into a piece-wise function averaged over
periodic cells. At the time, averaging over periodic cells
was revolutionary as it enabled the system’s entropy to
increase even after a long time and overcame the previous
limitations offered by the Liouville equation for closed
systems. Nowadays, coarse graining over grids is
everywhere in statistical physics both at equilibrium and
non-equilibrium. Complex transport phenomena (flows,
diffusion) can be studied with various dissipation
coefficients (viscosity, diffusivities) and decoupled with
proper filtering and subgrid modeling.

Strategies that span the time scales in condensed phases follow
a different tack than those designed to span spatial scales.
Generally, there is a wide gap of about ten orders or more of
magnitude in time between processes like atomic vibrations,
which ultimately limit simulations at the atomistic scale, and
complex diffusion processes that control many dynamic
properties such as shelf-life, safety, release digestion, oil
uptake, etc. Any robust multiscale modeling strategy should be
equipped with both spatial and time homogenization. The key
ingredients for time acceleration and ergodicity are:

• to get a proper probabilistic description of first passage
times,

• to define the parent stochastic transport mechanism
(diffusion, vibrations),

• to set the adequate threshold (energy, filling time, working
time),

• to make the time scale emerge from the considered
statistical ensemble or the method of sampling,

• to get a proper methodology to sample times continuously.

This section introduces the concepts of transition state theory
as a common framework and illustrates several strategies to
identify first passage or first hitting times.

3.1 Transition State Theory
Previous methods can zoom spatially continuously from the
macroscopic scale down to atoms. Time scale is, however, not
treated similarly by modelers as its definition may be twofold. It
can date the events since the beginning of the simulation time or
our clock time. Still, it can also represent only a reciprocal
frequency without specifying the origin of simulation time.
This last definition prevails in simulations involving
thermodynamic/statistical ensembles, where time emerges
directly from free energy variation between two macroscopic
states. The dichotomy of time interpretation above a gap ranging
from microseconds to milliseconds is shown in Figure 1A. It can
be interpreted easily as follows. Macroscopic times define the

order of events, while microscopic times are random, and only the
durations between events are statistically defined. This
memoryless process is called Poissonian and can be sampled
causally from a single series of events (e.g., the trajectory from a
single particle) or a collection of events (e.g., collection of
particles). The difficulty arises from sampling the frequency of
rare events (e.g., trapping-release), whose effects control the
overall rate or kinetics.

In cohesive systems such as entangled polymers (e.g.,
packaging walls), structured food systems (e.g., emulsions)
or in the presence of chemical reactions (chemisorption, cage
effects, etc.), several time scales coexist due to the broad
correlations between consecutive phenomena. After coarse-
graining, such phenomena can be understood as a
macroscopic trap-escape sequence (i.e., collection of
macroscopic states), whose frequencies are very low
compared to events controlled by the local thermal
vibration of atoms or molecules, whose corresponding
states are called micro-states. The separation between
macro- and microstates on the surface of free energy of the
studied system (e.g., mixture) is equivalent to the separation
of two different time scales.

Transition-state theory (TST) approximates the rates of a
transition between two neighboring macrosites/macrostates,
denoted 1 and 2, separated by an asymmetric energy barrier
ΔE1→‡ and ΔE2→‡ as:

k
transition
1→2

� kBT

h

Q‡

Q1
exp( − ΔE1→‡

kBT
)

k
transition
2→1

� kBT

h

Q‡

Q2
exp( − ΔE2→‡

kBT
), (16)

where Q‡ and {Q}i�1,2 are the partition functions of the transition
state and the considered macrosite i, respectively. kB and h are the
Boltzmann and the Planck constants, respectively; T is the
absolute temperature. As partition functions (canonical) are
interpreted as the sum of the probabilities in the form of
exp(− ϵj

kBT
) with ϵj the energy associated to the state j, they are

likely to be also a function of T. TST has been initially devised to
calculate reaction rates along a reaction coordinate (Eyring,
1935), and it has been subsequently generalized to the
diffusion in glassy polymers (Gray-Weale et al., 1997).

The concept of transition state between macrosites 1 and 2 is
essential, and it assumes that the transition paths 1 → 2 and
2 → 1 follow the same route and cross a saddle point with
negative curvature, denoted ‡, where the origin of the motion
is indiscernible. The concept of saddle point in classical
mechanics assumes that there is a separable coordinate
along with the transition occurs (the curvature of the
saddle point is positive everywhere except along one
coordinate), or more precisely where the flux of
probability is maximum in both directions. It corresponds
to a favorable collective displacement of atoms or a favorable
geometry configuration, suggesting a “tunnel” or a “Red Sea
mechanism” connecting two states. By denoting {pi}i�1,2 the
equilibrium probability of state i, the principle of micro-
reversibility reads at any time:
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p1k transition
1→2

� p2k transition
2→1

. (17)

Once the connectivity of the sites and the frequencies of the
corresponding transitions established, the equilibrium
distribution can be determined by integrating the macroscopic
mass balance equations until to reach steady state (dp

eq
i

dt � 0):
dpi

dt
� ∑

j connecting i

pjk transition
j→i

− ∑
i connecting j

pik transition
i→j

� ∑
j connecting i

(1 − 1
pi
)pjk transition

j→i

. (18)

The asymptotic residence time at any microsite is given by the
harmonic average of transition rates:

τi � peq
i∑

i connecting j
peq
j k transition

j→i

� peq
i∑

i connecting j
peq
i k transition

i→j

� 1∑
i connecting j

k
transition
i→j

. (19)

At this stage, it is essential to notice that the TST and the
methodology treat time as a continuous variable. Space is
replaced by a Lagrangian/Hamiltonian representation via a
surface of potential or free (preferred) energy. A continuous
representation in time and space can be recovered by
averaging the residence times over all possible sites:

〈τ〉 �
∑
all i

peq
i∑

all i
∑

i connecting j
k

transition
i→j

� 1∑
all i

∑
i connecting j

k
transition
i→j

. (20)

Equation 20 lost all microscopic fluctuations describes all
transitions as a single uniform random event controlled by an
exponential distribution:

pr(t � Δt|〈t〉) � 1
〈t〉 exp( − Δt

〈t〉). (21)

A form of Eq. 21 is applied free-volume theories used to model
trace, solute, and mutual diffusion in condensed phases. The
probability of a translation (transition) is assumed to be
proportional to the probability of a critical amount of free
volume accumulating in the immediate vicinity of the
considered molecule. The exact position of the atoms and the
concept of adjacency do not need to be explicated. Similarly, the
dual-mode sorption model assumes that the translation may
occur in two different micro-environments (microsites). It
might be tempting to consider that Eq. 16 describes a
temperature activation of the Arrhenian type. This is not the
case because partition functions also contain an enthalpy

FIGURE 3 | Isobaric molecular dynamics simulation of anisole in 20 high-
density polyethylene chains at 298 K: (A) residence time mapping; (B) spatial
correlation function of residence times; (C) mean-square displacement of the
center-of-mass msdCM(τ, t); (D) correlations of two characteristic
vectors of the aromatic ring; (E) evolution of the apparent diffusivity with time
scale; (F,H) fluctuations of msdCM with simulated time τ and time scale t; (I)
typical fluctuation spectrum SCM(f ) of zmsdCM

zt .
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component. The prefactor describes the effect of thermal
agitation as in Stokes-Einstein’s law by a simple temperature
effect. The other parameters carry the energy barriers and the
effects of thermal expansion. Finally, it deserves to note that
multiple transition state theory assumed that the transition rates
or, more precisely, that the free energy of interactions is
distributed.

3.2 Examples
The following examples illustrate mechanisms involving multiple
time scales and the methodology to simulate them by dropping
unnecessary details.

3.2.1 Justification of the Separability of Microscopic
and Macroscopic Time Scales to Predict Transport
Coefficients
Diffusivities of gases and organic molecules in condensed
phases (liquids or solids) can be derived from the second-
order stationary displacements of the center-of-mass (CM) of
one single diffusant (or averaged over the trajectory of several
diffusants) by molecular dynamics simulation. The
displacements controlling the translation of CM due to
thermal noise (collision with atoms of surrounding
molecules) between times τ and τ + t, rCM(t, τ) are defined
from the positions vectors (3 × 1 vector) of CM, xCM, relatively
to the center of mass of the entire system (diffusant +
host), xO:

rCM(τ, t) � xCM(τ + t) − xCM(τ) − (xO(τ + t) − xO(τ)). (22)

When the displacements of CM are truly independent, the
quadratic displacement increases linearly with the lag operator t
with 〈rCM(τ, t)〉all t � 0:

d

dt
〈rCM(τ, t)rCM(τ, t)T〉all τ � 2D(t), (23)

where XT is the transpose of X . The diffusion matrix D(t) is
positive-defined, whose eigenvectors code for the main direction
of translation on time scale t. It accepts a unique Cholesky
decomposition:

D(t) � B(t)Λ(t)1/2(B(t)Λ(t)1/2)T, (24)

where Λ(t) is a diagonal matrix containing the eigenvalues and
where the columns of B(t) are the associated eigenvectors.
Displacements fluctuate on the time scale t at a rate drCM(τ,t)

dt
equal to B(t)Λ(t)12X, where X is a random vector, each of whose
components follows a reduced centered normal distribution.

