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Abstract 16 

Background  Scientific software incorporates models that capture fundamental domain 17 
knowledge. This software is becoming increasingly more relevant as an instrument for food 18 
research. However, scientific software is currently hardly shared among and (re-)used by 19 
stakeholders in the food domain, which hampers effective dissemination of knowledge, i.e. 20 
knowledge transfer. 21 
Scope and approach  This paper reviews selected approaches, best practices, hurdles and 22 
limitations regarding knowledge transfer via software and the mathematical models embedded 23 
in it to provide points of reference for the food community. 24 
Key findings and conclusions  The paper focusses on three aspects. Firstly, the publication of 25 
digital objects on the web, which offers valorisation software as a scientific asset. Secondly, 26 
building transferrable software as way to share knowledge through collaboration with experts 27 
and stakeholders. Thirdly28 
models and software in education and training. 29 
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1. Introduction 44 

Knowledge transfer1 based on models is a vital driver of scientific research and for putting 45 
research into practice. Particularly, the development of digital Information and Communication 46 
Technology (ICT) offers great opportunities to create interactive media that facilitates the 47 
communication for research partnerships (de Wit-de Vries et al., 2019). In food science, there is 48 
a growing interest in knowledge transfer among researchers and with stakeholders at large (e.g. 49 
industry, public institutions, consumers) (Thomopoulos et al., 2019; Erdogdu et al., 2017; 50 
Aceves Lara et al., 2018; Filter et al., 2015; Perrot et al., 2011; Plaza-Rodríguez et al., 2018). 51 
However, reviews show that the deployment of knowledge transfer by food scientists and food 52 
engineers is marginal (Djekic et al., 2019; Braun and Hadwiger, 2011). The inherent properties 53 
of food products and related processes (e.g. variability of raw materials, not fully formalized 54 
physics, heterogeneity of the structure) hamper knowledge transfer (e.g. Perrot et al., 2011). In 55 
food science, a major problem is the lack of codifiability (i.e. the ability to translate knowledge 56 
into symbols, such as equations and computer code), which expresses the degree of 57 
communicability and understandability of the domain knowledge. A computer code is an 58 
unambiguous codification of domain knowledge that can be readily shared, contrary to tacit 59 
(not encoded) knowledge. Moreover, food scientists that build mathematical models and 60 
software often lack the knowledge transfer expertise to make their work accessible to a larger 61 
audience. As a result, the (re-)use of scientific software in the food industry in Europe is limited 62 
and as such an outstanding challenge. 63 

Software essentially captures expert knowledge formalised as equations (i.e. a mathematical 64 
model) and implemented as executable code (Davenport and Prusak, 2000). The hindrances to 65 
wider (re-)use of food research software are diverse, such as the lack of user-ready research 66 
software tools, the cost of getting acquainted with existing models, and the difficulty of 67 
designing adaptive reusable applications. Several papers address this knowledge transfer 68 
bottleneck. Datta and Halder (2008) and Saguy (2016) propose a road map for wider 69 
deployment of food models in industry. Datta (2016) discusses computer-aided food 70 
engineering to promote the use of virtualisation in the food industry. Perrot et al. (2011) 71 
describe opportunities offered by complex systems approaches to overcome limitations 72 
encountered by physics-based approaches. Della Valle et al. (2014) present prerequisites that 73 
favour the assimilation and the use of simple models in the baking industry. Plaza-Rodríguez et 74 
al. (2018) present a strategy for making a model publicly available and transfer predictive 75 
microbiology knowledge into operational applications. Haberbeck et al. (2018) present an open 76 
information exchange format for integrating and sharing knowledge captured in mathematical 77 
models in the food safety domain. Filter et al. (2015) present a strategy for developing expert-78 
systems with broad end-user acceptance. 79 

The food modelling community has a responsibility in strengthening the transfer of software 80 
conveying encoded domain knowledge, both, by making existing scientific software easier to 81 
find and (re)use, and by creating software that is easier to transfer to stakeholders. The former 82 
is a one-way2 mechanism based on the dissemination of research results that requires post-83 
treatment of the software (Plaza-Rodríguez et al., 2018). The latter is a bi-directional3 84 
mechanism that involves interaction between the modellers and the recipients of the software 85 
                                                
1 See Battistella et al. (2016) for a review on technology and knowledge transfer. 
2 A mechanism of output according to Battistella et al. (2016). 
3 A mechanism of process according to Battistella et al. (2016). 
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and entails that the software meets certain requirements; for example, the production of 86 
outputs that are of interest to end-users (Datta and Halder, 2008). 87 

To encourage knowledge transfer in the food domain, a comprehensive overview of knowledge 88 
transfer enabling methods, frameworks and approaches is needed. Our paper aims at initiating 89 
this overview. It adheres to the broad definition of knowledge transfer as the communication of 90 

4 (Braun 91 
and Hadwiger, 2011). 92 

This paper focuses on academia and industry as sources and recipients of knowledge related to 93 
food. It considers software and models as objects transferrable between stakeholders. The 94 
paper reviews transfer initiatives in food software and modelling, and discusses what the food 95 
community may learn and adopt from other scientific communities in terms of knowledge 96 
transfer strategies and approaches, and how this may benefit the food community. The paper is 97 
organized in four sections, each illustrating a different set of knowledge transfer mechanisms. 98 
Section 2 discusses ongoing efforts in knowledge transfer through physics-based models and 99 
phenomenological models embedded in software. Sections 3 & 4 present collaborative 100 
initiatives and strategies for building software that captures knowledge shared by specialists 101 
from different domains pertaining to a particular subject. Section 3 focuses on collaboration 102 
through software reuse, while section 4 discusses collaboration through shared understanding. 103 
Section 5 presents initiatives in education and training that promote modelling in food 104 
engineering curricula. 105 

