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A B S T R A C T   

There is increasing demand for data on soil organic carbon (SOC) stock (SSOC; kgC m− 2), but the acquisition of 
such data, which relies on the determination of volumetric SOC content (SOCv; gC dm− 3), is often tedious or 
complex. Visible and near infrared reflectance spectroscopy (VNIRS) has proven useful for soil characterization, 
but has rarely been used for direct prediction of SOCv. The objectives of this work were: (i) to compare SOCv 
predictions using VNIR spectra collected in situ vs. on 2-mm sieved air-dried soil (laboratory conditions), on 
three sample sets separately (with in situ spectra collected differently for each set); and (ii) to assess SOCv 
prediction in independent validation using laboratory spectra from all sets. 

Predictions of SOCv were more accurate using laboratory than in situ spectra for two sets, but not for the third 
set, where coarse particles content was rather high and variable. Considering the total set of laboratory spectra, 
predictions in independent validation (leave-one-site-out) yielded accurate SOCv and SSOC predictions (standard 
errors of prediction were 1.9 gC dm− 3 and 0.36 kgC m− 2 at 0–30 cm depth, respectively). This result was 
achieved using local partial least squares regression (PLSR), based on spectral neighbors, which noticeably 
outperformed global PLSR (which uses all calibration samples equally), as often reported when using large soil 
spectral libraries for independent validation. 

Finally, this work demonstrated that SSOC could be quantified accurately using a VNIRS library built on 
archive soil samples, which offers important perspectives for SSOC accounting.   

1. Introduction 

Soil organic carbon (SOC) is the main component of soil organic 
matter, which has a crucial role in soil physical, chemical and biological 
functioning: for instance, it improves soil aggregation and aeration, is a 
reserve of nutrients for plants, and stimulates microbial activity (Lal, 
2014). Moreover, SOC storage has been presented as a solution to help 
mitigate climate change. Indeed, soils represent the largest terrestrial 
pool of carbon, but according to different factors (e.g. land use, man
agement practices), they can behave as a sink or source for atmospheric 
carbon (Metz et al., 2007; Eglin et al., 2010; Dignac et al., 2017). 
Moreover, a small change in SOC stocks (SSOC) can have major effect on 

reducing or enhancing greenhouse gas concentrations in the atmosphere 
(Baldock et al., 2012). In this context, the 4 per 1000 initiative 
(launched during the COP21 in 2015) aims to support soil management 
practices that contribute to long-term SOC storage (Dignac et al., 2017; 
Minasny et al., 2017; "4 per 1000′′ Initiative, 2018). 

However, some progress is required to be able to quantify SOC effi
ciently. Indeed, quantification of SOC at field, region or country scale 
requires data on SSOC (in kgC m− 2), which is calculated from volumetric 
SOC content (SOCv, in gC dm− 3) in the different depth layers of the soil 
profiles considered. Sample SOCv is not determined directly but calcu
lated from gravimetric SOC content (SOCg, in gC kg− 1) and bulk density 
(Db, in kg dm− 3). Conventional determination of SOCg based on Dumas 
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combustion or sulfochromic oxidation requires reagents, generates 
wastes, and might be tedious for carbonated samples (Pansu and Gau
theyrou, 2006). Conventional Db determination requires sampling a 
known volume of intact soil, which is labor-intensive; while alternative 
approaches based on radiation transmitting or scattering are often 
complex and expensive (e.g. X-ray tomography or gamma-ray attenua
tion; Helliwell et al., 2013; Casanova et al., 2015; Lobsey and Viscarra 
Rossel, 2016; Al-Shammary et al., 2018). Thus SOCv determination is 
not trivial task. 

Near infrared, visible and near infrared, and mid infrared reflectance 
spectroscopy (NIRS, VNIRS and MIRS, respectively) have received much 
attention in recent decades for their ability, coupled with chemometrics, 
to characterize a wide range of soil properties, SOCg especially, in lab
oratory conditions or even in situ (Stenberg et al., 2010; Gholizadeh 
et al., 2013; Angelopoulo et al., 2020; Barthès and Chotte, 2020). 
However, attempts to determine Db using these approaches have often 
been disappointing, because Db is mostly related to structural 
pore-space condition and would not have strong absorbance features in 
the infrared range (Minasny et al., 2008; Moreira et al., 2009; Bellon-
Maurel and McBratney, 2011; Veum et al., 2015). Moreover, despite the 
recommendation of Bellon-Maurel and McBratney (2011), few studies 
have attempted to use infrared spectroscopy for direct SOCv quantifi
cation: this has been tested mostly at local scale, with VNIR spectra 
collected in situ on intact or disturbed soil cores (Roudier et al., 2015; 
Cambou et al., 2016; Allo et al., 2020) or on pit walls (Allory et al., 
2019), without independent validation. Interestingly, Allory et al. 

(2019) and Allo et al. (2020) also achieved good SOCv prediction using 
spectra collected on 2-mm sieved air-dried samples. 

Though a range of multivariate regression procedures have been 
used for fitting infrared spectra to soil properties, partial least squares 
regression (PLSR) is by far the most common currently (Angelopoulo 
et al., 2020; Barthès and Chotte, 2020; Barra et al., 2021). It has most 
often been used in global calibration, where all calibration samples 
contribute equally to model development. Yet, several studies have 
demonstrated the interest of local calibration, based on spectral neigh
bors, especially when using large calibration databases (Genot et al., 
2011; Nocita et al., 2014; Barthès et al., 2020). 

This work used samples and data from three previous studies, and its 
objectives were:  

• to compare VNIRS predictions of SOCv using spectra collected on 2- 
mm sieved air-dried samples (laboratory conditions) vs. in situ ac
cording to different acquisition procedures (on intact or disturbed 
soil cores, or on pit walls), through global calibration on represen
tative samples (as in initial studies);  

• to optimize VNIRS prediction of SOCv (then SSOC) in independent 
validation within the total set of sieved dried samples, using global or 
local PLSR;  

• to examine whether SOCv predictions could be indirect, as a result of 
SOCg (or Db) predictions and correlations between SOCv and SOCg 
(or Db). 

Fig. 1. Location of the studied sites, in France.  
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2. Materials and methods 

2.1. Sites 

The samples were collected during three different studies: the first 
one in Restinclières (RES) in late May 2013; the second one in 
Châteaudun (CHA) and Melle (MEL) in March and April 2014, respec
tively; and the last one in Marseille (MAR) and Nantes (NAN) in 
February and May 2017, respectively (Fig. 1). Mean annual temperature 
is 11–12◦C in CHA, MEL and NAN, and 14–15◦C in RES and MAR. Mean 
annual rainfall is 500–600 mm in CHA and MAR and 700–900 mm in 
RES, MEL and NAN, respectively. 

The RES experimental site is located in Prades-le-Lez (43◦43′N, 
04◦01′E), in southern France (15 km north of the city of Montpellier). 
The soil is a carbonated silty Fluvisol (IUSS Working Group WRB, 2014). 
The site comprised (i) an agroforestry system (3.2 ha) that associated 
2-m wide lines of 18-yr-old walnut trees (110 trees ha− 1) covered by 
spontaneous vegetation, and 11-m wide alleys generally cultivated with 
ploughed and fertilized durum wheat; and (ii) an adjacent treeless 
cropland used as control (1.4 ha), with the same annual crop and 
management as in the agroforestry alleys. More information on this site 
can be found in Cardinael et al. (2015). 

Both CHA and MEL sites were famers’ fields, which also included an 
agroforestry part (ca. 4–5 ha), with 2-m wide lines of 6-yr-old walnut 
trees (35 trees ha− 1) covered with sown grasses and cultivated alleys 26- 
or 29-m wide; and an adjacent control plot with the same annual crop 
but without tree lines (ca. 1–2 ha). Soil at both sites is a silty loam 
Luvisol (IUSS Working Group WRB, 2014). The CHA site (48◦06′N, 
01◦18′E) is close to the little city of Châteaudun (130 km southwest of 
Paris), and the MEL site (46◦12′N, 00◦10.5′W) close to the little city of 
Melle (250 km southwest of Châteaudun). In CHA, alleys were under 
wheat/rapeseed rotation ploughed one year out of three and harrowed 
the other years, with crop residue return. In MEL, alleys were under 
wheat/rapeseed/sunflower rotation ploughed every year, with crop 
residue removal but manure application, and winter cover crop (radish 
or mustard) before sunflower cultivation. More information on these 
sites can be found in Cambou et al. (2016). 