Solutes larger than voids exhibit a preferential direction as
shown for methoxybenzene (anisole) in Figure 3, so that the
random trajectory looks like an extruded tube on large time
scales (Figure 3A). The solute seems to jump from one
sorption site to the next, separated by distances ranging
from 3 to 6 nm (Figure 3B). During the different jump
events, the solute progressively loses memory of its
previous orientation (Figure 3D). The macroscopic
diffusion coefficient eventually emerges as the trace limit of

D(t) when t → ∞ (note that t � 1
f is the lag operator and not

the clock time). By choosing the columns of B(t) as reference
frame, one gets the following expression of the rate of increase
of the mean-square displacement of CM:

d

dt
msdCM(t) � tr( d

dt
〈rCM(τ, t)rCM(τ, t)T〉all τ) � 2 tr (D(t))

� 2 tr (Λ(t)) � 6D(t),
(25)

which leads to the practical formula of the macroscopic
diffusion D(f � 0):

D(f � 0) � 1
6
lim
t→∞

d

dt
msdCM(t) ≈large t msdCM(t)

6t
. (26)

The exponent d ln(msdCM(t))
dln(t) plays a central role in identifying

the rate of convergence to the hydrodynamic regime, where all
displacements are truly uncorrelated (exponent close to unity).
Exponents lower than 1 reveal strongly correlated random walks
and apparent diffusivities decreasing with simulation time. Such
decreases are shown in Figures 3E–I and occur on a broad range
of time scales. The hops responsible for the diffusant translation
can be visualized with the spectral density of drCM/dτ, denoted
SCM(f), which can be calculated from the Wiener-Khinchin real
theorem applied to the random variable

rCM(τ, t) � ∫τ+t
τ

drCM/dτ|(θ)dθ. The pair of transforms is known

as MacDonald’s theorem [a demonstration is presented in
chapter 18 of Ref. (Van Vliet, 2008)] and reads:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

(msdCM(t)) � 2∫∞
0

SCM(f) sin(2πfτ) df
f

SCM(f) �t → ∞
2f∫∞

0

d
dt
(msdCM(t)) sin(2πfτ)dτ . (27)

Since the diffusion of a solute larger than voids in a rubber
polymer is strongly related to the relaxation of polymer segments,
which could think that the convergence ofD(t) should obey some
linear damping (e.g., Hooke’s law) and consequently that
diffusion coefficients could be easily extrapolated, when the
associated time constant t0 is known. This reasoning would
lead SCM(f) to decrease in 1

f2 and an exponential convergence
to the hydrodynamic regime:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
d
dt

(msdCM(t)) � SCM(f � 0)
1 − exp(− t

t0
)

SCM(f) � SCM(f � 0)
1 + 4π2(ft0)2

. (28)

Figure 3I shows conversely that SCM(f) evolves from a high-
frequency white noise (tumbling motions of the diffusant)
towards a low-frequency white noise (macroscopic diffusion)
by crossing an intermediate regime linear in 1

f (pink noise),
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separated by two frequencies denoted f1 and f2. This noise
corresponds to a random damping process with t0 distributed
between t2 � 1/f2 and t1 � 1/f1, such reasoning leads to:

∫t2

t1

SCM(f)dt
t2 − t1

� �t2 > t1 SCM(0)
2πf(t2 − t1) (arctan 2 πft2 − arctan 2 πft1)

�

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
SCM(0)
f2

1
t1t2

for f≫ 1/t2
SCM(0)

4f(t2 − t1) for 1/t2 ≪f≪ 1/t1
SCM(0) for f≪ 1/t1

(29)

These results have been used to build a solid theory of
diffusion in polymers coupling the free-volume theory and
the mode-coupled theory (see Section 4.4). They justify the
universal cage-escape mechanism to describe random walks in
condensed phases.

3.2.2 Diffusivities on a Surface of Potential: The
Relationship Between Diffusion and Sorption at the
Molecular Scale
The frequency f1 ≤ 1/t0 ≤f2 and, more particularly, its lower
bound control the value of the diffusion coefficient. Ref. (Vitrac
and Hayert, 2007) studied the effect of the distribution of sorption
energies Gi on D systematically. The frequencies f1 and f2 are

connected with the jumping rates via TST, f � kBT
h exp(−G‡

i → j−Gi

kBT
),

withGi the local sorption energy at site i andG
‡
i → j the free energy

barrier associated to the translation from i to j. The main results
are illustrated in Figure 4.

The strong relationship between sorption free energy and
diffusion can be easily understood on a periodic surface of free
energy, comprising only two states separated by a fixed distance l
(Figure 4A). Although it may seem surprising to simulate a random
walk on a two-state line, the distance visited is a random variable
because the duration of jumps/transitions is also a random variable.
The diffusion coefficient depends on two characteristics, the height
of the smallest energy barrier GΔ and the partition coefficient
Kcontrast between the two sites. Increasing Kcontrast while keeping
the same average sorption leads to a dramatic decrease inD values.
This effect was verified on random surface energies in higher
dimensions. Beyond a critical dispersion value, preferred sites
behave as attractors creating negative correlations in the long
term. Simulated assumptions are close to what happens when
the size of the diffusant is increased (Neyertz and Brown, 2004).
On non-random surfaces (i.e., with channels), the reduction of D
values is amplified by additional tortuosity effects. Because the
results can significantly deviate depending on whether the micro-
reversibility hypothesis is verified, it is preferable to restrict the TST
approach to the molecular and supramolecular scales. TST-type
modeling lends itself very well to the integration of trajectories by
Kinetic Monte Carlo (KMC) methods. Classical molecular
dynamics simulation and KMC methods can be combined to
reproduce the effect of rare events over the long term (Neyertz
and Brown, 2010). The methodology allows to obtain statistically
independent but without guaranteeing the final D value if limiting
events have been insufficiently sampled.

3.2.3 Diffusion in Emulsified Foods
The previous examples justify the concept of time-
homogenization to derive macroscopic transport coefficients.
Rare events control the entire dynamics and its activation by
temperature. One can intuitively think that such phenomena do

FIGURE 4 | Simulation of diffusion using transition state theory in thermoplastic polymers: (A) 1-D diffusion on a 2-state periodic free-energy surface; (B)
generalization to 2D random structures where peq

i is the average probability and sd(peq
i ) the standard deviation. D and D0 are the diffusivities for heterogeneous and

homogeneous media, respectively.
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not exceed a few hundred nanoseconds and are irrelevant at the
phase level of the food. This is erroneous because diffusion is a
stochastic process in time and in space at all time and length
scales. We used to model the diffusion in the hydrodynamic
regime in discrete times as a self-similar skewed trajectory, where
the direction of the translation and its span are random normal
variates. Close to interfaces and, in particular, curved interfaces,
the process ceases to be isotropic. By analogy with optics, the
constantKcontrast and the brusque change of diffusion coefficients
at interfaces act as refractive indexes and modify the distribution
of molecules on both sides of the interfaces. In dense emulsions

with globules close to the percolation threshold, diffusants scatter
and reflect towards the medium with the highest residence time.
The translation from the medium with the highest diffusion
coefficient controls the effective diffusion coefficient. These effects
are illustrated in Figure 5 in 1, 2, and 3 dimensions with the
following conventions based on the results of Ref. (Vitrac and
Hayert, 2020). K is the partition coefficient between the continuous
and the dispersed phase. rD � Dc

Dd
is the normalized diffusion

coefficient. For large K or low rD values, the molecules initially
contained in the globule create a halo (i.e., close to a diffraction
pattern created by an infinitesimal object) around the globule, with

FIGURE 5 | Effective diffusivities in emulsions: (A) example of aroma release from 3D emulsions; (B) dimensionless 1D dispersion of a punctual source initially
located at x � x0 >0 (globule) across the interface x � 0 for rD � Dc

Dd
� 4, (K � 2); (C) corresponding 2D dispersion profiles for different globule sizes; (D) normalized

effective diffusivities D/Dd of 3D monodisperse emulsions with a volume fraction of dispersed phase of 0.4. D, Dc and Dd are the effective diffusivity, the diffusivity in the
continuous and dispersed phase, respectively.
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a little back diffusion to the reverse direction. At this stage, it is
important to notice that K defines only the ratio of diffusant
densities across the interface zΩ (x � 0) and not the probability to
cross the interface. For the configuration depicted in Figure 5A with a
diffusant located initially at x � x0, the ratio of probability to remain
the globule after a dimensionless time Fo � Ddt

x20
is given by:

pr(d → d|zΩ, Fo, x � x0)
pr(d → c|zΩ, Fo, x � x0)

� 1
K

!!!
Dd

Dc

√ 1 +K

!!!
Dd

Dc

√
erf( 1

2
!!!
Fo

√ )
1 − erf(Dd

Dc

1

2
!!!
Fo

√ ) exp[ − (D2
d

D2
c

− 1) 1
Fo

] $$$→Fo → ∞ 1
K

!!!
Dd

Dc

√
.