2. Knowledge transfer in food science modelling 106 

The application of modelling techniques in the food domain is challenging due to intricate 107 
physical structures (e.g. foams, emulsions, suspensions, networks, gels), which are typically 108 
dynamic, undergo significant changes during manufacturing and exhibit varied behaviour 109 
during consumption (Mohammed et al., 2020). Food researchers in industry and academia 110 
increasingly produce mathematical models embedded in software that capture relevant 111 
knowledge of such phenomena. These models, referred as physics-based and phenomenological 112 
models, are potential vectors for Knowledge Transfer (KT) among researchers and with 113 
stakeholders at large. This section focusses on KT using such models. 114 

2.1. Physics-based food science models 115 

Physics-based modelling deploys a theoretical framework involving mathematical expressions 116 
of phenomena. When computed, a physics-based model generates virtually animated objects 117 
(evolving in time and space) that describe the considered system, matching observations 118 
(Saguy, 2016). These simulations result from analytical (i.e. exact) or numerical (i.e. 119 
approximate) models. Due to the complexity of food, the former has limited applicability for 120 
food products (Bimbenet et al., 2007). The latter, on the other hand, has much more deployment 121 
within the academic and industrial food community. There is a vast range of numerical 122 
techniques available including Finite Element Analysis (FEA), Discrete Element Methods (DEM), 123 
and Smoothed-Particle Hydrodynamics (SPH), which can be used to simulate a wide variety of 124 
phenomena involving solid and fluid-like materials. 125 

                                                
4 Complies with the frame of reference in Battistella et al. (2016). 
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Numerical models have typically been deployed in three ways: 126 

1. Industrial manufacturing processes. To determine and simulate important variables 127 
of process operation, e.g. the exit shape and the roll force of the torque for the rolling 128 
sheeting of dough (Chakrabarti-Bell et al., 2010; Chen et al., 2020). Another example is 129 
heat transfer modelling, which is probably the most common application of numerical 130 
techniques in food processing (Erdogdu et al., 2018), as the temperature of a product is 131 
critical for food safety and quality. 132 

2. Predicting complex phenomena. To predict food breakdown during oral and gastric 133 
processes in humans (or pets) consider the interactions taking place in the oral cavity 134 
during the chewing for various food products (Harrison and Cleary 2014; Skamniotis et 135 
al., 2020). For example, the flow of a bolus resulting from the peristaltic waves inside a 136 
realistic stomach geometry (Ferrua et al., 2011) and food transport through the 137 
oesophagus during the swallowing of fluid food (Yang et al., 2007). The latter studied 138 
the effects of tissue properties, bolus properties (e.g. viscosity) as well as contraction 139 
and wave speed on the food transport process. 140 

3. Multiscale simulation design tool. For linking the structure and behaviour of food in 141 
small scale processing to the bulk response of foods in larger scale processing. 142 
Multiscale numerical modelling is gaining importance in food science (Ho et al., 2013). 143 
For example, the texture of cereal solid foods can be predicted using FEA, by combining 144 
information about the product density (macro-scale), product cellular structure (meso-145 
scale) and the mechanical properties of the constitutive materials (micro-scale) 146 
(Guessasma et al., 2011). 147 

 148 
Numerical models are of interest to the food industry as well as the non-food industry, e.g. for 149 
the design of innovative bio-based materials. However, KT based on these models is limited. 150 
Models often need to be re-engineered and adapted to specific problems, which requires 151 
technical skills from the user, and measurements of material properties. Additionally, there is 152 
the fear of sharing sensitive data, as well as budget and time constraints, which hamper 153 
corporate investments in a dedicated modelling service or department. As a result, the 154 
numerical models available in the scientific literature are hardly transferred beyond the 155 
community of modellers that developed them. 156 

2.2. Phenomenological models: empirical & simplified 157 

The development of phenomenological models from experimental results (also known as semi-158 
empirical models) can be seen as a lightweight approach compared to the physics-based models 159 
discusses above. Phenomenological modelling sacrifices the mechanistic foundation and 160 
predictive power to provide pragmatic solutions to practical problems within time and budget 161 
constraints. Phenomenological modelling is common in food engineering and many models of 162 
this kind can be found in the literature (Baudrit et al., 2011). 163 

Basic Knowledge Models (BKMs) are a specific type of phenomenological models that rely on 164 
statistical or machine learning techniques to cope with unknown aspects. They have three main 165 
characteristics that facilitate KT (Della Valle et al., 2014): 166 
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 Relevant knowledge. BKMs capture relevant knowledge about the mechanisms that 167 
change a product during a process. This principle ensures that the model conveys only 168 
knowledge about the food product or process that is relevant to users. 169 

 Use-property information. BKMs provide information on the use properties of a 170 
product. Firstly, to be of value to the food sector, a BKM must model a system that is 171 
recognisable and of interest to potential users, such as process operators in the domain 172 
of food manufacturing (e.g. mixing, rolling, frying). Secondly, the BKM outputs should 173 
serve practical use (e.g. predicting product quality criteria). 174 

 Understandable and modifiable. Using and modifying BKMs requires limited 175 
knowledge of mathematics and physics as BKMs use relatively simple equations. 176 
Additionally, modelling languages from the field of Artificial Intelligence, such as causal 177 
graphs, can make BKMs understandable to users that are not skilled modellers (Kansou 178 

