

Are forest reserves or deadwood retention key elements for bryophyte diversity?

Marion Gosselin, Yann Dumas, Camille Fabbri, Serge Cadet, Nicolas Debaive, Yoan Paillet, Frédéric Gosselin

► To cite this version:

Marion Gosselin, Yann Dumas, Camille Fabbri, Serge Cadet, Nicolas Debaive, et al.. Are forest reserves or deadwood retention key elements for bryophyte diversity?. International Conference of Ecological Sciences, SFE2, Oct 2018, Rennes, France. hal-03540621

HAL Id: hal-03540621 https://hal.inrae.fr/hal-03540621

Submitted on 24 Jan 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Are forest reserves or deadwood retention key elements for bryophyte diversity?

Gosselin, M., Dumas, Y., Fabbri, C., <u>Cadet, S.</u>, Debaive, N., Paillet, Y., Gosselin, F.

Irstea – Nogent-s/-Vernisson, France

ONF, France

RNF – Dijon, France

International Conference of Ecological Sciences – Rennes – October 22-25 2018

Strategy for forest biodiversity conservation

Forest reserves **left unharvested** are a central part of the strategy for biodiversity conservation...

Land sparing (segregation)

... even though other approaches can improve biodiversity by integrating biodiversity-friendly practices within management (extending rotations, deadwood, pioneer stages ...) Land sharing (integration)

Hunter 1999 Cambridge U. Press Lindenmayer & Franklin 2002 Island Press

State of knowledge

European (Paillet et al. 2010 *Conserv. Biol.*) and Global metaanalyses revealed a diversity of taxonomic answers to forest harvesting cessation

Trends towards mostly negative effect of forest harvesting on local species richness

✤ … with strong variations between taxa…

Global meta-analysis (2014)

State of knowledge

- less temperate studies
- sampling often problematic (e.g.
- pseudoreplication)
 - explanatory factors often not incorporated

ALTERNet

Solution by Do the meta-analyses results account for French temperate forests?

Are there some key structural variables behind the reserve effect ?

Sor bryophytes, do climatic variables play a role in addition to or interaction with management or stand structural variables (Raabe et al. 2010)?

A multi-site sampling design

forests
Balanced between managed
and unmanaged stands

♦ 213 stands in 15 French

(>20 years), on similar sitetypes (topography, soil)

Time since the last harvest

(min Max) MAN: 9 ± 12 years (0 49) UNM: 46 ± 38 years (8 148)

Investigated variables

Explanatory variables

« Reserve »

MAN vs UNM, distance to UNM sites, duration of unmanagement

rstea

« Biological legacy »

Quantity and diversity of :

Deadwood types, Microhabitats Large trees

Constraints Constraints Cons

Models and magnitude analysis

→ Bayesian Generalized linear mixed effects models to explain the richness of each taxonomic group

→ Simulation of a change ΔX in the explanatory variable to assess the **magnitude of the effect** (Barbier *et al.*, 2009) on the mean of the response variable

Reserves highly enhance richness of forest bryophytes and rare fungi

Multiplicative factor of the change MAN ⇒ UNM

Three taxonomic groups with strong + to ++ effects in their best model

The MAN vs UNM model was not the best model for these groups.

Bryophytes: do climatic data enhance the models?

1) Forest bryophyte group

The best model remains the simple « Volume of large deadwood » threshold model

Best Models	Туре	DICm	Variable	Sign.	Magn.
Large deadwood volume (LDV)		529.2	LDV	***	++
Deadwood volume + Humidity	/	529.9	DV	***	+
			Hum	*	0
Deadwood volume + Light	\land	532.5	DV	***	+
			Light	ns	0
Deadwood volume* Humidity	/	533	DV	***	+
			Hum	*	0
			DV*hum	ns	00
Deadwood volume	/	535	DV	***	+
Deadwood volume * Light	/	535.5	DV	***	+
			Light	ns	0
			DV*Light	ns	00

Bryophytes: do climatic data enhance the models?

1) Forest bryophyte group

The best model remains the simple « Volume of large deadwood » threshold model

Best Models	Туре	DICm	Variable	Sign.	Magn.
Large deadwood volume (LDV)	/) _ 529.2		LDV	***	++
Deadwood volume + Humidity	/	529.9	DV	***	+
			Hum	*	0
Deadwood volume + Light	Climatic variables enhance other models in addition to (or interaction with) deadwood volume, with significant though negligible effects			***	+
in add				ns	0
Deadwood volume* Humidity interac				***	+
deadv				*	0
thoug				ns	00
Deadwood volume	/	535	DV	***	+
Deadwood volume * Light	/	535.5	DV	***	+
			Light	ns	0
			DV*Light	ns	00

Results – Q3

14

Bryophytes: do climatic data enhance the models?

The best model remains the simple « **Volume of deadwood** » sigmoid model - Magn = nc

2) All bryophytes

Best Models	Туре	DICm	Variable	Sign.	Magn.
Deadwood volume (DV)	\int	734.9	DV	***	nc
Deadwood volume * Altitude	/	735.5	DV	***	nc
			Alt	ns	0
			DV*Alt	ns	00
Deadwood volume + Humidity	/	736.1	DV	***	0
			Hum	ns	00
Large living tree volume (LV)	\land	736.2	LV	***	0
Deadwood volume + Light	\wedge	736.5	DV	***	+/nc/0
			Light	ns	00/00/00
Mean living tree diameter (Dq)	\land	535.5	Dq	***	0/00/00

Results – Q3

15

Bryophytes: do climatic data enhance the models?

The best model remains the simple « **Volume of deadwood** » sigmoid model - Magn = nc

2) All bryophytes

Best Models		Туре	DICm	Variable	Sign.	Magn.
Deadwood volume (DV)		<u>_</u>	734.9	DV	***	nc
Deadwood volume * Altitude		/	735.5	DV	***	nc
	Topographic and Climatic variables appeared among the best models in addition to (or interaction with) deadwood volume, with low effects			Alt	ns	0
a				DV*Alt	ns	00
Deadwood volume + Humidity b				DV	***	0
to d				Hum	ns	00
Large living tree volume (LV)				LV	***	0
Deadwood volume + Light		\land	736.5	DV	***	+/nc/0
				Light	ns	00/00/00
Mean living tree diameter (Dq)		\wedge	535.5	Dq	***	0/00/00
Large living trees and Mean diameter also were among the best models						

Results – Q3

Conclusion

Strong positive effect of reserves on forest bryophytes and redlisted lignicolous fungi

→ Climatic data enhance the models explaining forest bryophytes richness in addition to deadwood or living wood metrics, but the strongest effects are those of deadwood volume.

Discussion

⇒ The utility of segregative and of integrative practices is confirmed for the richness of these taxa

- \rightarrow Limits : very few old or big reserves (recent policy)
- \rightarrow Possible applications need to be discussed with forest managers

\odot Many thanks to \odot \odot

- ② Your attention!
- © French Ministry of Ecology & ONF for funding
- ③ All the persons (~100) that were involved at some point in the project