(30)

The time limit of Eq. 30 is counter-intuitive and reflects the
ability of the diffuser to make countless round trips across the
interface but at different speeds. The local thermodynamic
equilibrium condition imposes the density ratio (formally K) and
continuity of the fluxes. Additionally, it is noteworthy that globule
interfaces do not represent in this representation a transition state, as
the density at the interface is not continuous. However, the global
escape rate from each globule could be used as input parameters to
simulate diffusion in dispersed media. Compared to Eq. 8, this
technique accepts larger fluctuations in surface area, globule size and
density, large drops in diffusion coefficients, and finally, partition
coefficients very different from unity.

3.2.4 Oil Percolation in French-Fries
Cage-escape mechanisms can be found in various
applications, including the percolation of oil in French-fry

or potato chips-type products once the product is removed
from the bath. Trapped air bubbles in the potato tissue reduce
the accessible cross-section to oil and consequently slow down
dramatically the capillary flow through crust defects. These
effects are illustrated in Figure 6 and are based on simulations
and experimental observations reported in (Vauvre et al.,
2015) and in (Achir et al., 2010; Vauvre et al., 2014;
Patsioura et al., 2015), respectively. We could think that
the effective diffusion coefficient of oil should scale as:

D(z,T)
o � 〈r〉 c

(T) cos θ

8η(T)o

, (31)

where here c is the surface tension, θ the contact angle, ηo the
viscosity of the oil, 〈r〉 the average radius of cells assuming
roughly a cylindrical shape.

The micro-model showed that the successive filling times of
two cavities of radius r and length Δz and connected by a defect of
radius r0 and length l0 increase considerably with each pass. If the
oil-air interface is displaced without creating a bubble
(Figure 6A), the recurrence relationship between the filling
times Δti,fill is given by:

Δti+1,fill � Δti,fill − ln(1 − ς)
2ςDo(T)(Δz + l0( r

r0
)4)Δz, (32)

with 0 ≤ ς < 1 a factor that controls the gas phase displacement
mechanism [see Ref. (Vauvre et al., 2015)].

Due to the hexagonal shape of the cells and the angular
details of the defects, the oil flows faster in the corners
(Figure 6B) and fills the defects/restrictions without

FIGURE 6 |Multi-scale modeling of immiscible air-oil flows in fried products: (A) principles of combined modeling of oil absorption and dripping; (B) details of the
micro- and macromodels used for oil absorption at cellular scale; (C) possible oil content FS reduction by increasing oil dripping respectively to oil absorption.
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displacing the gas phase. The destabilization of the liquid films
in the defects is responsible for the sudden phenomenon of
“snap-off” (collapse of two initially disjointed films), which

will lead to the creation and trapping of bubbles in the defects.
In the presence of an air bubble trapped within the cavity,
filling times diverge and Eq. 32 becomes:

FIGURE 7 | Principles to derive bulk properties from atomistic simulations: (A) validation of the static properties of each component before studying the dynamic
response of the full system; (B) hierarchy modeling illustrated with the different approximations of Brownian motions (bottom left).
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Δtwith bubblei+1,fill � Δti+1,lag − ln(1 − ς)
2ςDo

((1 − υ)Δz + l0( r

r0
)4)Δzwith υ> 0

� Δtwith bubblei,fill − ln(1 − ς)
2ςDo

(υΔz + l0( r

ξr0
)4)Δz

− ln(1 − ς)
2ςDo

((1 − υ)Δz + l0( r

r0
)4)Δz

� Δtwith bubblei,fill − ln(1 − ς)
2ςDo

(Δz + l0( r

r0
)4(1 + 1

ξ4
))Δz (33)

with ξ the restriction coefficient of the passage related to the
presence of the bubble and υ the fraction of the volume of the
cell (i.e., formally the cumulative work of the volume forces
acting on the bubble) preceding that must flow before the
trapped bubble is released. The comparison of Eqs 32, 33
enables to approximate the lag time as Δti+1,lag ≈ 1

ξ4
Δti+1,fill

for low values of ξ et υ. Experimental filling kinetics of
connected cells in parenchyma cells confirm this evolution
and the distribution of waiting times as shown in Ref.
(Patsioura et al., 2015).

This example and the previous one illustrate the importance
of time homogenization and the sampling of rare critical
events. Indeed, snap-off and partitioning are elusive and
equilibrium properties, respectively. Because its occurrence
depends on history, its effects cannot be correctly described
by a homogenization procedure, assuming a particular
steady-state.

4 PREDICTING FOOD AND PACKAGING
PROPERTIES FROM SCRATCH VIA
MOLECULAR MODELING

4.1 Molecular Modeling as an Enabler of
Multiscale Modeling
Most of the food industrial and technological processes
require including chemical details in models to reach
predictive descriptions beyond qualitative ones via
dimensionless models. It could be tempting to consider
that at the bottom of the hierarchy of the modeling
methods across the scales, we have the Hamilton’s
equations, their approximate potential energy functions,
and the methodology to resolve them numerically via
molecular dynamics (MD). Millions to billions of atoms
can be simulated nowadays up to hundreds of nanoseconds
but not and beyond and at the cost of a time step imposed by
the vibration frequency of the hydrogen atom. Brute-force
MD is part of the solution but not the solution. Other
sampling methodologies, such as thermodynamic
integration, particle insertion, non-trivial statistic
ensembles, coarse-graining, must be combined to reduce
the overall cost of any information added at the atomistic
or molecular scale. The blueprint for turning the dream into
reality was hypothesized in the eighties by Herschel Rabitz
(Rabitz, 1989). The outline of the modeling hierarchy to
reproduce bulk observations from atomistic simulations is
shown in Figure 7.

As a general principle, all simulations should validate that the
density and pair radial distributions (or structure factor) of pure
components are well verified before studying the system’s
dynamic response alone or in interactions. This section
reviews the experience explored by the authors on molecular
modeling and its applicability to food engineering cases. The field
is evolving very fast and is the most promising for the future. As
already argued by authors (Nguyen et al., 2017a), it starts to be
less expensive and faster to launch thermodynamic calculations at
the molecular scale than doing the experiments. As discussed in
Chapter IV of Ref. (Tadmor and Miller, 2011), molecular
dynamics of large systems can be combined or compared with
many conventional techniques, such as linear elasticity, nonlinear
thermoelasticity, hydrodynamics models of complex fluids,
stochastic models with multiple scales, gas-kinetic scheme,
quasi-continuum method.

4.2 Principles of Molecular Modeling
Molecular modeling (MM) is an umbrella term covering various
techniques, where forcefields bring “life” to simulations, as
illustrated in Figure 8. These techniques can be rooted in the
seminal works of Martin Karplus, Michael Levitt, and Arieh
Warshel, whom the 2013 Nobel Prize has awarded in
Chemistry for “the development of multiscale models for complex
chemical systems.” A mechanical work leading to displacements of
atoms or entities (blobs, group of atoms) can be derived from this
potential independently of the path followed by the entire system.
Only initial and final steps at the end of each time step count. The
considered potentials (between two or more particles) may have
several interpretations, quantum or classical, related to hardcore or
softcore interactions. This section is not exhaustive but gives an
overview of the most relevant techniques for food applications.

4.2.1 Forcefields
Molecular modeling uses forcefields to calculate the pair
(distance), angular/planar, quadrupole, and octupole
interactions between atoms, as sketched in Figure 8A. Most
often, forcefields rely on classical Newtonian mechanics.
Forcefields representing chemical bonds are either fitted to
experimental data (type-I forcefields such as bead-spring
model) or fitted to quantum calculations (type-II forcefield
with additional corrections to mimic the vibration spectra of
molecules). Non-covalent potentials are associated with van-der-
Walls and Coulombic interactions defined by partial charges
usually applied at the center of atoms. Some software
packages, such as LAMMPS (Sandia National Laboratories)
and Materials Studio (Dassault Systèmes BIOVIA), offer
flexible formulations for soft and solid-state materials and
coarse-grain systems. Others, such as Gromacs and Charmm,
offers forcefields optimized/specialized for biological molecules,
with an emphasis on proteins and lipids. Integrated environments
(Avogadro, MedeA LAMMPS from Materials Design, Materials
Studio) facilitate the many operations (setup, post-treatments)
needed to build and interpret molecular simulations. Some
generic visualization tools such as VMD and Ovito offers
versatile visualizations for multiscale simulations. For
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FIGURE 8 | Principles of molecular modeling to estimate macroscopic properties in food: (A) example of repulsive forcefields for flexible polymers; (B) indicative
interaction energies for non-covalent bonds; (C) macroscopic properties extracted from sampled trajectories; (D) macroscopic properties extracted from sampled
configurations.