179 
from its mathematical and implementation details. 180 

 181 
To further illustrate BKMs, consider the models describing a bacterial response to temperature, 182 
pH, and water activity. They associate a standard bacterial growth model, usually a sigmoïdal 183 
model either a Gompertz or logistic (Zwietering et al., 1992) with thermal inactivation 184 
(Leguerinel et al., 2005), while the parameters are fitted to the data. Along the same lines, 185 
Romano et al., (2007) proposed a BKM that simulates the wheat dough expansion leavening 186 
process from the dose of yeast using Gompertz function and a linear-regression model. Kansou 187 
et al. (2013) extended this model by introducing a BKM for dough stability, using an exponential 188 
decay function. One can think of building a third BKM of dough expansion by coupling both 189 
models. This shows how phenomenological models can be reused and adapted to meet specific 190 
needs. 191 

More elaborate BKMs integrate stochastic modelling to manage complexity, uncertainty and 192 
tacit knowledge (Perrot et al., 2011). Baudrit et al. (2010) present a Dynamical Bayesian 193 
Network (DBN) of cheese ripening that simulates the evolution of practical product properties 194 
such as odour, percentage of coating, and humidity. The DBN integrates a knowledge model of 195 
the microbial activity with imprecise information in the form of probability distributions 196 
learned from data. More precisely, the DBN is a causal graph whose nodes (variables) and edges 197 
(causal dependencies) represent the coupled dynamics of dominant microorganism growth 198 
with their substrate consumptions. With the help of experts in cheese ripening, the graph was 199 
built in such a way that it is explicit and understandable even for a person with modest or no 200 
modelling skills. Determining the conditional probability distributions, i.e. the parameters of the 201 
DBN, required a significant experimental effort and a large dataset to account for the kinetics. In 202 
return, the prediction accuracy of the model was rather high. 203 

2.3. Transfer channels for scientific software 204 

Mathematical models are valuable means of KT, particularly when formalised as scientific 205 
software, which ranges from a simple script written by a single researcher to an elaborate 206 
software package (e.g. modelling software) developed by several groups in a joint effort. 207 
Currently, the main routes for transferring scientific software to stakeholders in the food 208 
domain are: 209 

1. scientific publication, with some information about the implementation of the model; 210 
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2. simulation results as required by clients, but without sharing the code that produces 211 
these results; 212 

3. software distribution via university or a university spin-off company; and 213 
4. software hand-over to a company that handles the engineering and commercialisation. 214 

 215 
These four routes basically reflect two approaches for sharing scientific software: (i) the 216 
academic approach, in which authors of the scientific software take care of the software use and 217 
dissemination (i.e. route 1 and 2), and (ii) the commercial and open-source approach, in which 218 
the software maintenance and the business aspects are entrusted to software specialists or a 219 
platform (i.e. 3 and 4). As food model developers are typically familiar with the academic 220 
approach, the next section focusses on the latter approach. 221 

2.3.1. Hand-over scientific software to a development team 222 

It can be beneficial to hand-over code to a software company, which then handles the software 223 
engineering tasks (e.g. user interface development, software development, maintenance, code 224 
testing, documentation) and the business aspects (e.g. licensing and distribution). Typical 225 
approaches for commercialisation are: (i) the development of fully integrated proprietary 226 
packages by a software company, (ii) proprietary packages set up for integration with external 227 
open-source packages, and (iii) the Independent Software Vendor (ISV) model, in which a 228 
software company offers a platform to ISVs (i.e. separate companies) that integrate their 229 
solutions in the platform (e.g. as packages) and offer it to their clients (e.g. ANSYS). ISVs are 230 
charged for the integration of their products in the platform, while they fully handle the 231 
development and the business aspects of their products (Goldbeck, 2017). 232 

A primary market for scientific software commercialisation is research and development 233 
activities. In food, this concerns the development of innovative food products or packaging or 234 
the creation of new processes. Downstream in the R&D chain, scientific software can support 235 
product quality-assessment (e.g. safety risk, nutrition, conformity assessment), process 236 
optimisation and control, and supply chain or market trends analysis. 237 

The Ludovic® case illustrates scientific software commercialisation. Ludovic® is a simulation 238 
software for the twin-screw extrusion of polymers and biopolymers developed and distributed 239 
by Sciences Computers Consultants (SCC)5240 
for various foods (e.g. snacks, breakfast cereals, infant flours, pet-foods). At that time, the 241 
approach to extrusion in industry was essentially empirical. In the eighties, the INRA and 242 
ARMINES institutes investigated theoretical and experimental aspects of the extrusion of 243 
starchy and other polymeric products. They developed a model based on continuum mechanics 244 
to rationalize the design of extruded starchy products (Della Valle et al., 1993; Vergnes et al., 245 
1998). This model computed the temperature and the pressure profiles along the screw, as well 246 
as the Specific Mechanical Energy (SME). SME mainly determines the extent of the starch 247 
transformation and its viscosity, which in turn determines the product expansion at the outlet of 248 

main publication (1993), Ludovic® was released as 249 
the result of a business agreement between the two research institutes and SCC (Fig. 1). The 250 
initial model, written in FORTRAN, was given to SCC along with the Intellectual Property (IP) 251 
rights in return for a royalty on sales and free in house use of the software. SCC carried on the 252 
software engineering tasks (i.e. cleaning the code, developing a GUI, writing documentation, 253 
                                                