Marseille (MAR) is a large city located in the south of France, along 
the Mediterranean Sea (43◦18′N, 05◦23′E). Two subsites were studied in 
MAR, both on calcareous Anthrosols (IUSS Working Group WRB, 2014), 
with variable texture but often rich in coarse particles (> 2 mm): the 
Borély Park (MAR1), 17-ha large, 140-yr old, covered by lawn and 
managed tree groves; and the Ste Marthe wilderness (MAR2), 4.4-ha 
large, which has long been fallow (> 20 years), with the largest part 
covered by grass and some trees, beside a grove. Nantes (NAN) is 
another large city, located in the west of France, about 50 km from the 
Atlantic Ocean (47◦13′N, 01◦33′W). Two subsites were also studied: the 
Cemetery Park (NAN1) in the north of the city, 50-ha large, 60-yr old, 
with a part covered by well managed vegetation, mainly lawn, trees and 
hedges, and the other by spontaneous grassland and urban woodland, on 
Anthrosol (IUSS Working Group WRB, 2014) developed on loess and 
mica-schist; and an urbanized area close to the railway station in the city 
center (NAN2), 0.3-ha large, mainly covered by car parks and pavement, 
on Technosol (IUSS Working Group WRB, 2014) developed on sandy 
backfills and sealed for more than 50 years. More information on MAR 
and NAN sites can be found in Allory et al. (2019). 

2.2. Soil sampling 

At agroforestry sites (RES, CHA and MEL), sampling followed a 
protocol designed to catch SOC variations according to distance to tree 
lines and trees: replicated transects were defined perpendicular to tree 
lines (in front of trees and between trees) and on tree lines between 
trees. On adjacent control plots without trees, sampling points were 
located at the ends of replicated transects of the same dimensions. In this 
way, 40, 60 and 93 sampling points were defined on tree lines, in alleys 

and in adjacent control plots in RES, 12, 24 and 12 in CHA, and 12, 18 
and 6 in MEL, respectively (sampling density varied according to each 
study). 

In RES, intact soil cores were collected down to 2 m at each sampling 
point using a motor-driven micro caterpillar driller (8.5-cm diameter 
probe), from which representative core segments originating from 0 to 
10, 10–30, 30–50, 50–70, 70–100 and 160–180 cm depths were selected 
(according to a procedure presented in Section 2.5.1). They were 
analyzed for both volumetric SOC content (SOCv, in gC dm− 3) and 
VNIRS (Cardinael et al., 2015). For the present work, 167 samples from 
this selection were available. 

In CHA and MEL, intact soil cores were collected at each sampling 
point at 0–10, 10–20 and 20–30 cm depth in small pits using 0.5-L 
cylinders, for SOCv determination and VNIR spectrum acquisition in 
laboratory conditions, on a total of 144 samples per site. Moreover, 
disturbed soil cores were collected at the same depths at three locations 
about 0.4 m around each cylinder sampling location, using a handheld 
auger, for in situ VNIR spectrum acquisition (initially the study aimed at 
predicting SOCv from in situ spectra acquired on handheld auger cores, 
which are less informative on SOCv than cylinder cores but much less 
tedious to collect; Cambou et al., 2016). 

In MAR and NAN, three or four pits were dug down to 70 to 160 cm 
depth in each of the four studied subsites, using an excavator, and soil 
profiles were divided into horizons according to macromorphology 
(color, structure, etc.). Soil samples were collected by horizon: in total, 
137 samples were collected using a knife, for laboratory analyses, and 49 
using 0.25-L cylinders, for Db determination (Allory et al., 2019). 

2.3. Conventional determinations 

Intact soil cores collected with cylinders or motorized driller were 
air-dried, gently broken up and sieved to 2 mm. Then, one aliquot was 
weighed, oven-dried at 105◦C for 48 h and weighed again, to determine 
the dry mass of sample fine earth (< 2 mm), which was divided by 
sample volume to calculate Db (kg fine earth dm− 3 sample). Sample 
volume was cylinder volume, or core segment volume in the case of 
motorized driller (i.e. corer tube internal section multiplied by segment 
length). And another aliquot was finely ground (< 0.2 mm) for SOC 
analysis, except for MAR and NAN, where SOC was analyzed on 0.2-mm 
ground aliquots of 2-mm sieved, air-dried samples collected using a 
knife (cf. 2.2). 

For RES samples, carbonates were removed by HCl fumigation; then 
decarbonated samples were analyzed for gravimetric SOC (SOCg, in gC 
kg− 1 fine earth) with a CHN elemental analyzer (Carlo Erba NA 2000, 
Milan, Italy; Cardinael et al., 2015). Samples from CHA and MEL were 
carbonate-free, so were directly analyzed for SOCg using the same 
elemental analyzer (Cambou et al., 2016). For MAR and NAN samples, 
SOCg was analyzed according to two procedures: for carbonate-rich 
samples, by difference between total carbon determined with a CHN 
elemental analyzer (Flash EA 1112, CE Instruments, Rhodano, Italy) and 
soil inorganic carbon determined by volumetric calcimetry using a 
Bernard calcimeter; for carbonate-poor samples, using the same CHN 
elemental analyzer on samples that had been decarbonated after suc
cessive HCl additions (Allory et al., 2019). 

Volumetric SOC content (SOCv, in gC dm− 3) was calculated as the 
product of SOCg content of fine earth and Db, weighted by the 105◦C 
oven-dry mass proportion of fine earth (Hobley et al., 2018). In all rigor, 
units for SOCg and Db are gC kg− 1 soil < 2 mm and kg soil < 2 mm dm− 3 

soil, but throughout the text they have been simplified as gC kg− 1 and kg 
dm− 3, respectively. Then SOC stock (SSOC, in kgC m− 2 for a given soil 
depth) was calculated by summing up SOCv, weighted by the thickness 
of respective soil layers, over the profile. 

2.4. Spectrum acquisitions 

On the one hand, VNIR spectrum acquisition was carried out in situ, 
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according to different procedures for (i) RES, (ii) CHA and MEL, and (iii) 
MAR and NAN; and on the other hand, in laboratory conditions, with the 
same procedure for all samples. All spectra were acquired in diffuse 
reflectance from 350 to 2500 nm at 1 nm interval using a portable 
spectrophotometer ASD LabSpec 2500 (Analytical Spectral Devices, 
Boulder, CO, USA). This instrument is equipped with a contact probe, 
which delivers the light to the sample then collects the reflected signal 
and transmits it to the spectrometer. After every spectral acquisition, the 
window of the contact probe was cleaned with lens paper and ethanol. A 
disk made of Spectralon (compressed polytetrafluoroethylene powder) 
was used as white reference standard, with zero absorbance, and its 
reflectance was measured about every 10 acquisitions. Each reflectance 
spectrum provided by the spectrometer resulted from the averaging of 
32 co-added scans. Spectra were recorded as absorbance, which is the 
decimal logarithm of the inverse of reflectance [log10(1/reflectance)]. 

In RES, in situ spectra were acquired on intact soil cores, after their 
surface was refreshed using a knife, at four locations on each sample 
(which actually was a core segment); and the four spectra collected on 
each sample were averaged (Cardinael et al., 2015). So spectra were 
collected on the samples used for SOCv determination. In CHA and MEL 
sites, in situ spectra were acquired on the outer side of disturbed soil 
cores collected using a handheld auger, at two depths per 10-cm soil 
layer and at three locations around each cylinder sampling location; 
then the six spectra collected at each 10-cm depth layer per cylinder 
sampling location were averaged (Cambou et al., 2016). So in situ 
spectra were not collected on the cylinder cores used for SOCv deter
mination, but on three disturbed soil samples collected 0.4 m around. In 
MAR and NAN, two in situ spectra were collected on the refreshed 
surface of pit walls, close to the place where each of the 137 sample had 
be collected with a knife, and they were then averaged (Allory et al., 
2019). So spectra were not collected on the samples used for SOCv 
determination, but on samples collected just around. 

Then spectra were acquired in laboratory conditions, on 2-mm 
sieved air-dried samples, after oven-drying at 40◦C for 24 to 48 h. The 
samples were those collected with cylinders in RES and in CHA and MEL, 
and using a knife in MAR and NAN. Spectra were acquired on two ali
quots per samples then averaged. So every SOCv value was associated to 
one average spectrum acquired in situ and to another acquired on sieved 
dried soil. 