Frontiers in Chemical Engineering | www.frontiersin.org January 2022 | Volume 3 | Article 78687920

Vitrac et al. Food Properties Prediction

https://www.frontiersin.org/journals/chemical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles


extremely large datasets, the open source ParaView increases the
rendering efficiency by focusing on the levels of details important
for the observer.

4.2.2 Methods to Explore the Potential Surface
This section introduces briefly the different principles of molecular
mechanics. Additional details on forcefields, integration schemes
and inversion procedures can be found in the reference textbook of
Frenkel and Smit (Frenkel and Smit, 2002). These details are

essential to understand the parameterization of open-source
(Gromacs, LAMMPS, Charmm, CP2K) or proprietary/
commercial software packages (NAMD, Tinker, Materials
Studio). At this stage, it is worth noticing that classical oscillators
do not behave as quantum ones, whose more probable state
coincides with a minimum of potential energy. The likeliest states
associated with classical oscillators in dynamics correspond to
kinetic energy minima (speed minima) and, therefore, maxima
potential energy (see Figure 8C). According to the fluctuation-

FIGURE 9 | Principles of coarse-graining of food constituents: (A) back-mapping from atoms to colloidal systems; (B) examples of coarse-graining applied to
crystalline (cellulose) and amorphous constituents (pectins, starch) of potato parenchyma cells.
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dissipation theorem, the states corresponding to each maximum are
unlikely, but their long-term average in molecular dynamics
converges towards the likeliest state at equilibrium. This result
will be obtained for microscopically reversible phenomena
integrated in time with a time-reversible scheme. However, the
convergence to realistic states may be very slow due to explicit
numerical schemes, which are stable only for time steps much
smaller than the period of the vibration of the lightest atom,
typically 1 picosecond in the presence of hydrogens. When
trajectories are not required but only configurations or
distributions, Monte-Carlo sampling offer atoms better results. It
can explore the surface energy in a non-physical manner and
overcome any energy barrier separating two feasible states. When
the sampling involves a sequence of trial moves (e.g., translation,
rotation, volume change), each move must also be picked randomly
to enable the reverse course and preserve the detailed balance. The
macroscopic quantities are in both cases extracted from ensemble
averages.

4.2.3 Coarse-Graining and Boltzmann Inversion
Due to the implicit time integration, acceleration can be gained
only by reducing the number of freedoms coupled with longer
time steps made possible by merging several atoms (or even
molecules) into one heavier particle and therefore subjected to
lower frequency vibrations. The iterative coarse-graining
methodology is shown in Figure 9. The final goal is to
preserve the convergence towards the final property by
devising a proper mean force potential ϕCG(R) from detailed
pair energies ϕij(rij). Even if the potential is not defined uniquely,
methodologies providing canonical averages will minimize errors
on generated configurations, energies, and entropy comparatively
to the full detailed ones. Three methodologies have been usually
preferred for coarse-graining.

• Direct potential fitting (Cranford et al., 2010): ϕCG �∑
list atoms

ωijϕij where ωij are summation weights

representing all contributions (intramolecular,
intermolecular such as hydrophobic and other solvent
effects, electrostatic interactions, hydrogen bonding
between molecules, and/or entropic effects).

• Inverse Monte-Carlo (McGreevy and Pusztai, 1988) refines
iteratively the potential to adjust the pair radial

distributions: ϕstep k+1
CG (R) � ϕstep k

CG (R) − akBT ln
gstep k
CG (R)

gsuper atoms(R),

where gstep k
CG (R) and gsuper atoms(R) are the radial distribution

of the CGmodel at step k and of the real one, respectively. a is a
relaxation constant. In practice, the inversion requires averaging
the potential update ϕstep k+1

CG (R) − ϕstep k
CG (R) to all possible

configurations of the pair under study.
• Boltzmann inversion (Reith et al., 2003) is a generalization
of the previous method to polymers: the Helmholtz free
energy F(R) � −kBT lngall atoms(R) is an initial guess for
the potential ginitial

CG (R); the methodology is applied
separately to intra- and intermolecular potentials (e.g.,
angular) with an order determined by the intensity of
each potential (ϕstretchCG > ϕbendCG > ϕnon−boundedCG > ϕdihedralCG ).

Though the same methodologies could be applied to adjust
forcefields to experimental data, they are presented in a logic of
bottom-up modeling and simulation built on molecular
mechanics. The knowledge gained at a small scale is used to
reconstruct the macroscopic behavior. At small scales, forcefields
are inherently repulsive, and the packing of particles is very
compact. Excluded volumes vanish at a higher level of coarse-
graining, and some overlap must be accepted to preserve the bulk
density. At this stage, it is noteworthy that described procedures
apply only to conservative forces. Dissipative forces required for
DPD simulations must be adjusted to dynamic properties such as
viscosity or self-diffusion. Finally, and compared with atomic
force fields, coarse-grained forcefields depend on the system’s
state (solid, liquid, gas), possibly on temperature and local
composition. They are, therefore, not recommended for the
calculation of state diagrams without independent validation.

4.2.4 Thermodynamic Equilibrium Between Phases
Studying the effects of temperature and pressure on phase
transition is an easy task with the generalization of efficient
thermostats and barostats. Enforcing equilibrium between
phases in molecular simulation is comparatively much more
difficult. Small systems do not behave as large ones. Water did
not freeze at the right temperature as it was confined. Water and
oil will not create a nice interface within a small cubic simulation
box. Droplets are not spherical, and their shape fluctuates with
the number and the arrangement of the molecules inside each
droplet. Besides, surface tension in droplets smaller than
Tolman’s length deviates from its macroscopic value. The
finite size of tested systems complicates the construction of
large droplets at high dilution. Setting a dimension longer
than the two others forces the creation of one flat interface (or
two). In this case, the transport of small solutes can be tracked
between the two phases at reasonably low concentrations.
However, the statistics are too poor to get reliable partition
coefficients, and the strategy cannot be generalized to polymers.

Chemical equilibration is the chief difficulty in reaching
thermodynamic equilibrium. It requires an exchange of
molecules between the two phases. Liquid-vapor and liquid-
liquid equilibria can be efficiently studied in the Gibbs
ensemble (Panagiotopoulos, 2002) for moderately dense
multicomponent fluids. Figure 10 illustrates the principles.
The phase coexistence properties of multicomponent systems
are studied from a single Monte-Carlo simulation involving two
distinct physical regions with different densities and
compositions. The regions (boxes) can be dissociated without
any common interface. Three types of perturbations are
performed on each box: 1) a random displacement of
molecules that ensures equilibrium within each region, 2) an
equal and opposite change in the volume of the two regions that
results in equality of pressures, and 3) random transfers of
molecules that equalize the chemical potentials of each
component in the two regions.

The great advantage of the Gibbs method over the alternative
techniques for studying phase coexistence is that, in the Gibbs
method, densities and compositions of the coexisting phases are
resolved simultaneously. The coexistence line between phases
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does not require the determination of chemical potentials as a
function of temperature and pressure. The list of operations must
be picked from a repertoire of trial moves in a random order to
preserve the microscopic reversibility. However, the Gibbs
ensemble method remains impractical for very cohesive phases
such as polymers and very ordered systems (crystals, liquid-
crystals). Free-energy calculation methods must be preferred (see
Figure 11).

4.3 Calculations of Activity Coefficients
Within the Flory Approximation
Activity coefficients and excess chemical potentials are essential
properties in food where local composition effects modify
strongly how food constituents are transferred inside the food
or loss during processing or storage. The same properties control
how chemical contaminants are transferred to the food from the
packaging or the storage environment. This section reports how
the mean-field theory of Flory-Huggins formulated initially on
lattices can be turned into a tailored and robust predictive method
by using atomistic calculations as inputs. The benefit is twofold.
The theory enables first-order predictions without explicitly
representing the condensed phase (interacting liquids,
entangled polymers). Atomistic calculations with detailed
forcefields can replace obsolete group contribution methods
and calculations on lattice symmetric imposing symmetric
coordination numbers for A surrounding B, and B
surrounding A.