5 https://www.scconsultants.com/en/ludovic-twin-screw-simulation-software.html 
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with the help of the authors of the models to ensure scientific adequacy) and the distribution 254
and maintenance. Several companies use Ludovic®, which is now in its 6th version, at the early 255
stages of product design innovation and process optimisation to reduce the number of costly 256
trials. The research groups that initially contributed to Ludovic® have since been using the 257
commercial version in many research activities, for example to account for the texture 258
properties of extruded products.259

260

Figure 1. Timeline illustrating the origin and development of Ludovic®.261

2.3.2. CAE solutions, when end-users are modellers262

Physics-based modelling and more specifically numerical modelling is generally used to create a 263
virtual space in which replications of products, processes or equipment are manipulated and 264
tested (i.e. Datta, 2016). Modelling, simulation, optimisation and dynamic studies are a part of a 265
wider scheme that is referred to as virtualisation (Marra, 2016). A number of manufacturing 266
sectors have invested in this approach, e.g. automotive, aerospace, packaging, and adhesives. 267
Virtualisation is used for product design and development; it offers an alternative to physical268
trial-and-error exploration. In the food industry, the design of innovative products is one of the 269
applications that could benefit from this virtualisation approach (Saguy, 2016).270

Numerical models can provide accurate predictions of the behaviour of a material under a 271
variety of boundary conditions, whilst conveniently highlighting important parameters of the 272
process analysed through parametric studies. Another advantage is that these models provide 273
results in an accessible format, such as colourful contour plots and explicit graphs, which enable 274
end-users to build a mental model of the phenomenon and subsequently use the knowledge 275
gained for product and process optimisation. Additionally, there are strong arguments for the 276
strategic importance of a wider use of virtualisation to support innovation in the food sector 277
(Saguy, 2016).278

The preferred KT channel for this type of model is commercial Computer-Aided Engineering279
(CAE), i.e. a software that assists end-users in the process of developing their own numerical 280
models. The growing interest for such computational models has been driven by the increase in 281
available processing power as well as the multiplication of commercially available software 282
packages dedicated to materials and chemical processing (e.g. Comsol6, ANSYS7). These 283
commercial solutions are typically accompanied by technical manuals, training, free student 284

                                               
6 http://www.comsol.com/products
7 https://www.ansys.com/solutions/solutions-by-industry/materials-and-chemical-processing
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download licenses and customer support. OpenFOAM8 is an example of an open-source 285 
software under the General Public Licence (GPL). GPL allows for free use, modification and 286 
redistribution. In chemical engineering, one can find easy-to-use CAE tools for simulating 287 
processes in the energy, gas, chemical, petroleum and pharmaceutical industry (e.g. ProSim9). 288 

In the food domain, CAE tools offer great assistance for tasks that can be partially automated 289 
such as processing (solving equations), post-processing and coding. However, current CAE 290 
solutions are unlikely to efficiently assist the modelling of solid food products (i.e. writing 291 
mathematical expressions that capture the physical system, Datta., 2016). Problem formulation 292 
requires good modelling skills and good knowledge of food physics and experiments. In the food 293 
domain, this evidently limits the pool of potential end-users. Hence, in the food industry the 294 
application of physics-based modelling is currently conducted by in-house modellers in big 295 
companies, specialist software companies or academic research groups. 296 

Datta (2016) proposes two paths to increase the utility of CAE in the food domain: (i) the design 297 
of a set of modelling frameworks that address food processing, quality and safety, and (ii) an 298 
increased use of CAE tools and virtualisation in education, as this is happening already in some 299 
university engineering courses. It is also possible to take advantage of the emerging cloud-based 300 
technologies that have transformed many industries. It has been argued that running numerical 301 
simulations of manufacturing processes on cloud-based platforms could foster a collaborative 302 
research environment whilst providing means for research digitalisation and knowledge 303 
sharing as well as saving on local computational and data storage resources (Yang et al., 2019). 304 
This could be a future trend that would facilitate the optimisation and exploitation of advanced 305 
mathematical modelling tools by stakeholders. 306 

2.4. Limitations of current diffusion channels 307 

Current channels for KT with scientific software are limited. Scientific papers generally contain 308 
minimal descriptions of the implementation, and even when the code is available, using it 309 
effectively requires a serious amount of additional work (Gil et al., 2016). The lack of an 310 
harmonized exchange format is particularly limiting, as it is well known that being able to 311 
integrate, question and challenge new knowledge is essential for perceiving and accepting its 312 
added value (Drechsler et al., 2016). Challenges with software commercialisation are the 313 
intensity and duration of the procedure. Only a few scientific software vendors are interested, 314 
leaving most of the scientific software of a domain aside. Developing CAE solutions dedicated to 315 
the food domain would be beneficial for KT, in particular because it would enable the receiving 316 
agent to build their own models, reusing components developed by others. For now, this 317 
channel has a relatively small user base in the food sector, although it is expected to grow with 318 
the development of commercial software (Saguy, 2016). Still, the CAE tools favour certain types 319 
of modelling and require suitable training, as such, they are unlikely to offer a generic solution 320 
for transferring scientific software. 321 

                                                
8 https://www.openfoam.com  
9 http://www.prosim.net/en/index.php 
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3. Towards reusable scientific software 322 

In Europe, guidelines have been issued to incite scientists to adopt development practices that 323 
will make their software reusable (Chue Hong., 2014, Fehr et al., 2019). Additionally, sharing 324 
research data is well established as a key aspect of open science, which is expected to accelerate 325 
innovation in industry. It is typically realised using the European Commission  program 326 
European Open Science Cloud10 that implements the FAIR11 principles (i.e. Findability, 327 
Accessibility, Interoperability, and Reusability), as well as related developments on (research) 328 
data management plans and domain protocols to share data. This section reports on initiatives 329 
that could encourage the reuse of scientific software in the food domain. 330 