2.5. Spectrum sets and selection of calibration and validation subsets 

In situ spectra had been collected in different sampling conditions 
depending on the study, so could hardly be analyzed together; while 
laboratory spectra had been collected in similar conditions whatever the 
study and could be analyzed together. So the three separate sample sets 
considered in previous studies (RES; CHA and MEL; MAR and NAN) led 
to seven spectrum sets: in situ and laboratory spectra from RES; in situ 
and laboratory spectra from CHA and MEL; in situ and laboratory 
spectra from MAR and NAN; and laboratory spectra from all sites. Each 
set was divided into a calibration subset, used for building the prediction 
model, and an external validation subset, for validating it. 

2.5.1. Sets of in situ spectra and corresponding laboratory spectra 
In RES, in situ spectra were collected on all samples (core segments), 

but conventional determination of SOCv was only carried out on spec
trally representative samples (which were used for predicting SOCv on 
the other samples, based on spectra; Cardinael et al., 2015). These 
representative samples were selected using the Kennard-Stone algo
rithm, based on distances between in situ spectra in the principal 
component space (Kennard and Stone, 1969), and this was done with the 
R package prospectr (Stevens and Ramirez-Lopez, 2013). For the present 
work, 167 samples from this selection (with observed SOCv values) were 
available. They were divided into a calibration subset, which included 
100 spectrally representative samples according to the Kennard-Stone 
algorithm, and a validation subset, which included the 67 other samples. 

The 288 samples from CHA and MEL were studied together. Three 
samples were removed as spectral outliers, according to principal 
component analysis (PCA) built on all 288 in situ spectra (these three 
samples were far from the others and had Mahalanobis distance > 3; 
Cambou et al., 2016). The 285 remaining samples were divided into a 
calibration subset, which included 200 spectrally representative samples 
according to the Kennard-Stone algorithm, and a validation subset with 
the 85 other samples, as in the initial study (Cambou et al., 2016). 

The 137 samples from MAR and NAN were studied together. Based 
on PCA on all 137 in situ spectra, five samples were removed as spectral 
outliers (Hotelling’s T2

α=0.05 distance > 2; Allory et al., 2019). One out 
of the three or four pits opened in each of the four subsites (MAR1, 
MAR2, NAN1 and NAN2) was used for validation, based on PCA built 
with in situ spectra of each subsite separately: the sample spectra of the 
validation pit had to be in intermediate position, not too scattered or 
atypical. The four validation pits corresponded to 37 validation samples, 
and the 95 other samples were used for calibration, as in the initial study 
(Allory et al., 2019). 

For each of the three separate sample sets, same calibration and 
validation subsets were used for predictions based on laboratory spectra 
(collected on sieved dried samples), to allow proper comparisons with 
predictions using in situ spectra. 

2.5.2. Total set of laboratory spectra 
The laboratory spectra from all five sites (RES, CHA, MEL, MAR and 

NAN) had been collected in similar conditions, on 2-mm sieved air-dried 
soil, and so could be studied together. Samples that had been considered 
outliers in the comparisons between predictions using in situ and labo
ratory spectra (cf. 2.5.1) were again removed from the analysis. In order 
to achieve independent validation, four sites were used for calibration 
and the fifth site for validation. It was considered important that the 
validation site was well represented spectrally by the calibration sites; 
otherwise validation, though independent, would have limited interest 
(cf. McCarty et al., 2002; Brown et al., 2005; Barthès et al., 2020). To 
evaluate how each site was represented spectrally by the four other sites, 
PCA was performed on the total spectrum set (584 samples). Spectrum 
scores on the first and second principal components showed that most 
samples from MAR, NAN and RES were in peripheral positions; while 
scores on the third principal component showed that samples from MEL 
were also peripheral (Fig. 2). So it was decided to use CHA as validation 
site, and the four other sites as library, for calibration. The validation 
site included 48 profiles made of 144 samples collected at 0–10, 10–20 
and 20–30 cm depth. 

2.6. Spectral analysis 

Models were built on the seven spectrum sets (cf. 2.5) to predict 
SOCv, SOCg and Db from VNIR spectra using partial least squares 
regression (PLSR; Wold et al., 1983). This multivariate regression pro
cedure reduces complex matrices of explanatory variables (VNIR 
spectra) into a few orthogonal variables, called latent variables (LV), 
which are linear combinations of explanatory variables built to maxi
mize covariance with the response variable (SOCv, SOCg or Db). Cal
culations were made using the WinISI4 software (Foss 
NIRSystems/Tecator Infrasoft International, State College, PA, USA). 

2.6.1. Global calibration 
Common PLSR procedure, which has often been called global cali

bration as opposed to local calibration presented below, was performed 
on the seven spectrum sets separately. In this procedure, all calibration 
spectra are used for building a unique model that is then applied uni
formly on all validation spectra. The optimal number of LV was deter
mined by cross-validation on the calibration subset, which was ranked 
according to sampling time then divided into six groups cyclically (i.e. 
the 1st, 7th, etc. samples in the first group, the 2nd, 8th, etc. in the 
second group, etc., the 6th, 12th, etc. in the sixth group). In six-group 
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cross-validation, five groups are used for developing the model and the 
last one for testing it, and the procedure is repeated six times to use all 
groups for both model development and prediction; then the predictions 
are pooled. The optimal number of LV was that after which the standard 
error of cross-validation (SECV; see Section 2.6.4 for definition) no 
longer decreased meaningfully (Bjørsvik and Martens, 2001). 

2.6.2. Local calibration 
Local PLSR was also developed on the total set of laboratory spectra 

from all sites (with independent validation, cf. Section 2.5.2). In that 
case, prediction on each validation sample is made individually, using 
calibration samples that are its spectral neighbors (Shenk et al., 1997; 
Genot et al., 2011; Barthès et al., 2020). These calibration neighbors 

were selected according to the correlation coefficient R between cali
bration spectra and each validation spectrum, with a cut-off value R =
0.95 below which samples were not considered neighbors; and the 
minimum number of calibration neighbors was fixed to 4 (otherwise 
prediction would not be made on the validation sample considered; but 
this never happened in the present case). Minimum number of calibra
tion neighbors and R cut-off value were fixed according to preliminary 
tests (Barthès et al., 2020). Here the number of LV was not optimized, 
because cross-validation would require much computational time. 
Instead, each prediction was calculated as the weighted mean of pre
dicted values achieved with 3 to 16 LV: each weight was calculated as 
the inverse of the product of the root mean square (RMS) of spectral 
residuals (i.e. difference between the actual spectrum and the spectrum 

Fig. 2. Projection of the VNIR spectra collected on 2-mm sieved, air-dried samples (laboratory conditions) on the first and second principal components (PC1 and 
PC2), and on the first and third principal components (PC1 and PC3), respectively. 
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approximated using the considered number of LV) and RMS of regres
sion coefficients using the considered number of LV (Shenk et al., 1997). 

2.6.3. Spectrum pretreatment 
Models were developed with raw absorbance spectra but also with 

pretreated spectra, in order to optimize spectral information (Gholiza
deh et al., 2013). Common spectrum pretreatments were used, and 
possibly combined: smoothing, standard normal variate (SNV; i.e. 
mean-centering and variance-scaling), first-order detrend (D; i.e. linear 
trend removal), both SNV and D (SNVD), and first-order derivation 
(Barthès et al., 2020). In total, 16 spectrum types were considered: raw 
spectra (denoted None001), SNV spectra (SNV001), D spectra (D001), 
SNVD spectra (SNVD001); the same with 5-point smoothing (None005, 
SNV005, D005 and SNVD005); the same with first-order derivation over 
5-point gap and 5-point smoothing (None155, SNV155, D155 and 
SNVD155); and with first-order derivation over 15-point gap and 
5-point smoothing (None1155, SNV1155, D155 and SNVD1155). 

2.6.4. Evaluation of prediction results 
The goodness of fit of predictions was evaluated using the following 

parameters:  

- the coefficient of determination (R2), which was computed as 
1− ESS/TSS, where ESS is the error sum of squares and TSS the total 
sum of squares, and was calculated for both cross-validation (on the 
calibration subset; R2cv) and external validation (R2val);  

- the standard error of cross-validation (SECV), defined as the root 
mean square error (RMSE) of cross-validation, and the standard error 
of prediction (SEP), as the RMS of external validation;  

- the ratio of performance to deviation (RPD) in cross-validation 
(RPDcv) and in external validation (RPDval), calculated as the 
ratio of standard deviation (SD) of the calibration subset (SDcal) to 
SECV, and as the ratio of SD of the validation subset (SDval) to SEP, 
respectively;  

- the ratio of performance to interquartile range (RPIQ) in cross- 
validation (RPIQcv) and in validation (RPIQval), calculated as the 
ratio of the interquartile range (IQ) of the calibration subset (IQcal) 
to SECV, and as the ratio of IQ of the validation subset (IQval) to SEP; 
IQ is the difference between the third and first quartiles; RPIQ has 
been recommended for variables with non-normal distributions 
(Bellon-Maurel et al., 2010). 