4.3.1 Prior Definitions
G.N. Lewis proposed the concept of the thermodynamic potential of

substance i in the phase α, μi,α(T,P), while verifying that zμi,αzP |T � �Vi

with �Vi � RT
P the molar volume of the gas i. After integration at a

constant temperature, the change in chemical potential from

pressure Pref to P is RT ln P
Pref for a pure ideal gas. Lewis

generalized to phase mixtures (ideal or not) by replacing pressure

by a function fi, called fugacity and assessing the capacity of a

substance literally to flee: μi,α − μrefi,α � RT ln fi,α

fref
i,α

. Reference values at

the temperatureT μrefi,α andfref
i,α are physically related, but the choice

of the reference chemical potential or the reference fugacity is
arbitrary. Fugacities of substances absorbed on solids can be
determined directly by molecular modeling using the grand-
canonical ensemble (μVT). Its utility lies in its resemblance with
experimental measurements (e.g., sorption microbalance): the
system interchanges particles with a reservoir so that the
chemical potential can be by changing the number of particles
changes accordingly. As for the Gibbs ensemble, the method is
prohibitive for condensed phases. Flory-Huggins’ theory offers a
scale-invariant to estimate activity coefficients, cvi,α , relative to
volume fractions ϕi,α in any condensed phase, as summarized in
Table 5. The presented relationships expressing cvi,α in function of
ϕi,α are equivalent to conventional sorption isotherms for binary and
ternary mixtures. Indeed, activities and cvi,α are related as:

fi,α(T)
fref
i,α (T)

� cvi,α(T)ϕi,α. (34)

FIGURE 10 | Strategies to represent implicitly thermodynamic equilibrium between phases in molecular simulations.
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By considering that partial molar volumes are similar in both
phases, solute partition coefficients between the phases α and β
are given by:

K(T)
i,αβ

� ϕi,α/ �Vi

ϕi,β/ �Vi

� cvi,β(T)
cvi,α(T). (35)

Defining the activity coefficients respectively to volume fractions
instead of molar fractions as in the regular solution theory offers
several advantages. Volume fractions enable to consider situations
where the solute i is larger than surroundingmolecules and also the
converse situation where i is infinitely smaller than polymer
segments. At this stage, it is important to note that the reference

state of solute i is an amorphous state. If its reference state is solid at
temperature T, a fugacity correction equals to the ratio of fugacities
between solid and liquid states must be added [see Ref. (Nguyen
et al., 2017b)]. Flory-Huggins sorption isotherms are equivalent to
Henry ones at infinite dilution and describe well swelling effects
(Oswin type isotherms) at high concentrations. Sorption is assumed
to be reversible (no hysteresis). Generalization to sorption-
desorption cycles with hysteresis when Tg is crossed during
sorption can be found in Ref. (Kadam et al., 2014). For liquids,
the Kirkwood-Buff (KB) solution theory (Kirkwood and Buff, 1951)
at a microscopic scale can provide exact macroscopic predictions
even for interacting liquids and vice-versa, as shown by Arieh Ben-
Naim (Ben-Naim, 1977). The pro and cons of KB and FH theories

FIGURE 11 | Methodologies to calculate activity coefficients and chemical potentials: (A) overview of explicit methods based on Free-energy calculations; (B)
implicit method at atomistic scale based on the Flory approximation.
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are discussed in (Nguyen et al., 2017b). Corrections derived from
KB integrals and pair radial distributions are mainly required for
compressible mixtures and large solutes, as shown in (Gillet et al.,
2010). The term ncompressible

k around i captures the positional entropy
reduction due to the specific arrangement between a large solute
i and the solvent molecules.

4.3.2 Calculation of χTi,k at Atomistic Scale
The calculation procedure of excess chemical potentials is
summarized in Figure 11, with technical details given in Refs.
(Gillet et al., 2009; Gillet et al., 2010; Vitrac and Gillet, 2010;
Nguyen et al., 2017a; Nguyen et al., 2017b; Zhu et al., 2019a). The
Flory-Huggins isotherm comprises a positional entropy term and
an enthalpic term proportional to the extent of {χi,k}k�P,F. The
first term is determined by the number of molecules k, which are
displaced by the introduction of i assuming that the mixture is
incompressible (first approximation) or compressible (from
radial distribution). The second term is essentially enthalpic,
but it also contains the non-positional entropic contribution
capturing the fluctuations of the contacts between molecules.

Both properties can be studied by molecular modeling (packaging
of molecules, pair interactions energies). The advantage of the
approach is the capacity to extrapolate the results to arbitrary
binary, ternary and quaternary composition. Aqueous and
hydroalcoholic solutions have been specifically discussed in
Ref. (Gillet et al., 2010).

Flory-Huggins coefficients {χi,k}k�P,F are defined as the
dimensionless mixing energy (enthalpy) in excess relative to
pure compounds; it is defined for polymers (k � P) and
liquids (k � F):

χ(nk,T)i,k � 〈hnki+k〉T + 〈hnkk+i〉T − 〈hnkk+k〉T − 〈hi+i〉T
2RT

for k � P, F, (36)

where 〈X〉T represents an ensemble-average ofX, nP is the length
used in the approximation of the polymer and nF � 1.

In agreement with the original Flory approximation, enthalpies
〈hA+B〉T are estimated by summing energies of contact ϵAB whenB is
contacting the seed molecule A. 〈hB+A〉T represents the same energy
when B is used as a seed molecule. In practice, ϵAB is calculated by
choosing an orientation randomly for the contact molecule and by

TABLE 5 | Relevant binary and ternary Flory isotherms [see details in Ref. (Zhu et al., 2019a)]. The formula applies only to homogeneous phases. For heterogeneous phases
(e.g., emulsions), the effective partition coefficient/activity coefficient must be spatially homogenized.

Sorption of solute i in a liquid k =F or in a mixture of liquids F1 and F2

Binary mixtures For binary mixtures, i + P (polymer), the activity coefficient is given by: ln cvi,F(ϕi,F ,T) � (1 − ( 1
ri,F

− ncompressible
k around i ))(1 − ϕi,F ) +

χ(T)i,F (1 − ϕi,F )2 (47)

with χ(T)i,F being the Flory-Huggins interaction coefficient between i and F . ri,k represents the number of molecules of F
displaced by the insertion of the substance i in F . For most of the migrants, r−1i,F is expected to be larger than unity in
water and ethanol and lower than unity in oil. ri,F can be approximated as

�VF
�Vi
with ncompressible

k around i accounting for the partial
compressibility of the molecules of i and F . Rigorously, partial molar volumes should be used instead of molar
volumes

Ternary mixtures The activity coefficient in mixture of two miscible liquids F1 and F2 can be estimated with:

ln cvi,F1+F2 � (1 − ϕi) − r−1i,F1ϕF1 − r−1i,F2ϕF2 + [(χ i,F1ϕF1 + χ i,F2ϕF2)(ϕF1 + ϕF2)]

−χF1 ,F2(Vvdw
i

VP
F2

)ϕF1ϕF2 − ϕiϕF2ϕF2(dχ i,F2dϕF2
) − ϕiϕF1ϕF2(zχ i,F1zϕF2

)
−ϕiϕ2F1(zχ i,F1zϕF2

) − ϕiϕ
2
F1(zχi,F1zϕF1

) − (Vvdw
i

VP
F2

)ϕF1ϕ2F2(zχF1 ,F2zϕF2
)

−(Vvdw
i

VP
F2

)ϕF1ϕ2F2(zχF1 ,F2zϕF1
) − ϕiϕF1ϕ

2
F2(zχi,F1 ,F2zϕF1

) − ϕiϕ
2
F1ϕF2(zχ i,F1 ,F2zϕF2

)
−χ i,F1 ,F2ϕF1ϕF2(1 − 2ϕi)

(48)

with χ i,F1 ,F2 being a ternary Flory-Huggins coefficient whose contribution can be neglected in the absence of a specific ternary
complex in the solution

Sorption of solute i in a polymer P

Binary mixture ln cvi,P(ϕi,P ,T) � 1 − ϕi,F + χ(T)i,P (1 − ϕi,P)2 (49)

with χ(T)i,P being the Flory-Huggins interaction coefficient between i and F
Tertiary mixture The activity coefficient in a wet polymer associated with a volume fraction of water ϕw, depends on the three pairs of Flory-

Huggins coefficients, χ i,P , χw,P (water in dry P), χ i,w (solute in water), as

ln ci,Pwet
� (1 − ϕi) − ϕw

�Vi
�Vw

− (1 − ϕi − ϕw)
1
ri,P

+ (χw,i
�Vi
�Vw

ϕj + χ i,P(1 − ϕi − ϕw))(1 − ϕi) − χw,P
�Vi
�Vw

ϕw(1 − ϕi − ϕw). (50)
The corresponding Flory-Huggins interaction coefficient in a copolymer AB, χ i,(AB), reads:
χ i,(AB) � χ i,AϕA + χ i,BϕB − χABϕAϕB. (51)

Eq. 51 averages of all possible contacts between i − A and i − B, where the term χABϕAϕB represents the
additional cohesion energy brought about by the interactions between A and B. It can be generalized to more
complex copolymers while the contacts can be assumed perfectly random (i.e., no macro- or microphase
separation)
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translating it along a random line until at least one point of contact is
established between the van der Waals surfaces of the contact and
seed molecules. The process is repeated for all conformers and
stereoisomers considered. Finally, hA+B is estimated as the product
of contact energies and the number of neighbors zAB (number of B
molecules surrounding A):

〈hA+B〉T � 〈ncooperativezABεAB〉T ≈ ncooperative〈zAB〉〈εAB〉T. (37)