3.1. Information to accompany scientific software 331 

There are several proposals like the Science Code Manifesto12 aiming at paving the path toward 332 
reusable scientific software (Chue-333 
(Henderson, 2017) illustrates a gold standard that is unrealistic for academics, yet some of the 334 
good practices, frameworks and tools presented could inspire the scientific community. The 335 
DLR (German Aerospace Center) Software Engineering Guidelines (Schlauch et al., 2018) are an 336 
interesting example of top-down recommendations aiming at supporting scientists in improving 337 
the reusability of their software. Another framework for informing about scientific software is 338 
proposed by Fehr et al. (2019). It defines a list of requirements for academic software, typically 339 
pieces of code written by a PhD student, to support the hand-over to the other scientists (in the 340 
group) and the continuation of the project. Another approach for evaluating scientific software 341 
in the food domain could be to tailor the Technology Readiness Level (TRL) methodology to 342 
food science (Altunok and Cakmak, 2010; Armstrong, 2010). 343 

The multi-level framework for scientific software reuse (Chue-Hong, 2014), is a good starting 344 
point for scientists new to this topic. This framework associates end-user benefits with four 345 
software information levels that support a researcher in the process of providing information 346 
about the software, such that a developer can gradually improve the reusability of the software. 347 
The proposed four levels are: 348 

 L1 (Absolute Minimum): requirements that put no barrier on the developer. Should be 349 
considered basic requirements for any researcher that publishes results from a self-350 
developed software. 351 

 L2 (Useful Minimum): additional effort to support at least the own use of the software. 352 
 L3 (Pragmatic Minimum): a desired (according to Chue-Hong, 2014) standard level of 353 

information that supports the collaboration with external developers. 354 
 L4 (Good Minimum): actively encourages software reuse through the adoption of 355 

essential software engineering techniques. 356 
 357 
For each level, the requirements are classified in categories. Table 1 shows the requirements 358 
for L1. As scientific editors get increasingly concerned with the traceability of research results, 359 
requirements of this kind might become mandatory for submission to peer-reviewed journals, 360 
as soon as a new scientific software is involved. Notice that, this framework is sufficient to 361 
                                                
10 https://www.eosc-portal.eu/about/eosc  
11 https://www.go-fair.org/fair-principles/  
12 http://sciencecodemanifesto.org/ 
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support the editing of basic metadata (information describing the software) and the creation of 362 
accompanying files. Some of these metadata are required for depositing software into a digital 363 
repository for archiving and referencing (e.g. Jackson, 2018). Where dealing with copyright and 364 
licensing aspects, which is part of the process, can be troublesome, the REUSE13 website offers 365 
useful support in this regard. 366 
 367 

Table 1. Level 1 requirements for informing on software reuse (Chue-Hong, 2014). 368 

Category L1. Absolute Minimum 

License (legal information about 
the software reuse) 

s for reuse (this can include 
non-  

Availability (where and how to 
get access to the software) find it (this could be as a tar archive on  

Quality (functional and non-
functional requirements) to do... normally  

Support (ways to contact the 
developer in charge of support) original/current developer (instead of good documentation), 

 

Incentive (how to acknowledge 
the software development) 

None (starts at level 2) 

 369 

3.2. Infrastructures for reuse of scientific software  370 

Sustainable scientific software reuse should be based on a suitable infrastructure for storing, 371 
archiving and making the code accessible. Therefore, authors must deposit their software 372 
alongside other files (e.g. README, RUNME) into digital repositories and fill in registry forms 373 
that allow for curation by other users. Jackson (2018) offers useful recommendations for the 374 
deposit of software, such as the delivery of a persistent digital identifier (e.g. Digital Object 375 
Identifier, DOI) that assures that the software can be cited and that the author gets credited for 376 
the work. Notice that, general purpose code repositories, such a Github, do not automatically 377 
provide persistent identifiers, although mitigating procedures exist14. Certain repositories are 378 
recommended for specific developer communities. For instance, CRAN15 is well-known among 379 
users of R16 as the repository that stores R packages with their documentation. Similarly, SciPy17 380 
is well known among Python18 users. For any scientific software, it is important to consider 381 
archiving and referencing the software via registry services alongside the deposit of the code. In 382 
fact, registration and indexation might be more important for a scientific community than the 383 
code repository hosting service itself (Gil et al., 2016). General purpose digital repositories, such 384 
as FigShare and Zenodo, can be used for registering and archiving software (as for any other 385 
research products) and for making its title, DOI and licence citable (Jackson, 2018). Finally, 386 

                                                
13 https://reuse.software/  
14 https://guides.github.com/activities/citable-code/ 
15 https://cran.r-project.org/ 
16 https://www.r-project.org/  
17 https://www.scipy.org/ 
18 https://www.python.org/  
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Software Heritage19 is a recent international initiative that offers a service for indexing, 387 
organizing, making referenceable and accessible all the software that conveys technical and 388 
scientific knowledge. Software Heritage archives and assigns an intrinsic and persistent 389 
identifier for digital objects (i.e. swh-id). 390 

One can also find domain-specific software repositories, driven by a community of scientists for 391 
collecting food safety models in their field, such as the Risk Assessment and Knowledge 392 
Integration Platform (RAKIP)20 (Plaza-Rodrigez et al., 2018; de Alba Aparicio et al., 2018). They 393 
enable scientists to register their software via a set of metadata that capture relevant 394 
information for the domain. Interestingly, some of these repositories require compliance with a 395 
common modelling framework to favour data exchange between various modelling tools and 396 
the coupling of models in general (Gil et al., 2016). 397 