These parameters are presented in the tables, but the text mainly 
focuses on RPIQval. 

2.7. Comparisons between SOCv, SOCg and Db prediction models 

The question arose whether SOCv predictions could be indirect, due 
to SOCg or Db predictions and correlations between SOCv and SOCg or 
Db. This was examined by comparing regression coefficients of predic
tion models of SOCv, SOCg and Db, which allowed identifying spectral 
regions that contributed most to predictions. This was done for the seven 
spectrum sets considered (cf. 2.5). For each set, comparison of predic
tion models was carried out using the spectrum type without derivative 
that yielded best validation results in average over SOCv and SOCg, 
according to RPIQval, with similar or almost similar optimal number of 
LV for both models (first derivative complicates chemical interpretation 
of regression coefficients, and difference in LV complicates comparison 
of regression coefficients). For the total set of laboratory spectra, com
parison was made for global calibration models, because local calibra
tion did not produce regression at the set scale (as prediction was made 
on each validation sample individually, cf. 2.6.2). 

3. Results 

The presentation will focus on SOCv (gC dm− 3) predictions, while 

SOCg (gC kg− 1) and Db (kg dm− 3) predictions will be considered to a 
lesser extent, as they have already been addressed in many publications. 

3.1. Distributions of observed SOCv, SOCg and Db 

Firstly the RES set, CHA and MEL set, and MAR and NAN set were 
studied separately, with the aim to compare SOCv predictions using 
VNIR spectra obtained in situ vs. in laboratory conditions. In RES, where 
samples had been collected regularly from 0 to 10 to 160–180 cm depth, 
observed SOCv ranged from 7.2 to 39.2 gC dm− 3, mean and SD were 
14.9 and 6.0 gC dm− 3, respectively, coefficient of variation (CV, i.e. SD/ 
mean) was 40% and skewness coefficient was 1.6; CV and skewness 
were 55% and 1.5 for SOCg, and 19% and − 0.5 for Db, respectively. In 
CHA and MEL, which were studied together, samples had been collected 
at 0–10, 10–20 and 20–30 cm depth, and observed SOCv ranged from 
7.9 to 27.7 gC dm− 3, mean and SD were 16.2 and 3.3 gC dm− 3, CV was 
20% and skewness coefficient was 0.2; CV and skewness were 25% and 
0.7 for SOCg, and 11% and − 0.1 for Db, respectively. In MAR and NAN, 
which were studied together, samples had been collected from 0 to 160 
cm depth according to horizons, and observed SOCv ranged from 0.3 to 
54.6 gC dm− 3, mean and SD were 16.3 and 13.7 gC dm− 3, CV was 84% 
and skewness coefficient was 0.6; CV and skewness were 85% and 0.9 
for SOCg, and 11% and − 0.3 for Db, respectively. For each set, distri
butions of observed SOCv in calibration and validation subsets are 
presented in Fig. 3. The distribution of SOCv was wide and multimodal 
for the MAR and NAN set, which included SOC-poor samples collected 
under pavement and SOC-rich samples collected in parks or fallows 
(Allory et al., 2019). Distributions were much less diverse for the two 
sets of agricultural soil samples studied in RES and in CHA and MEL, 
especially in the latter, where tree lines were more recent thus less 
enriched in SOC than in the former. The positive effect of tree lines on 
SOC has been studied in Cardinael et al. (2017). In addition, CV was 
comparable for SOCg and SOCv in a given set, and two to eight times 
higher than for Db; and according to skewness coefficient, Db had more 
balanced distribution than SOCg and SOCv. Moreover, the correlation 
coefficient between SOCg and SOCv ranged from 0.90 (CHA and MEL) to 
0.95 (MAR and NAN); while correlations with Db were negative and 
much weaker: from − 0.17 to − 0.69 between SOCg and Db, and from 
0.00 to − 0.60 between SOCv and Db, depending on the set. 

Then all sets were pooled to study SOCv predictions using VNIR 
spectra collected on sieved dried samples, with independent validation. 
For SOCv, mean and SD were 15.6 and 7.6 gC dm-3, respectively, CV was 
48% and skewness coefficient was 1.1; CV and skewness were 56% and 
1.6 for SOCg, and 18% and 0.2 for Db, respectively. Over this total set, 
correlation coefficient was 0.93 between SOCv and SOCg, − 0.12 be
tween SOCv and Db, and − 0.27 between SOCg and Db. Fig. 4 presents 
SOCv distributions for CHA (validation site) and the other sites (library, 
i.e. RES, MEL, MAR and NAN): SOCv distribution was wider but less 
balanced over the library (440 samples) than over the validation site 
(144 samples); it ranged from 0.3 to 54.6 vs. 9.5 to 27.7 gC dm− 3 and 
skewness coefficient was 1.1 vs. 0.5, respectively. 

3.2. Comparisons between predictions using in situ vs. laboratory VNIR 
spectra 

For the set of RES samples, predictions of SOCv were more accurate 
using VNIR spectra collected on sieved dried samples than in situ 
(Table 1): this was the case either using raw absorbance spectra 
(RPIQval = 1.9 vs. 1.6), most appropriate spectrum types (RPIQval =
1.9 vs. 1.7), or in average over the 16 spectrum types tested (mean 
RPIQval = 1.9 vs. 1.6). Few LV were used for these predictions (3 or 4 in 
average). The results were little affected by spectrum type (SD of 
RPIQval over 16 spectrum types were < 0.1). 

For the set of CHA and MEL, SOCv predictions were even more ac
curate using laboratory than in situ spectra (Table 1): RPIQval = 2.5 vs. 
1.9 with raw spectra, 2.9 vs. 1.9 with most appropriate spectrum types, 
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Fig. 3. Distribution of observed volumetric SOC content (SOCv; in gC dm− 3) over the calibration and validation subsets of the three separate sets: Restinclières (RES); 
Châteaudun and Melle (CHA and MEL); and Marseille and Nantes (MAR and NAN). 
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Fig. 4. Distribution of observed volumetric SOC content (SOCv; gC dm− 3) over the Châteaudun site (validation site, 144 samples) and over other sites (library, 
440 samples). 

Table 1 
. Predictions of volumetric SOC content (SOCv; gC dm-3) using in situ vs. laboratory VNIR spectra in three separate sample sets (RES; CHA and MEL; MAR and NAN), 
with global PLSR calibration on representative samples. Results are presented for raw absorbance spectra (None001), for the most appropriate spectrum types (i.e. 
highest RPIQval; None001 sometimes), then in average (with standard deviation, SD) over 16 spectrum types (including raw spectra and 15 pretreatments, cf. section 
2.6.3).   

Calibration Validation 

Restinclières (RES): Ncal=100, Nval=67; mean, SD and IQ were 14.6, 5.5 and 5.8 gC dm-3 in calibration, and 15.7, 6.7 and 7.0 gC dm-3 in validation, respectively 
In situ LV SECV R2cv RPDcv RPIQcv SEP Bias Slope R2val RPDval RPIQval 

None001 5 2.7 0.76 2.07 2.18 4.4 -0.5 1.00 0.58 1.54 1.61 
D001 4 2.7 0.76 2.03 2.14 4.1 -0.2 0.90 0.62 1.62 1.69 
Mean 3.8 2.8 0.73 1.95 2.05 4.3 -0.4 0.95 0.60 1.57 1.64 
SD 1.3 0.2 0.04 0.12 0.13 0.1 0.1 0.05 0.02 0.04 0.04 

Laboratory LV SECV R2cv RPDcv RPIQcv SEP Bias Slope R2val RPDval RPIQval 
None001 4 2.6 0.77 2.11 2.23 3.8 0.3 1.01 0.68 1.78 1.86 
SNVD155 2 2.7 0.76 2.04 2.15 3.7 0.0 0.69 0.69 1.81 1.90 
Mean 2.8 2.6 0.77 2.08 2.19 3.8 0.1 1.01 0.68 1.77 1.85 
SD 0.9 0.1 0.01 0.04 0.04 0.1 0.1 0.02 0.01 0.03 0.03 