Equation 37 assumes that ϵAB and zAB are statically
independent (zero covariance). For polymers, the property
of independence is achieved with a large enough nP value so
that the surface of contact of the polymer is independent of

the length of the considered polymer. The main advantage of
the whole approach is that there is no need to represent
entanglements in the polymer and free-volume. The shape of
the backbone of an infinitely long chain with shorter
oligomers prevents head and tail atoms from coming in
contact with any van der Waals surface. Cooperative
hydrogen bonding is captured by using a value of
ncooperative greater than one. The latent heat of vaporization
of water can be correctly approximated by 〈hwater+water〉T
using a value of ncooperative different to unity. This value
depends on the type of forcefield used to simulate water.
As an example, the rigid water model governed by the TIP4P

FIGURE 12 | Partition coefficients Ki, EVAwater
calculated at atomistic scale between ethylene-vinyl acetate (EVA) and water: (A) FH coefficient (χ i,P) vs. polymer chain

length (nP) and pair contact configurations; (B) effect of acetylation rate [continuous curve from Eq. (51); symbols � explicit copolymers]; (C) Ki, EVAwater
vs. acetylation rate for

aromatic solutes; (D) in-house software with a friendly interface and databases precalculated at molecular scale enabling the rapid extrapolation of partition coefficients to
arbitrary conditions.
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forcefield gives an acceptable value with ncooperative � 1
whereas ncooperative � 4 is required with the same forcefield
but using three-point charges (forcefield TIP3P). The number
4 reinforces in this case that any water molecule is on average
involved in 4 hydrogen bonds of similar strength.

Contact energies are calculated irrespective of any temperature
consideration. The effect of temperature is recovered by
weighting the distribution of contact energies with the
Boltzmann factor B(ϵ):

〈εAB〉T �
∫+∞

−∞
pr(ε)B(ε)εdε

∫+∞

−∞
pr(ε)B(ε)dε

withB(ε) � exp( − ε/(RT)). (38)

At the expense of calculating two integrals, Eq. 38 can be used to
estimate χ(nk,T)i,k at several temperatures. Conformers need to be
generated so that they represent their conformations (radial
distribution, constraints of torsion) in the corresponding
condensed phase. In practice, they are sampled from molecular
dynamics simulations of the equivalent condensed phase.

4.3.3 Examples
The whole approach is versatile and can cover a large number of
situations, as exemplified in Figure 12. The study detailed in
Ref. (Lu et al., 2008) shows that partition coefficients between a
random copolymer material and water are determined for a
broad range of organic solutes and isomers. Conventional
group methods, such as solubility parameters, drop
important molecular details such as structural isomerism,
stereoisomerism, tacticity, pattern order, and local chain
composition. The examples from Ref. (Nguyen et al., 2017b)
show how the calculations can be done inexpensively from
homopolymers and then subsequently extended to copolymers
(Figure 12A) via Eq. 51 or calculated directly on copolymers
(Figure 12B). The results are similar For genuinely random
copolymers, and Eq. 51 averages all microscopic contacts,
including specific hydrogen bonding, satisfactorily.
Nevertheless, mixtures of homopolymers must be considered
differently by averaging the energy of mixing and not contact
energies, as discussed in the supplementary information of Ref.
(Nguyen et al., 2017b).

By combining atomistic calculations with Eq. 35, partition
coefficients were calculated continuously as a function of the
polymer’s acetylation rate. Acetate groups were assumed
randomly distributed along the chain. Confidence intervals
represent the uncertainty in the convergence of averages with
minimum covariances (Figure 12C). Extensive sampling of pair
configurations (from several hundred million to several hundred
billion) facilitates identifying specific interactions between
chemicals. Boltzmann-weighted ensemble averaging (Canonical
ensemble) makes it possible to extrapolate sampled results to
different temperatures. The only condition is that the
conformations of tested conformers remain representative of
the state of each component in the mixture. For production,
results can be tabulated (sampled pair contact energies,
coordination numbers, specific volumes, etc.) and stored for

future use. Figure 12D shows the prototype of an in-house
software used to calculate partition coefficients between
arbitrary plastic materials and food simulants. The calculation
procedure is predictive for any organic solute without net charge
and prediction errors in the same range as experimental errors.
The applicability to food constituents has been tested successfully
for starch-water mixtures at rubber state, as met during deep-
frying (Nguyen et al., 2017a).

4.4 Free-Volume Theory of Diffusion
4.4.1 Why do We Still Need Theory Instead of Brute
Force Calculations?
The concept of free volume is fundamental to liquids and
amorphous polymers. Free volumes are defined as the free
space between molecules or chain segments; they control
important properties of amorphous phases such as their glass
transition temperature, their thermal expansion, and their
transport properties (White and Lipson, 2016). The law of
Stokes-Einstein predicts diffusion coefficients in fluid phases,
which are proportional to 1) temperature, 2) the reciprocal
viscosity of the liquid, and 3) the reciprocal diameter of the
solute. The hydrodynamics theory behind the Stokes-Einstein
relationship is, however, not sufficient to illuminate the activation
of diffusion by temperature. Indeed, the fluidity (the reciprocal
viscosity) or equivalently the friction coefficient is also activated
by temperature. Besides, the theory falls short of explaining the
extreme mass dependence of diffusivities as observed in
amorphous polymers (gels, thermoplastics, thermosets).
Although diffusion at constant volume requires a little
activation, kBT, the cooperation of many degrees of freedom
in the host environment is needed to induce the translation of
gases or organic solutes larger than surrounding rigid segments.
Thermal expansion of van-der-Walls liquids and rubber
polymers (ca. 0.1% every 10°C in polyethylene) is the
dominant cause of the acceleration of the diffusion in these
phases and not directly temperature.

Figure 13 justifies that molecular modeling alone cannot
address today all aspects of the mechanism of diffusion for
molecules larger than voids in cohesive systems (glasses,
entangled polymers). There are two limitations. Firstly, the
relaxation modes of entangled polymers or liquids at glassy
state cannot be simulated at atomistic scale, as decorrelation
times are not accessible to brute force calculations before the next
decade. Secondly, large molecules do not translate as a single rigid
unit but proceed by small reorientations of internal subunits. A
macro-state jump of the center-of-mass succeeds on distances
larger than the gyration radius of the diffusant involves, therefore,
a large collection of micro-state reorientations. We thought
falsely that coarse-graining applied to both the diffusant and
the surroundings could alleviate previous time scale
limitations. But, because the coarse-graining process
removes important atomistic details governing the rate of
translation of real diffusants, it created artifacts instead. Log-
term molecular dynamics up to 0.06 ms did not succeed in
reproducing the strong mass dependence observed at solid-
state, as discussed in Ref. (Durand et al., 2010).
Heterogeneous dynamics were replaced by smoother ones
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consistently with Rouse modes observed at molten state when
the entire chain of the polymer can translate instead of small
segments at solid-state. For example, the displacements of
hydrogen atoms along the polyethylene chain control the
diffusion rate of helium. In contrast, the shaft motions of
connected rigid monomers (-CH2�CH2-) govern the
translation of methane (CH4). Larger molecules require

activating the relaxation of several polyethylene segments,
causing hops to span over a broad range of time scales, as
previously discussed in Section 3.2.2.

4.4.2 Theory of Vrentas and Duda and its Extensions
Free-volume theory and its extensions, shown in Figure 14,
offer an elegant framework to address the problem of many

FIGURE 13 | Time scale limitations met by atomistic simulations: (A) comparison between macroscopic fluctuations and those accessible today to molecular
modeling; (B) projection of capacity of calculations for the next decade in polymers; (C) scaling of diffusion coefficients of gases and organic molecules with their van-der-
Waals volume Vvdw in rubber (natural rubber) and glassy polymers (polyvinyl chloride: PVC) at 298 K (Berens and Hopfenberg, 1982).