FSL-Lab is a graphical modelling platform for the integration of risk assessment models that 398 
goes a step further in term of model reusability (de Alba Aparicio et al., 2018). One of the FSK-399 
Lab key features is the support of a markup language for script-based or application-based 400 
models (Food Safety Knowledge Markup Language, FSK-ML), that is used to annotate models 401 
with metadata. FSK-ML allows for a harmonized writing and reading of mathematical models 402 
regardless of their sources, which facilitates greatly their integration and re-use in FSK-Lab. 403 
FSK-ML is expected to become a format for exchange of information broadly adopted by the 404 
microbial food safety community (i.e. regulatory agencies, food industries, consultancy 405 
companies, and food scientists) in order to facilitate the reusability of scientific models to 406 
improve risk assessment and decision making by food safety managers (Haberbeck et al., 2018). 407 

Software deposit solutions capture metadata about the software, but sometimes in an 408 
unstructured way, e.g. as text in a README file. Additionally, the documentation provided in 409 
code repositories mostly focuses on the installation process (Gil et al., 2016). This makes it 410 
difficult for potential end-users to find software that matches their needs. Having the metadata 411 
captured in a software registry linked to the code makes the software searchable, discoverable 412 
and re-usable. This is an essential aspect of software sharing that can be addressed with 413 
software ontologies (i.e. controlled vocabularies that specify information about a software). The 414 
OntoSoft ontology (Gil et al., 2015) is an example of a general software ontology centred on 415 
scientific software sharing. OntoSoft21 captures six information items that can be queried by a 416 
user (Gil et al., 2015): identifying the software, understanding and assessing software, executing 417 
the software, getting support, doing research, and updating. This ontology is at the core of a 418 
distributed software registry that offers a way to register and discover scientific software. 419 

3.3. Barriers for scientific software reuse 420 

The publication of datasets and software is a growing trend that is likely to become even more 421 
pronounced in the near future. This trend is encouraged by scientific publishers, funding 422 
agencies and research organisms that promote open science. Despite this, there is a risk that a 423 
great deal of datasets and software currently developed by researchers in food science remain 424 
unpublished and inaccessible to potential users. 425 

                                                
19 https://www.softwareheritage.org/ 
20 https://foodrisklabs. bfr.bund.de/rakip-model-repository-web-services/ 
21 https://www.ontosoft.org/index.html 
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Main explanations for the limited adoption of practices that favour software reuse reported in 426 
other domains (e.g. Gil et al., 2016) also apply to the food modelling community. They can be 427 
summarised in428 
e.g. guidelines and tools. Traditionally, food science does not rely heavily on programming, 429 
therefore the lack of knowledge about practices and tools that favour software reuse is natural.  430 

Similarly, while developing an infrastructure to share food science models might be highly 431 
beneficial, the community lacks a format for describing simulation models (Plaza-Rodriguez et 432 
al., 2015). However, the lack of credit is probably the most critical bottleneck for a large 433 
diffusion of food science models. In science, there is a major imbalance between the effort 434 
invested in coding, documenting, maintaining and publishing the code, and the credits/benefits 435 
that the author can get from it (Chawla, 2016). Initiatives from publishers and communities to 436 
measure the impact of a scientific code are currently tackling this imbalance and will probably 437 
continue alongside the evolution of scientific publications, see for example the software citation 438 
guide (Katz et al., 2021) and the CODECHECK system (Nüst and Eglen, 2021). 439 

4. Collaboration through shared representations 440 

The code developed by researchers in the process of scientific discovery should be shared with 441 
the scientific community, like a research paper or a dataset. However, the primary goal behind 442 
the development of scientific code is generally not knowledge transfer. This section focuses on 443 
collaborative modelling techniques that aim at creating software usable by people other than 444 
scientists. 445 

Collaborating with other scientists, domain experts, stakeholders or even consumers, is not 446 
uncommon in the food sector. In general, the need to integrate expertise from various domains 447 
grows with the system scale and its complexity (van Mil et al., 2014). For instance, modelling the 448 
proofing of wheat dough  i.e. the first fermentation operation of the bread-making process  449 
needs only knowledge of the dough rheology and of the leavening agent activity. However, a 450 
bakery will probably find modelling the whole bread-making process more useful, which 451 
includes, in addition to the knowledge of the physics of the dough, the assessment of the quality 452 
of the flour and the prediction of the sensory properties of the bread; both aspects demand 453 
domain expertise and are not fully tractable with the current state-of-the-art. Collaborating 454 
actively with industry and civil society is a way to improve the relevance of software beyond the 455 
scientific community (Sein et al., 2011). 456 

However, where integrating different views of the same system is expected to promote 457 
understandability and (re)usability by a diverse audience, working with non-modeller 458 
contributors is challenging and calls for specific methods and tools. Potential mechanisms that 459 
facilitate collaboration can be found in the knowledge engineering domain. This field includes 460 
the acquisition of knowledge from domain experts, participative modelling and the 461 
development of controlled vocabularies (e.g. ontologies). This section reports on collaborative 462 
modelling initiatives in the food domain, such as the development of standardized food-related 463 
ontologies and the crowdsourcing of food data. 464 
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4.1. Involving domain experts in creating food software 465 