Châteaudun (CHA) and Melle (MEL): Ncal=200, Nval=85; mean, SD and IQ were 16.6, 3.3 and 3.6 gC dm-3 in calibration, and 15.5, 3.3 and 4.3 gC dm-3 in validation, respectively 
In situ LV SECV R2cv RPDcv RPIQcv SEP Bias Slope R2val RPDval RPIQval 

None001 9 2.1 0.58 1.55 1.71 2.3 0.4 0.97 0.52 1.43 1.88 
Mean 6.9 2.1 0.59 1.56 1.71 2.5 0.4 1.09 0.45 1.33 1.76 
SD 2.3 0.0 0.01 0.02 0.02 0.1 0.1 0.06 0.05 0.06 0.07 

Laboratory LV SECV R2cv RPDcv RPIQcv SEP Bias Slope R2val RPDval RPIQval 
None001 12 1.6 0.76 2.04 2.23 1.7 0.3 1.08 0.74 1.93 2.54 
SNVD1155 12 1.7 0.74 1.98 2.18 1.5 0.1 1.02 0.80 2.22 2.92 
Mean 10.8 1.7 0.74 1.98 2.17 1.7 0.3 1.04 0.75 1.99 2.63 
SD 1.6 0.1 0.01 0.06 0.06 0.1 0.1 0.03 0.02 0.09 0.11 

Marseille (MAR) and Nantes (NAN): Ncal=95, Nval=37; mean, SD and IQ were 16.6, 13.0 and 20.3 gC dm-3 in calibration, and 15.6, 15.5 and 26.6 gC dm-3 in validation, respectively 
In situ LV SECV R2cv RPDcv RPIQcv SEP Bias Slope R2val RPDval RPIQval 

None001 14 6.1 0.78 2.13 3.33 5.9 0.6 1.10 0.86 2.62 4.49 
SNV001 13 5.8 0.80 2.22 3.48 5.4 0.2 0.98 0.88 2.87 4.92 
Mean 9.5 5.9 0.79 2.18 3.41 6.4 0.0 0.97 0.83 2.43 4.16 
SD 2.9 0.1 0.01 0.05 0.08 0.5 0.8 0.07 0.03 0.22 0.38 

Laboratory LV SECV R2cv RPDcv RPIQcv SEP Bias Slope R2val RPDval RPIQval 
None001 13 5.1 0.85 2.56 4.01 8.0 -2.4 0.96 0.76 1.95 3.34 
SNV005 10 4.8 0.86 2.68 4.19 6.1 -1.0 0.80 0.88 2.55 4.37 
Mean 10.8 4.8 0.86 2.73 4.27 7.7 -2.5 0.85 0.79 2.04 3.49 
SD 1.3 0.3 0.02 0.17 0.27 0.9 0.9 0.07 0.05 0.26 0.44 

Ncal and Nval are the size of calibration and validation subsets; IQ is the interquartile range; LV is the number of PLS latent variables; SECV and SEP are standard error 
of cross-validation and of prediction (external validation), respectively (in gC dm-3); R2cv, RPDcv and RPIQcv are coefficient of determination, ratio of SDcal to SECV, 
and ratio of IQcal to SECV, respectively (unitless); R2val, RPDval and RPIQval are their counterparts for the validation. 
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and 2.6 vs. 1.8 in average over 16 spectrum types, respectively. More LV 
were required, in laboratory conditions especially (11 in average, vs. 7 
using in situ spectra), and results were more affected by spectrum type, 
in laboratory conditions especially (SD of RPIQval were ca. 0.1). 

In contrast, for the MAR and NAN set, less accurate SOCv predictions 
were achieved using laboratory than in situ spectra (Table 1): RPIQval 
= 3.3 vs. 4.5 with raw spectra, 4.4 vs. 4.9 with most appropriate spec
trum types, and 3.5 vs. 4.2 in average, respectively. The optimal number 
of LV averaged 10–11. Moreover, results were noticeably affected by 
spectrum type (SD of RPIQval were 0.4). 

As regarded SOCg, in any case predictions were more accurate with 
laboratory than in situ spectra, either using most appropriate spectrum 
types or in average over all spectrum types (RPIQval = 2.2 vs. 1.6 or 2.1 
vs. 1.5 for RES, 4.0 vs. 1.8 or 3.4 vs. 1.7 for CHA and MEL, and 5.9 vs. 4.4 
or 3.8 vs. 3.6 in MAR and NAN, respectively; data not shown). Moreover, 
whatever the set, according to RPIQval, predictions tended to be more 
accurate for SOCv than SOCg with in situ spectra, but more accurate for 
SOCg than SOCv with laboratory spectra. 

As regarded Db, predictions were more accurate with laboratory 
than in situ spectra in CHA and MEL (RPIQval = 2.8 vs. 2.3 at best and 
2.7 vs. 2.3 in average, respectively), but the opposite was observed for 
MAR and NAN (1.4 vs. 1.8 and 1.3 vs. 1.5, respectively), while pre
dictions with both spectrum acquisition conditions were similar for RES 
(2.4 vs. 2.3 and 2.2 vs. 2.3, respectively; data not shown). Moreover, 
predictions were more accurate for Db than SOCg and SOCv with both 
spectrum acquisition conditions in RES, but the opposite was observed 
in MAR and NAN; while in CHA and MEL, Db prediction was more ac
curate than SOCv and SOCg predictions in situ, but intermediate in 
laboratory conditions. 

3.3. Inter-site predictions in laboratory conditions 

3.3.1. SOCv, SOCg and Db 
All spectra collected on sieved dried samples were considered here. 

Calibrations were built on the library, which included all samples from 
RES, MEL, MAR and NAN (440 samples); and CHA was used as inde
pendent validation site (144 samples; cf. 2.5.2). Results are presented for 
SOCv, SOCg and Db in global and local calibrations using raw absor
bance spectra (None001), the most appropriate spectrum type (highest 
RPIQval), then in average (with SD) over 16 spectrum types (including 
raw spectra and 15 spectrum pretreatments; Table 2). 

In global calibration, all validation results for SOCv, SOCg and Db 
were poor (RPIQval ≤ 0.5), due in particular to large biases (bias rep
resented 95% of SEP in average over the three variables and 16 spectrum 
types). Cross-validation results were much better, with RPIQcv ranging 
from 2.2 to 2.5 for SOCv, 2.7 to 3.1 for SOCg, and 2.0 to 2.2 for Db. In 
local calibration, validation results were also poor in general, similarly 
due to large biases, except for SOCv and SOCg with appropriate 
pretreatments:  

- for SOCv, RPIQval reached 2.0 with D001 and D005 (detrend 
possibly with smoothing) and 1.6 with SNVD155, but ranged from 
0.3 to 1.4 otherwise;  

- for SOCg, RPIQval reached 1.7 with SNVD005 and D005, 1.5–1.6 
with D001 and SNVD001, but ranged from 0.3 to 1.4 otherwise;  

- for Db, RPIQval was always ≤ 0.4. 

So accurate SOCv predictions and rather accurate SOCg predictions 
could be achieved in independent validation when using the library of 
sieved dried samples for local calibration. Comparison on the validation 
subset between observations and predictions of SOCv using local cali
bration with pretreatment D005 is presented Fig. 5. Local calibration 
yielded better SOCv predictions than global calibration, either using raw 
spectra (RPIQval = 0.6 vs. 0.5, respectively), most appropriate spectrum 
types (2.0 vs. 0.5) or in average over all spectrum types (0.9 vs. 0.3); and 
the same observation was made for SOCg (RPIQval = 0.5 vs. 0.4 with 

raw spectra, 1.7 vs. 0.4 at best, and 0.9 vs. 0.3 in average, respectively). 
But local calibration had not benefit for Db (RPIQval = 0.3 vs. 0.4, 0.4 
vs. 0.5, and 0.3 vs. 0.3, respectively). 

3.3.2. SSOC 
Best SOCv predictions, at sample level (gC dm− 3), were used for 

SSOC predictions, at profile level (kgC m− 2 at 0–30 cm depth). So SOCv 
was predicted using local calibration with pretreatment D005, then 
summed up at profile level (0–30 cm). This yielded SEP = 0.36 kgC m− 2 

at 0–30 cm (i.e. 7.4% of the mean), bias = 0.03 kgC m− 2 and RPIQval =
2.1 (Fig. 5). Mean (± SD) observed and predicted SSOC over the 48 
validation profiles were 4.93 (± 0.53) and 4.89 (± 0.40) kgC m− 2, 
respectively. 