Frontiers in Chemical Engineering | www.frontiersin.org January 2022 | Volume 3 | Article 78687928

Vitrac et al. Food Properties Prediction

https://www.frontiersin.org/journals/chemical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles


correlations between the translation of the center-of-mass of
the solute and the displacements of the surrounding
molecules or segments theoretically. Using theory instead
of brute force calculations removes restrictions on solute size
and the distance to the glass transition temperature Tg. The
mean-field approximation accepts a rapid parameterization

from simple geometry calculations on conformers and solute
self-diffusion coefficients determined experimentally or by
molecular modeling. By assuming that the translation of a
solute is only possible if the free volume fluctuation is larger
than a critical volume V̂

p
, D is obtained by superimposing all

the translation modes for V≥ V̂p
, one gets

FIGURE 14 | Principles of free-volume theory. (A) Interpretation of free volumes in liquids/amorphous polymers at equilibrium (rubber state) and subjected to
various degrees of subcooling (glassy state); (B) Connection between the original theory of hole-free volume of diffusion (Cohen and Turnbull, 1959; Vrentas and Duda,
1977b; Vrentas and Vrentas, 1994a; Vrentas and Vrentas, 1994b) and its recent extensions (Fang et al., 2013; Fang and Vitrac, 2017; Zhu et al., 2019b). (C) Principle of
decomposition of diffusants in rigid jumping units obeying each the hole-free volume theory. (D) Justification of different scaling relationships of D for solutes with a
same molecular massM but different geometries. (E) Interpretation of the experimental scaling of D for homologous linear solutes withM at 298 K [from Ref. (Zhu et al.,
2019b)].
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D(V̂p) � ∫+∞
V̂
p

p(v)D(v)dv. (39)

The idea behind Eq. 39 initially postulated by Cohen and
Turbull (Cohen and Turnbull, 1959) is that a diffusivity may
exist for each type of free volume. We could imagine that all
molecules do not translate at the same time to the same
fluctuations of free volumes. In the original theory, volumes
are expressed in excess of an irreducible volume at a critical
temperature Tcr:

Vf � V(Tcr)⎛⎜⎜⎜⎝exp⎛⎜⎜⎜⎝∫T
Tcr

α(T)dT⎞⎟⎟⎟⎠ − 1⎞⎟⎟⎟⎠, (40)

where α(T) is the coefficient of thermal expansion of the fluid. This
hypothesis is not realistic in the case of polymers, because the
redistribution of interstitial free volumes is associated with
relaxation of the polymer chain and thus with very high
activation energies (Watanabe, 1999). Vrentas and Duda (Vrentas
and Duda, 1977a; Vrentas and Duda, 1977b) removed the objection

by arguing that only one hypothetical fraction of free volumes
contributed to diffusion; they called it hole-free volumes (hFV).
Such theoretical volumes would be redistributed within the polymer
without a specific energy barrier. The authors consolidated their
theory and arguments during the following 2 decades (Vrentas and
Vrentas, 1998). The final theory connects self-diffusion coefficients
with mutual and trace diffusion coefficients in liquids and polymers
at glassy and rubber states. The canonical formulation for a rigid
solute in a rubber polymer at infinite dilution reads [see Ref. (Vrentas
and Vrentas, 1998) for details]:

D � D0 exp(−Ep

RT
) exp( − ξ

V̂
p

2

�VFH2/c2)
� D0 exp(−Ep

RT
) exp⎛⎝ − ξ

c2V̂
p

22

K12(T − Tg + K22)⎞⎠,

(41)

where ξV̂
*
2 is the critical hFV to induce a translation; �Vp

FH2
is the

critical hFV available for the solute (1) and the polymer (2). ξ is
the ratio between the critical volumes of the jumping units of the
solute and the polymer.

FIGURE 15 | (A) Scaling relationship for linear solutes, which are used to probe hole-free volumes in the extended theory of Vrentas and Duda [the two continuous
models are from Refs (Fang et al., 2013) and (Zhu et al., 2019b)]; (B) an example of predictions for water in polyethylene terephthalate between 5°C and 190°C. The only
degree of freedom is the ratio of thermal expansion between glassy and rubber states, r, and characterizing the degree of subcooling of the processed polymer (see
Figure 14A). It needs to be fitted or measured independently on the finished product.
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Because all the parameters can be inferred from quantities
independent of the diffusion coefficients or simulated by
molecular modeling, it is a predictive and consistent theory
from first principles and with Boltzmann statistics. The theory
has been later extended (Fang et al., 2013; Fang and Vitrac, 2017;
Zhu et al., 2019b) to cover flexible molecules and not only rigid
solutes. Earlier mechanisms were kept, a rigid segment can
translate or reorient when a void of matching the size of the
rigid pattern (blob) opens during redistribution (Fang et al.,
2013). The dynamics of the center of mass corresponding to
several connected segments is particularly complex as all blobs
cannot translate at once. This mechanism was studied by
molecular dynamics and mapped onto quantum oscillators to
correct the probability of each microstate. The new description
predicted successfully that organic solutes (aromatic, aliphatic) in
solid polymers would translate with all rigid segments blocked
except one. With the help of mode coupled theory, all hFV-
related effects were recast in the behavior of linear probes and
more specifically in the scaling exponent, αlin relating D
with the number of connected blobs, as D∝M−αlin (Zhu et al.,
2019b):

αlin(T, Tg) ≈ 0.24
c2V̂

p

2

V̂
(T,Tg)
FH2

� 0.24
c2V̂

p

2

K12

1
K22 + T − Tg

. (42)

The revised hFV theory is equipped to capture diffusivities in
rubber and glassy polymers of any solute consisting of one single
blob or of many blobs of the same size or not, symmetric or not.
Figure 15 provides the practical formula and scaling curves valid
for 12 polymers (representing the following polymer families:
polyolefins, polyesters, polyvinyls, and polyamides). An example
of predictions is shown for water in polyethylene terephthalate
(PET). The results are remarkable as PET is a polymer, which
represents one-third of all food packaging materials; it is the only
polymer that can be recycled for food contact so far, and no free-
volume theory has been previously published for this polymer.
Calculations of the shelf-life of beverages based on diffusion
coefficients and sorption isotherms are presented in Ref. (Zhu
et al., 2019c).

5 GUIDELINES FROM A MICROSCOPIC
PERSPECTIVE

Diffusive or dispersive phenomena have an entropic origin; they
are therefore everywhere and characterize the propensity of matter
to separate under the effect of thermal agitation. In foods, they are
affected by food structure, free volumes, and molecular
interactions. The concepts of entropy (thermal, configurational,
conformational) are introduced frugally in continuummechanics
via the selection of constitutive laws next to the conservation
laws. These constitutive laws are first or second-order
approximations of more complex microscopic descriptions,
whose complexity is generally reduced to an apparent
diffusivity. In the context of food and food packaging,
effective diffusivities can range from 10−3 to 10−19 m2·s−1.
This section reviews the strategies for estimating them by

adopting a microscopic and mechanistic perspective. The
first guidance uses a classification of diffusive phenomena
to choose between spatial and temporal homogenization and
to suggest a technique. Most concepts are flexible and can be
adapted to the phases, domains, species, scales, dimensions,
and coupling involved. The second guidance illustrates how
apparent radial forces as real as osmotic forces can emerge
from microscopic descriptions to describe large classes of
entropy-driven problems. This introductive example offers
an invitation to discover a highly active research field aiming
to understand and control microscopic phenomena.

5.1 Mechanism-Based Strategies to Use
and Derive Effective Diffusivities
Analyzing transport properties in foods at all scales at once is either
intractable or useless due to the inherent variability of the biological
matter. By contrast, replacing microscopic and molecular
composite effects with effective diffusivities for relevant geometry
domains (skin, crust, core, packaging layer, etc.) allows the use of
generic multiphysics simulation software. They are not developed
for food products and processes and use continuum mechanics to
resolve coupled transfer equations. By repeating the simulations for
different property values corresponding to different compositional
and structural effects, macroscopic properties of processed foods
(e.g., barrier or shelf-life performances) can be related to
microscopic or molecular ones and possibly adjusted to reach
the desired target. When the properties cannot be tabulated in
advance, the effective properties need to be updated regularly.
Parallel computing and client-server architecture (usually
available in commercial packages) facilitate the development of
hierarchical modeling between scales. A whole framework so-called
FMECAengine 3D has been developed by us with combine three
main loops: one on microscopic properties so-called [E]valuation, a
second one [D]ecision devoted to 3D at themacroscopic scale, and a
final one [R]esolve relying on multicriteria optimization with
microscopic properties as free parameters and product
characteristic as goals [see (Zhu et al., 2019c)].

The choice of the appropriate local and global levels, where the
equivalent diffusivity is calculated and valid, respectively, remains
a challenge. Intuitively, one might think that the smallest level
would require the least computational effort (e.g., fastest mixing
or decorrelation), but this does not consider the cost of refined
details. For most problems, temporal and spatial problems are
very intertwined. The chief question is which variable needs
absolutely to be considered continuous. As a rule of thumb, it
is preferable to consider continuous in-time representations
when energy barriers control long waiting time distributions.
The following example will show that considering time and space
continuous requires introducing proper probability measures.
Indeed, what is the probability of two particles moving
randomly to meet in diluted regime over a given duration?
When a collection of particles are considered, the many
interactions problem (collisions are very likely) removes the
need for detailed space-time statistics as soon as the density
and packaging are well reproduced.
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TABLE 6 | Homogenization type for a selection of diffusion-controlled phenomena.