Involving experts in the creation of software, while keeping these experts away from low-level 466 
implementation details, is a prerequisite in the field of knowledge engineering and the 467 
development of Knowledge-Based Systems (KBS). KBSs designate a class of software systems 468 
(including expert systems and decision-support systems) that implements an automated 469 
knowledge source that can be consulted by users to generate valuable results (e.g. complex 470 
question answering or supporting decision-making). A KBS generally collates information from 471 
different sources, such as domain specialists, literature, and web resources (Aussenac-Gilles and 472 
Gandon, 2013). Basic principles of acquiring knowledge from experts include (Schreiber et al., 473 
2000): (i) building a shared representation of the domain knowledge sufficient for fulfilling the 474 
goal of the software, (ii) focusing on capturing the conceptual structure of the knowledge (i.e. 475 
the so-called knowledge-level), leaving aside programming considerations, and (iii) adopting 476 
iterative and incremental development of the software. 477 

Not many papers have addressed this topic in the context of food. Ndiaye et al. (2009) discusses 478 
the creation of a KBS for bread-making that captures the reasoning of bread technologists. 479 
Additionally, an incremental modelling approach is proposed to spur experts in providing 480 
feedback and informative critiques on the model structure (Kansou et al. 2014). Thomopoulos 481 
et al. (2013) presents an approach for learning interpretable data-driven models, which was 482 
applied to the processing and qualities of cereal foods. They used a domain ontology to select 483 
the factors from the dataset (e.g. cooking temperature) that would most likely affect the quality 484 
of the products (e.g. vitamin content). Subsequently, they derived decision trees from the data. 485 

486 
a new cycle, until the experts required no further improvements. In the same vein, the Food 487 
Informatics project (Koenderink et al., 2005) developed an approach for supervised 488 
construction of food ontologies, in which food experts had to select relevant concepts and 489 
properties (relations) within a set curated automatically from web resources. 490 

Eliciting knowledge about food is often delicate when know-how and sensory criteria are 491 
involved, because it often involves tacit knowledge that is difficult to put into words. To describe 492 
the human evaluation of an ongoing food process, Curt et al. (2004) adapted an observer-trainee 493 
technique combining explanation steps, interviews and concrete practical sessions. The 494 
principle was to have an expert practitioner, such as a product manager, explain and train a 495 

.g. the modeller) which led to the identification of the indicators (e.g. colour, 496 
stickiness, particle size, etc.) and their attributes (e.g. definition, operating conditions, 497 
measurement scales, location in the process, etc.). This approach was adapted by Sicard et al. 498 
(2011) for monitoring cheese ripening controlled by the cheesemakers in order to develop a 499 
Dynamic Bayesian Network (DBN) of this operation (see section 2.2). The knowledge elicitation 500 
was carried out as follows. The first phase captured operational know-how about the cheese 501 
ripening process with the aim of building an operational representation of the indicators and of 502 
the decision rules used by the operators to control the process. In a second phase, food 503 
scientists enriched this operational representation with concepts and relations describing the 504 
microbiological and biochemical phenomena. The result was an integrated probabilistic model 505 
that was able to predict the indicators of the different phases of cheese ripening. 506 
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4.2. Participative modelling 507 

Addressing societal issues, the collaborative and integrative aspects of modelling are even more 508 
important. Issues addressed at the food system level, especially those involving food security or 509 
sustainable production, are complex as they involve several dimensions and stakeholders with 510 
different visions of the system (van Mil et al., 2014) and potential conflicts of interest. This 511 
requires an appropriate methodology for reconciling these visions and determining the 512 
interventions that would most likely be accepted by the actors, and hence most likely succeed. 513 
This asks for participatory approaches that support decision-making in a multi-actor context 514 
(e.g. using risk-benefit analysis and multi-criteria decision, Bana E Costa, 2001), involving 515 
experts from different disciplines (e.g. agronomy, nutrition, environment) and various 516 
stakeholders (e.g. consumers, food producers, public authorities, technical centres) in the 517 
decision process that reconciles their different points of view (Joerin et al., 2009). 518 

More specifically, participatory modelling involves the actors in the creation of models that will 519 
ultimately facilitate the decisions. The field of resource and environmental management is 520 
particularly active in participatory modelling (Voinov et al., 2016). Noteworthy developments in 521 

522 
the sustainability of food systems. For example, semi-automated argumentative approaches 523 

s model (1995) allow for formalising arguments and contradictions, analysing 524 
conflicts of interest and helping to solve polemics. Thomopoulos et al. (2015) developed a KBS 525 
for re-thinking the agri- , safety and organoleptic 526 
recommendation arguments. Bisquert et al. (2017) present a multi-criteria computational 527 
cognitive model for argument acceptance (applied to the selection of durum wheat) informed 528 
with actor arguments, associations and opinions about food product (e.g. pasta, semolina) 529 
quality and life-cycle assessment criteria (e.g. dependence to chemical inputs). With the growing 530 
concern regarding the sustainability of the food systems, research projects including 531 
participatory modelling are bound to gain importance in the near future. 532 

4.3. Crowdsourcing 533 

Collaboration with experts or stakeholders is based on information exchange, during many 534 
meetings, either face-to-face, over the phone or through videoconferencing. This approach 535 
favours the elicitation of expertise and non-trivial positions on a subject, but it also hampers the 536 
involvement of a large number of contributors from different places, hence it allows only for the 537 
creation of small scale KBSs. As web-based services become increasingly sophisticated and 538 
powerful, it is possible to collect and integrate inputs from a large number of people across the 539 
world, aiming at larger scale applications. Consequently, web technologies and crowdsourcing 540 
are expected to play a bigger role in participatory modelling in the near future (Voinov et al., 541 
2016). Several web applications to collaboratively build a model are already available, such as 542 
ArguBlogging, an application that automatically formalises and structures dialogues posted on a 543 
web platform as a computable model (Bex et al., 2014). Kurtz et al. (2021) propose an AI 544 
approach, based on the concept of collective attitude, to analyse a large-scale survey on 545 

from web debates 546 
and agent-based modelling to simulate opinion diffusion on vegetarian diets. 547 