Five random selections of 10 validation profiles yielded the following 
means (± SD) of observed vs. predicted SSOC at 0–30 cm: 4.87 (± 0.62) 
vs. 5.08 (± 0.36), 4.76 (± 0.53) vs. 4.85 (± 0.38), 5.02 (± 0.52) vs. 4.93 
(± 0.38), 5.05 (± 0.34) vs. 4.88 (± 0.30), and 4.75 (± 0.50) vs. 4.84 (±
0.46) kgC m− 2, respectively; so over the five replicates, mean observed 
profile SSOC per replicate averaged (± SD) 4.89 ± 0.14 kgC m− 2 and 
mean predicted SSOC per replicate averaged 4.92 ± 0.10 kgC m− 2. 
When the number of profiles was decreased to five per random selection, 
mean (± SD) observed vs. predicted SSOC were 4.73 (± 0.61) vs. 4.99 (±
0.44), 4.71 (± 0.60) vs. 4.65 (± 0.32), 4.91 (± 0.53) vs. 4.90 (± 0.36), 
5.02 (± 0.37) vs. 4.91 (± 0.15), and 4.64 (± 0.53) vs. 4.86 (± 0.35) kgC 
m− 2, respectively; so over the five replicates, mean observed and pre
dicted SSOC per replicate averaged 4.80 ± 0.16 and 4.86 ± 0.13 kgC 
m− 2, respectively. 

3.4. Comparisons between SOCv, SOCg and Db prediction models 

There were close correlations between observed SOCv and SOCg 
(correlation coefficients ranged from 0.90 to 0.95), but weaker and 
negative correlations between SOCv or SOCg and Db (from 0.00 to 
− 0.69; cf. 3.1). Fig. 6 presents the regression coefficients of SOCv and 
SOCg prediction models per spectrum set with most appropriate spec
trum type (without derivative) in average over SOCv and SOCg, which 
was: in situ, SNV001 for RES, for CHA and MEL and for MAR and NAN; 
with laboratory spectra, None001 for RES, D005 for CHA and MEL, 
None005 for MAR and NAN, and None001 for the total set. For a given 
spectrum set, the ranges of regression coefficients were the same order of 
magnitude for SOCv and SOCg, and even similar sometimes (e.g. for RES 
in situ), but 30 to 100 times smaller for Db (data not shown for Db). 
Some spectral regions contributed strongly to predictions of both SOCv 
and SOCg (and Db sometimes):  

- for RES in situ, 710–780, 1400, 1720–1740 and 2140–2150 nm 
(1400 nm also for Db);  

- for RES in laboratory conditions, 1420 and 1830 nm (1420 nm also 
for Db);  

- for CHA and MEL in situ, 720–730, 820 and 970 nm;  
- for CHA and MEL in laboratory conditions, 720–730, 810–830, 

1360–1390, 1880–1890, 2160–2170, 2240–2250, 2310 and 
2420–2430 nm (1360 nm also for Db);  

- for MAR and NAN in situ, 660–680, 750–770, 1370–1380, 
1520–1590, 1720–1740, 2240–2260 and 2340 nm (2340 nm also for 
Db);  

- for MAR and NAN in laboratory conditions, 670–680, 740–750, 
1310–1320, 1450–1480, 1740, 1820–1830 and 2000 nm 
(1830–1840 nm also for Db);  

- for the total set of laboratory spectra, 670–680, 1300–1310, 
1660–1670, 1730, 2230, 2260 and 2350–2360 nm. 

However, other regions contributed more strongly to the prediction 
of one variable, such as:  

- for RES in situ, 620–660 nm for SOCv and 1740–1750 nm for SOCg; 
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Table 2 
. Predictions of SOCv (gC dm-3), SOCg (gC kg-1) and Db (kg dm-3) in global and local PLSR calibration over the total set of VNIR laboratory spectra, with independent validation. Results are presented for raw absorbance 
spectra (None001), for the most appropriate spectrum types (highest RPIQval; None001 sometimes), then in average (with standard deviation, SD) over 16 spectrum types (cf. section 2.6.3).  

Pre-treatment Calibration Validation 
Ncal Meancal SDcal IQcal LV SECV R2cv RPDcv RPIQcv Nval Meanval SDval IQval SEP Bias Slope R2val RPDval RPIQval 

SOCv, global calibration 
None001 440 15.7 8.6 8.1 14 3.7 0.82 2.34 2.21 144 16.4 3.0 3.9 8.5 8.0 1.81 0.22 0.35 0.45 
Mean 440 15.7 8.6 8.1 13.9 3.5 0.84 2.50 2.36 144 16.4 3.0 3.9 11.5 10.8 3.45 0.13 0.27 0.35 
SD 0 0.0 0.0 0.0 0.9 0.2 0.02 0.13 0.13 0 0.0 0.0 0.0 2.1 2.0 1.24 0.04 0.05 0.07 

SOCv, local calibration 
None001 440 15.7 8.6 8.1 nd nd nd nd nd 144 16.4 3.0 3.9 6.7 6.4 1.28 0.47 0.44 0.57 
D005 440 15.7 8.6 8.1 nd nd nd nd nd 144 16.4 3.0 3.9 1.9 0.1 0.84 0.60 1.56 2.03 
Mean 440 15.7 8.6 8.1 nd nd nd nd nd 144 16.4 3.0 3.9 5.9 5.0 1.40 0.44 0.67 0.88 
SD 0 0.0 0.0 0.0 nd nd nd nd nd 0 0.0 0.0 0.0 2.8 3.4 0.51 0.08 0.43 0.56 

SOCg, global calibration 
None001 440 12.6 8.1 7.0 15 2.5 0.90 3.23 2.77 144 14.3 2.9 3.5 9.6 9.4 1.34 0.51 0.30 0.36 
D001 440 12.6 8.1 7.0 13 2.6 0.90 3.15 2.71 144 14.3 2.9 3.5 8.6 8.2 1.65 0.35 0.34 0.40 
Mean 440 12.6 8.1 7.0 14.2 2.4 0.91 3.36 2.88 144 14.3 2.9 3.5 10.9 10.5 2.07 0.31 0.27 0.32 
SD 0 0.0 0.0 0.0 1.1 0.1 0.01 0.17 0.14 0 0.0 0.0 0.0 1.4 1.3 0.55 0.10 0.04 0.04 

SOCg, local calibration 
None001 440 12.6 8.1 7.0 nd nd nd nd nd 144 14.3 2.9 3.5 6.4 6.1 1.43 0.57 0.45 0.54 
SNVD005 440 12.6 8.1 7.0 nd nd nd nd nd 144 14.3 2.9 3.5 2.0 0.6 0.81 0.58 1.43 1.71 
Mean 440 12.6 8.1 7.0 nd nd nd nd nd 144 14.3 2.9 3.5 5.5 4.3 1.39 0.53 0.71 0.85 
SD 0 0.0 0.0 0.0 nd nd nd nd nd 0 0.0 0.0 0.0 2.6 3.6 0.47 0.09 0.43 0.52 

Db, global calibration 
None001 440 1.46 0.25 0.35 12 0.16 0.58 1.54 2.16 144 1.16 0.09 0.12 0.35 0.32 8.70 0.03 0.26 0.36 
SNVD1155 440 1.46 0.25 0.35 11 0.16 0.59 1.55 2.18 144 1.16 0.09 0.12 0.28 0.24 9.52 0.02 0.33 0.45 
Mean 440 1.46 0.25 0.35 7.9 0.16 0.55 1.50 2.11 144 1.16 0.09 0.12 0.36 0.30 4.11 0.12 0.25 0.35 
SD 0 0.00 0.00 0.00 3.0 0.01 0.03 0.05 0.07 0 0.00 0.00 0.00 0.04 0.04 2.35 0.07 0.03 0.04 

Db, local calibration 
None001 440 1.46 0.25 0.35 nd nd nd nd nd 144 1.16 0.09 0.12 0.39 0.38 1.36 0.30 0.23 0.32 
SNVD001 440 1.46 0.25 0.35 nd nd nd nd nd 144 1.16 0.09 0.12 0.35 0.34 1.30 0.29 0.26 0.35 
Mean 440 1.46 0.25 0.35 nd nd nd nd nd 144 1.16 0.09 0.12 0.38 0.34 1.19 0.30 0.24 0.33 
SD 0 0.00 0.00 0.00 nd nd nd nd nd 0 0.00 0.00 0.00 0.02 0.02 0.30 0.01 0.01 0.01 