Homogenization type Scale Contribution on diffusion-
controlled
phenomena

Methodology of study Cross-references

Long-time
homogenization (“first hit”)

Molecular • contribution of concerted motion
in solutes on diffusivities

Atomistic molecular dynamic
simulations (all atoms or united
atoms)

Overview in Section 3.2.1, Section 4.2,
Figure 3, Figure 8

• contribution of solute-
environment hydrogen bonds on
activation energies

• reorientation and rotational
diffusion

• diffusion-controlled crystallization
or melting

Supramolecular • release or trapping of solutes Coarse-grained molecular
dynamics simulations, Kinetic
Monte-Carlo

Overview in Section 3.2.2, Section 4.2,
Figure 4, Figure 9• rate of approach of two reagents

• hysisorption on surfaces
• coalescence
• order-disorder transition
• diffusion in 2d objects (layers,

micelles, liposomes)
Microscopic • Brownian motions in crowded

systems (glass behavior) or in
correlated media

Kinetic Monte-Carlo, Langevin
dynamics

Overview and examples in Section 3.2.3,
Section 3.2.4, Figure 5, Figure 6

• trapped liquids (topological
restrictions)

• phenomena subjected to
thresholds (adhesion, flow)

• packed-unpacked transitions
• diffusion in Knudsen regime in one

single pore/capillary
• diffusion in emulsified systems

with a gradient of chemical affinity
• diffusion involving a

devolatilization or an evapo-
condensation

• transport of nanoparticles in
relationship with external stresses
and strains

Spatial-homogenization
(“space averaging”)

Microscopic • diffusion around inert obstacles Volume averaging or spatial
homogenization

Theory in Section 2.1, Section 2.2,
Figure 2• solubilization-diffusion across

multiple parallel layers (core-shell,
stacks)

• diffusion in materials with
preferred orientations

• diffusion with reactions or
transport

Hybrid-homogenization Molecular and
supramolecular

• effect of local composition on
diffusivities (mutual component
diffusion)

Hybrid modeling coupled to
theory

Overview and examples in Section 3.1,
Section 4.3, Section 4.4, Figure 12,
Figure 13, Figure 14, Figure 15

• mutual diffusion
• electrolyte diffusion
• mixing of miscible species
• diffusion coupled with slow

relaxation, reactions
Microscopic • percolation in biological, fractal,

porous systems
First passage algorithm Overview and examples in Section 2.3,

Section 2.4, Section 3.1, Section 3.2.4,
Figure 6• mutual diffusion in polyphasic

systems
• diffusion associated with osmotic

effects
• diffusion coupled with non-linear

sorption isotherms
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As general guidance, we propose a balance by separating
problems above and below the thermodynamic limit (see
Figure 1B). Table 6 lists practical strategies to extract effective
diffusivities from poor selective mechanisms such as viscous flow,
bulk, and Knudsen, surface diffusion to very selective ones such as
molecular sieving, capillary condensation, diffusion solubility.
Above the thermodynamic limit, diffusion phenomena are
self-similar, but scaling remains particularly difficult to predict
in the presence of multiple domains, components, or coupling
with other driving forces. Below the thermodynamic limit, the
many interactions with components, interfaces, and phases may
delay the convergence dramatically to the thermodynamic limit
and lower diffusivities.

5.2 An Analytical Example of How to Treat
Microscopic Mechanisms of Diffusion With
Radial Forces
Spatial heterogeneities and viscoelastic relaxation are examples
preventing the time and length scales from being separable. They
appear in various diffusive phenomena ranging from dissolution
to bubble growth. At the microscopic scale, relating the diffusive
behavior to the composition gradient as driving forces becomes
rapidly impractical. Concentration fields frequently fluctuate due
to morphological details (e.g., obstacles, disorder, correlation,
network dead-ends), thermodynamic effects (supersaturation,
sorption, crystallization . . . ) and external coupling (osmotic
effects, swelling, shear, flow, Marangoni convection). All
dispersive phenomena share a common feature: the position
and velocity of individual particles cannot be known for sure.
The behavior of a single particle can be described in terms of
probability density functions in the laboratory-fixed coordinates
(via the Fokker-Planck equation) or in a Lagrangian reference
frame (via the Langevin equation). However, some concepts are
more adapted than others to describe certain phenomena such as
order-disorder transitions (mixing, melting, solubilization, elastic
behavior). The concept of radial force is one of them and can be
deduced from the representation of entropy in statistical
mechanics (Neumann, 1980; Roos, 2014).

In the food context, radial forces can be naturally derived
and from the differentiation of the chemical potential of one
single particle (atom, blob, molecule, fluid volume, colloidal
particle), denoted μΔr1,r, by assuming that it is located within a
spherical shell of radius r and thickness Δr. For an
eventually non-ideal mixture [see the discussion in Ref.
(Krishna and Wesselingh, 1997)] and Eq. 39 in Ref. (Zhu
et al., 2019a), the magnitude of the radial force reads for
each particle:

fr � −zμ
Δr
1,r

zr

∣∣∣∣∣∣∣∣T � Γ1
kBT

ρΔr1,r

zρΔr1,r
zr

∣∣∣∣∣∣∣∣T � Γ1
2kBT
r

, (43)

where ρΔr1,r � 1/(4πr2Δr) is the density of one single particle in
the shell and Γ1 � 1 + z ln cv1

z ln ϕ1
|T is the thermodynamic factor

associated with scaling the activity coefficient cv1 with the
volume fraction ϕ1.

From Eq. 43, all displacements of species due to chemical
potentials (without external forces) can be associated with a radial
and centrifugal force with an average magnitude proportional to
the reciprocal distance between the source and recipient regions.
Conventional descriptions of random walks are recovered by
equilibrating fr with the viscous drag ζ1

d〈r〉
dt associated with the

friction coefficient ζ1 � kBT
D1
, where D1 is the local diffusivity.

Integrating the force balance in spherical coordinates leads to the
following differential equation:

2Γ〈1
r
〉 � 1

D1

d〈r〉
dt

. (44)

Equation 44 is locally valid for any particle following a
random walk in a medium governed by D1 and Γ1. Its
integration can be carried out either using Monte-Carlo
sampling or with analytical solutions of the probability density
function pr, which gives the probability that a particle colliding
with its environment reaches a distance between r and r + dr
during t. For an isotropic, uniform, and infinite medium, the
distribution has a Gaussian form:

p(r, t) � 4r2!!
π

√
σ(t)3 exp[ − ( r

σ(t))2], (45)

where σ is the mode of the distribution (likeliest value of r),
〈r〉 � 2!

π
√ σ, 〈r2〉 � 3

2σ
2, 〈1r〉 � 2!

π
√ 1

σ. Eq. 44 becomes:

σ(t)dσ(t) � 2ΓD1dt, (46)

with the unique solution σ2 � 4ΓD1t or equivalently
〈r2〉 � 3

2σ
2 � 6ΓD1t, which is the same as the Einstein

equation for a free random walk for Γ � 1.
The approach is very general and can be applied to any particle

and pair of particles (gel junction, particles representing an
interface or an ordered phase) with the addition of proper
forces (Coulombic, surface tension, rubber elasticity). In the
general case, the distribution is unknown, but it is the most
probable distribution maximizing entropy (or the amount of
missing information). It can be derived by invoking the
central limit theorem or from more straightforward rules. For
any finite region divided into cells, the probability of reaching
each cell on the long term is proportional to the cell volume
divided by the local activity coefficient with a normalization,
which depends on the distance to the neighboring regions as
shown in Ref. (Vitrac and Hayert, 2020).

6 CONCLUSION AND PERSPECTIVES

This article tries to propose some generic recipes for those who
want to get into the “mathematical cooking” of food products.
The core of the methods consists in presenting how chemical
structural information, cell structure and possibly phase
organization can be encoded in a coherent mathematical
scheme that can be used with classical simulation software
at the scale of continuous media. The main tool is the
asymptotic analysis. Depending on the importance of the
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thermodynamic contribution, it must be applied to space or
time dimensions. The available computing power necessarily
limits the possibilities of prediction and extrapolation but the
bricks of a rigorous construction are illustrated. They already
offer a significant progress in a context where few properties
have been tabulated on raw materials and foods during
processing. Indeed modeling and simulation in food is a
generally overused term because it means both a descriptive
mathematical model and a mechanistic model that can be used
to extrapolate, generalize, or even imagine new food products.
But the properties are missing at fine scale and the goals can be
multifaceted (nutritional, sensorial, cooking behavior, shelf
life, health, environmental, etc.). Cooking, drying, freezing and
packing food on a computer does not seem very appealing, but
the ingredients are there this time. The substances, the
macromolecules, the processing conditions can be included
in the multi-scale modeling scheme. Not everything can be
solved yet, but great steps have been taken in recent years:
interactions with models from other disciplines, continuous
increase of computing power, many open-source calculation
codes, new high-throughput 3D reconstruction tools, more
food examples, a better acceptance of model predictions by
authorities. The framework is there; now, we must imagine
what we can do with the available tools and imagine the new

tools we would need for food. We miss quantum methods for
foods; they would be beneficial for understanding the complex
biochemical reactions that occur during food processing:
production of allergens, toxic compounds, depletion of
compounds of nutritional interest, digestion, and toxicology
of food constituents. This article was written during the Covid-
19 pandemic; molecular modeling has been proposed and is in
the process of understanding how this new virus works. These
new models give us hope that food construction and
deconstruction rules can be reviewed very soon.
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