Ncal and Nval are the size of calibration and validation subsets, respectively. Meancal, Meanval, SDcal, SDval, IQcal and IQval are the mean, standard deviation and interquartile range for calibration and validation 
subsets, respectively (in gC kg-1 for SOCg and in gC dm-3 for SOCv). LV is the number of PLS latent variables. SECV and SEP are standard error of cross-validation and of prediction (external validation), respectively (in gC 
kg-1 for SOCg and in gC dm-3 for SOCv). R2cv, RPDcv and RPIQcv are coefficient of determination, ratio of SDcal to SECV, and ratio of IQcal to SECV, respectively (unitless); R2val, RPDval and RPIQval are their 
counterparts for the validation. 
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- for RES in laboratory conditions, 630–800 nm for SOCv and 
1300–1320 nm for SOCg;  

- for CHA and MEL in situ, 2130–2150 nm for SOCv and 1000–1010 
nm for SOCg;  

- for CHA and MEL in laboratory conditions, 1730 nm for SOCv and 
2350 nm for SOCg;  

- for MAR and NAN in situ, 830–840 nm for SOCv and 1430–1440 nm 
for SOCg;  

- for MAR and NAN in laboratory conditions, 1920–1930 nm for SOCv;  
- for the total set of laboratory spectra, 1360 nm for SOCv and 1140 

nm for SOCg. 

Moreover, some regions contributed strongly to SOCv and/or SOCg 
predictions using both in situ and laboratory spectra:  

- for RES, 630–780 nm and around 1400–1420 nm for SOCv, and 
around 2130–2140 nm for SOCg;  

- for CHA and MEL, 720–730 and 820 nm for both SOCv and SOCg;  
- for MAR and NAN, 670–680, 750 and 1740 nm for both SOCv and 

SOCg. 

However, no spectral region contributed strongly to SOCv or SOCg 
prediction over all spectrum sets, or even all in situ spectrum sets or all 
laboratory spectrum sets. Similarities between spectral regions that 
contributed strongly to SOCv and/or SOCg prediction models were 
mainly observed within a given sample set (i.e. RES; CHA and MEL; MAR 
and NAN; and all samples). For instance, considering spectral regions 
that contributed strongly to predictions, there were more similarities 
between SOCv prediction using in situ spectra and SOCg prediction 
using laboratory spectra both from CHA and MEL (720–730, 820–830, 
and 960–970 nm to a lesser extent; same sample set but different vari
ables and spectrum acquisitions) than between SOCv predictions using 
in situ spectra from RES and from CHA and MEL (2130–2140 nm; same 
variable and spectrum acquisition but different sample sets). 

4. Discussion 

4.1. Predictions with in situ vs. laboratory VNIR spectra 

Better VNIRS predictions of SOCv using spectra collected on sieved 
dried samples than in situ, as observed for RES and for CHA and MEL, is 

consistent with what has generally been reported in the literature for 
other soil properties, SOCg especially (cf. review by Barthès and Chotte, 
2020). And indeed, better SOCg prediction in laboratory than in situ 
conditions was also observed for the three separate sample sets studied 
here. Such difference has firstly been attributed to the variability of soil 
moisture content during field campaigns, which represents noise in the 
spectra collected in situ thus complicates calibrations; while laboratory 
spectra are collected in homogeneous moisture conditions (Morgan 
et al., 2009; Hutengs et al., 2019). Sample structure and roughness, 
contamination by dust and temperature variations have also been cited 
to explain poorer in situ VNIRS prediction of soil content in various 
compounds (Stevens et al., 2008; Stenberg et al., 2010). As regarded 
SOCv specifically, it might be expected that spectra acquired on cohesive 
material (e.g. cores) would be suitable; but the present result indicated 
that air-dried, gently crushed then 2-mm-sieved soil material still 
included useful spectral information on SOCv. 

For MAR and NAN, better SOCv prediction was however achieved 
using VNIR spectra collected in situ than on sieved dried samples (ac
curate predictions were nevertheless achieved using laboratory spectra). 
Though rare, better VNIRS prediction of soil properties in situ than in 
laboratory conditions has been reported sometimes (Gras et al., 2014; 
Barthès and Chotte, 2020): this has been attributed, in particular, to 
better light transmission due to high cohesion of samples scanned in situ, 
or possibly to rather high and homogeneous moisture content. Soil 
material scanned in situ in MAR and NAN had variable moisture content, 
but high cohesion (pit walls; Allory et al., 2019). Moreover, coarse 
particles (> 2 mm) content was rather high and variable (mean ca. 
25±15 g 100 g− 1), hence variable discrepancies between bulk soil used 
for determining SOCv conventionally and 2-mm sieved samples scanned 
in the laboratory; and this probably complicated SOCv prediction from 
sieved samples. In contrast, proportions of coarse particles were much 
lower in RES and in CHA and MEL samples (< 1 and 8 g 100 g-1 in 
average, Cardinael et al., 2015, and Cambou et al., 2016, respectively). 
On a small range of tropical soils, Allo et al. (2020) achieved more ac
curate SOCv predictions with VNIR spectra collected on fresh intact 
cores than on 2-mm sieved air-dried samples; and better prediction in 
situ could also be attributed to coarse-particle content, which was not 
specified but could be estimated at 24 g 100 g− 1 in average (according to 
mean SOCg, SOCv and Db). 

Fig. 5. Comparison between observed and VNIRS-predicted volumetric SOC content (SOCv; gC dm− 3) and SOC stock (SSOC; kgC m− 2 at 0–30 depth). The validation 
subset included 144 samples from Châteaudun (48 profiles) and the calibration subset the samples from all other sites (440 samples). Regression procedure was local 
PLSR, with pretreatment D005 (smoothing then detrend). 
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Fig. 6. Regression coefficients of SOCv (gC dm− 3) and SOCg (gC kg− 1) prediction models for the seven spectrum sets considered: RES, CHA and MEL, and MAR and 
NAN in situ (all with pretreatment SNV001) and in laboratory conditions (with None001, D005 and None005, respectively), and all laboratory spectra 
(with None001). 
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4.2. Inter-site prediction of SOCv and SSOC in laboratory conditions 

When the total set of laboratory spectra was studied (five sites with 
different mineralogies, textures and land uses), accurate SOCv and SSOC 
predictions could be achieved in independent validation (leave-one-site- 
out) using spectra collected on sieved dried samples (RPIQval = 2.0–2.1; 
Fig. 5). Allory et al. (2019) and Allo et al. (2020) also used VNIR spectra 
of sieved dried samples for SOCv predictions, but set size and diversity 
were smaller, and validations were not independent. Roudier et al. 
(2015) and Cambou et al. (2016) used in situ VNIR spectra for SOCv 
prediction in one or two sites, with no independent validation either. So 
the present work represents the first attempt to use a library of VNIR 
spectra collected on sieved dried soils (i.e. archive soil samples) for 
quantifying SSOC. And such time- and cost-effective quantification of 
SSOC offers important perspectives, considering the need for wider 
quantification of SSOC (Bellon-Maurel and McBratney, 2011; Paustian 
et al., 2019; Smith et al., 2019); and also considering that other ap
proaches are either tedious, when they involve intact core sampling, or 
complex, when based on radiation transmitting or scattering for Db 
prediction in addition to VNIRS prediction of SOCg (Lobsey and Viscarra 
Rossel, 2016; Priori et al., 2016; Viscarra Rossel et al., 2016, 2017). 

The result was achieved using local PLSR, based on spectral neigh
bors, which seems much more appropriate than global PLSR for (V)NIRS 
or MIRS predictions of soil properties when using large spectral libraries 
for independent validation (Gogé et al., 2014; Gupta et al., 2018; Dangal 
et al., 2019; Barthès et al., 2020); but in such conditions, comparable 
performances would probably be achieved with machine learning ap
proaches such as classification and regression trees (e.g. Dangal et al., 
2019). 

Predictions at profile level, calculated as the sum of predictions made 
at 0–10, 10–20 and 20–30 cm, were slightly more accurate than pre
dictions at sample level (RPIQval = 2.1 vs. 2.0, respectively; Fig. 5). This 
confirmed that under-predictions at some depth levels and over- 
predictions at other depth levels could offset each other at profile 
level (Allory et al., 2019). Moreover bias was small (0.03 kgC m− 2 at 
0–30 cm), which indicated that under-predictions for some profiles were 
offset by over-predictions for other profiles, so that average SSOC pre
diction at the site scale was accurate. For this CHA site, used as inde
pendent validation subset, mean (± SD) observed SSOC over 48 profiles 
was 4.93 (± 0.53) kgC m− 2 at 0–30 cm. This could be considered a 
valuable SSOC estimation at the scale of the site, which covered 5 ha, 
with limited effect of land use and management on SSOC (tree planta
tion was recent; data not shown). Mean (± SD) predicted SSOC over the 
48 profiles allowed accurate approximation of this estimation: 4.89 (±
0.40) kgC m− 2. But accurate approximations could also be achieved 
based on predicted SSOC on much fewer validation profiles: over five 
replicates of random profile selections, mean (± SD) predicted SSOC per 
selection ranged from 4.84 (± 0.46) to 5.08 (± 0.36) kgC m− 2 depending 
on the replicate when selections included 10 profiles, and from 4.65 (±
0.32) to 4.99 (± 0.44) kgC m− 2 when selections included five profiles. 
Approximations were more accurate with 10- than five-profile selec
tions, which was expected, nevertheless the benefit of using twice more 
profiles was rather limited. But the important point is that SOCv pre
dictions using the library and spectra of sieved dried samples from a few 
validation profiles led to accurate approximations of average SSOC at 
the scale of the independent validation field. This offers important 
perspectives for SSOC accounting, for instance for SSOC inventories, 
though the level of prediction error hardly allowed SSOC monitoring (i. 
e. detecting SSOC differences between dates). 

4.3. Prediction models of SOCv vs. SOCg and Db 

There were close correlations between SOCv (gC dm− 3) and SOCg 
(gC kg− 1), and their variabilities were similar, according to coefficients 
of variation (SD/mean; cf. 3.1). According to RPIQval, SOCv tended to 
be more accurately predicted than SOCg when using in situ spectra in 

the three separate sample sets (cf. 3.2), and using laboratory spectra in 
the total set (cf. 3.3); but the opposite was seen when using laboratory 
spectra in the three separate sample sets (cf. 3.2). Discrepancies were 
due to respective variations of IQval and SEP for SOCg vs. SOCv 
depending on the spectrum set considered. The interesting point is that 
VNIRS prediction could not be considered as systematically less accurate 
for SOCv than SOCg. Moreover, according to regression coefficients, all 
spectral regions did not contribute similarly to SOCv and SOCg predic
tion models within a given spectrum set, though some contributed 
strongly to both predictions (cf. 3.4 and Fig. 6). So VNIRS predictions of 
SOCv could hardly be considered as indirect due to VNIRS predictions of 
SOCg and correlations between SOCv and SOCg, as might have been 
hypothesized. Indeed, besides close correlation between SOCv and 
SOCg, this would have required better SOCg than SOCv prediction and 
similar contributions of spectral regions to both prediction models. 
Furthermore, correlations between SOCv and Db were negative and not 
close in general (cf. 3.1), and most spectral regions contributed differ
ently to SOCv and Db prediction models (cf. 3.4); so indirect SOCv 
predictions due to Db predictions and correlations between SOCv and 
Db did not seem possible. There was thus no evidence of indirect VNIRS 
predictions of SOCv as a result from VNIRS predictions of SOCg or Db. 

4.4. Chemical compounds involved in prediction models 

When considering the seven spectrum sets, some spectral regions 
often contributed strongly to SOCv or SOCg prediction models, using in 
situ or laboratory spectra (cf. 3.4 and Fig. 6). According to (Workman 
and Weyer, 2008), except when otherwise specified, these regions have 
been assigned to aliphatic organic compounds (740–760, 820–830, 
1360–1400, 1440, 1730, 2310 and 2330–2360 nm), aromatic organic 
compounds (670–680 nm, Manoj and Kunjomana, 2011; 1140, 
1420–1430, 1670, 1740, 2150 and 2420–2440 nm), N organic com
pounds such as amines and amides (1000–1010, 1450–1480, 2010, 
2160–2180 nm), lipids (1820–1840 nm, Williams and Norris, 2001; 
2140 nm), carboxylic acids (1870 nm, Dyer, 1965; 1890 and 2130 nm), 
silicates (1300–1320 nm, McDowell et al., 2012), iron oxides (720–730 
nm, Sherman et al., 1982; 2240–2260 nm, Bishop et al., 2008) and water 
(970 and 1920–1940 nm). 

However, it was difficult to identify chemical compounds that would 
contribute more clearly to predictions of SOCv than SOCg, or using in 
situ than laboratory spectra, and vice-versa. For instance, in CHA and 
MEL, N organic compounds seemed more involved in SOCv than SOCg 
prediction with laboratory spectra (1000–1010, 1450–1480 and 
2160–2170 nm were strongly involved in SOCv prediction vs. 
2160–2170 nm only for SOCg); but the opposite was observed with in 
situ spectra (no corresponding region strongly involved for SOCv vs. 
1000–1010 nm for SOCg; Fig. 6). Similarly, aliphatic compounds 
seemed more involved in SOCv prediction using laboratory than in situ 
spectra in CHA and MEL (810–830, 1360–1390, 1730 and 2310 nm with 
laboratory spectra vs. 820 nm only in situ), but the opposite was seen in 
MAR and NAN (740–750 nm vs. 740–760, 830–840, 1370–1380 and 
2240 nm, respectively). As already mentioned (cf. 3.4), specific contri
butions of spectral regions to prediction models seemed to depend firstly 
on the sample set; so specific contributions of chemical compounds (that 
these regions have been assigned to) depended probably on the sample 
set too. 

5. Conclusion 

Few studies have used VNIRS for direct SOC stock prediction. The 
present work showed that accurate predictions could be achieved in 
independent validation using VNIR spectra of sieved dried samples, at 
sample level (SOCv, in gC dm− 3) and at profile level (SSOC, in kgC m− 2; 
RPIQval ≥ 2.0). The level of prediction error (SEP = 0.36 kgC m− 2 at 
0–30 cm) hardly allowed SSOC monitoring (i.e. detecting SSOC differ
ences between dates). Nevertheless, average SSOC at the level of the 
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independent validation site (5 ha), as estimated from 48 SSOC obser
vations, could be approximated accurately with predictions using the 
library for calibration and spectra from only five to 10 randomly 
selected profiles from this site. This offers important perspectives for 
SOC accounting, for instance for SOC inventories, considering the time- 
and cost-effectiveness of VNIRS, when compared with other SOC stock 
determination procedures. However, for building spectral libraries, 
there is a need for collections of sieved dried samples analyzed for SOC 
stock, which are not necessarily available for wide areas yet. Moreover, 
local calibration (based on spectral neighbors) yielded more accurate 
predictions than global calibration, which confirmed studies that used 
large soil spectral libraries for prediction on independent samples. 

For different methods of in situ spectrum acquisition, more accurate 
SOCv predictions were achieved with spectra acquired on sieved dried 
samples than in situ. This was consistent with most publications that 
compared in situ vs. laboratory VNIRS prediction of soil properties, due 
in particular to varying soil moisture conditions. However, for one 
sample set studied in the present work (urban soils), more accurate 
SOCv prediction was achieved with in situ spectra (accurate prediction 
was nevertheless achieved with laboratory spectra). This was attributed 
to rather high and variable soil content in coarse particles, which 
probably complicated SOCv prediction using spectra of sieved samples. 
With the possible exception of soils rich in coarse particles, sieved dried 
samples could thus be recommended for VNIRS prediction of SOCv. 

There were close correlations between observed SOCv and SOCg (gC 
kg− 1), but in several instances VNIRS predictions were more accurate for 
SOCv than SOCg (in situ and for the total set of laboratory spectra). 
Moreover, according to regression coefficients of prediction models, all 
spectral regions did not contribute similarly to SOCv and SOCg pre
dictions. Correlations between SOCv and Db were weaker, and contri
butions of spectral regions to SOCv and Db prediction models were not 
similar either. So there was no evidence of indirect VNIRS prediction of 
SOCv as a result of VNIRS prediction of SOCg or Db. Moreover, when 
examining regression coefficients, there were no clear trends about 
spectral regions (and chemical compounds they have been assigned to) 
which would be more involved in predictions of SOCv than SOCg, or 
using in situ than laboratory spectra, and vice versa. Specific contribu
tions of spectral regions to prediction models seemed to depend firstly 
on the sample set considered. 
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