Because food concerns everyone, food issues can spark the interest of many internet users that 548 
could provide information about their consumption or about their preferences. Open Food 549 
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Facts22 epitomizes the successful application of crowdsourcing in the food sector. The 550 
contributors (>1800) scan the information given on the product package (e.g. nutritional facts, 551 
allergens, ingredient list, barcodes) and send it to a server via a smartphone application. The 552 
data collected so far covers more than 75000 products from 150 countries and is available to 553 
the public as open data. Open Food Facts conveys massive volumes of basic information about 554 
commercial food products to a large audience. Notice that, the community driven FSMR 555 
discussed above also relies on the internet to promote reuse of the scientific models and 556 
simulation tools developed by the food safety modelling community in academia, the food 557 
industry and public institutions. The crowdsourcing strategy assumes the creation of an open 558 
repository of models and the development of standardized information exchange formats. As a 559 
proof of concept, a web-based model repository has been implemented using a Google based 560 
infrastructure23 to inventory existing food safety models (Filter et al., 2016). 561 

4.4. Standardized food-related ontologies 562 

Collecting and structuring information about a relevant part of the world and disseminating this 563 
information such that it can be shared with others is a fundamental aspect of KT. An ontology is 564 
defined as an explicit and formal specification of a shared conceptualisation (i.e. a mental 565 
model) of an aspect of reality (i.e. the domain) (Ushold & Gruninger, 2004). It has a structuring 566 
orientation that can help researchers, professionals and citizens to formalise and share 567 
expertise in such a way that it can be processed by both humans and computers (Roa et al., 568 
2014). 569 

As a Semantic Web technology, ontologies promote the semantic interoperability between 570 
information from different sources, which limits ambiguity and extends the scope of data 571 
available for querying by capturing the intended semantics of data (Shadbolt, 2006). Ontologies 572 
can be formally specified in specialised languages, such as the RDF Schema and OWL web-573 
standards, which are lightweight knowledge representation languages, in which inferences can 574 
be derived from existing information (Krötzsch, 2012). Many formal ontologies are freely 575 
available on dedicated portals (e.g. Bioportal24, Agroportal25, Ontology Lookup Service26), some 576 
provide directly valuable resources to professionals (e.g. Gene Ontology27), but most of them are 577 
used to annotate information exchange between human agents and/or machines (Roa et al., 578 
2014). 579 

In food science, there are several publicly available ontologies, many of them focussing on a 580 
specific product (e.g. wine, pizza, beer). Boulos et al. (2015) review larger scope ontologies such 581 
as FOODS, AGROVOC28, FoodOn29, Open Food Facts30. However, not many can be seen as 582 
conclusive realisations of KT from the food science community because the focus is often on the 583 
non-technological aspects of food such as safety, food security, disease or health profile, 584 
nutritional facts, and supply chain elements. This can be illustrated with FoodOn (Dooley et al., 585 

                                                
22 https://world.openfoodfacts.org  
23 https://sites.google.com/site/openfsmr/  
24 https://bioportal.bioontology.org/ontologies  
25 http://agroportal.lirmm.fr  
26 https://www.ebi.ac.uk/ols/index  
27 http://www.geneontology.org 
28 http://aims.fao.org/vest-registry/vocabularies/agrovoc 
29 https://foodon.org/ 
30 https://world.openfoodfacts.org/ 
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2018), which was initially built to be used in collaboration with Genomic Epidemiology 586 
Ontology (GenEpiO31) to specify foodborne disease risks and not food science or technology. 587 
AGROVOC, on the other hand, is a generic multilingual thesaurus developed by the Food and 588 
Agriculture Organisation (FAO) with direct interest for KT and covering many fields in 589 
agriculture and food (Caracciolo et al., 2013). 590 

4.5. The way forward 591 

Open-source and open access software and data are becoming the norm in research. From this, 592 
we may infer that the trend towards KT is about to accelerate. A breakthrough in the annotation 593 
of food-related data with ontologies as a standard practice is needed to unleash the power of 594 
data networks (i.e. the value of an individual information item increases with the size of the 595 
data-pool it is associated with) (De Leenheer and Christiaens, 2018). This data network is a 596 
priority for the community working on vocabularies and ontologies in the field of food and 597 
agriculture. Agroportal already offers services to store, handle and display the mappings (or 598 
alignments) between ontologies; these mappings can be either uploaded or automatically 599 
inferred when classes share common properties (Jonquet et al., 2018). 600 

A concern regarding the evolution towards openness is the intellectual property and data 601 
protection. The community should strive to avoid data-monopolies, as they lead to an unfair 602 
distribution of the wealth generated from data (Mazzucato, 2008) and protect contextual 603 
integrity, which should help preserve privacy and competitive advantage in data-sharing 604 
environments (Nissenbaum, 2009). The open-source initiative32 provides resources for further 605 
insight. 606 

5. Education and training 607 

A considerable number of well-stablished European universities offer curricula addressing food 608 
science and technology, typically focussing on food engineering, microbiology and supply chain 609 
management. Several educational programs teach food modelling through learning-by-doing 610 
using general-purpose tools such as Matlab or Comsol. However, few institutions seem to put 611 
significant emphasis on advanced modelling and simulation techniques and scientific software 612 
in general. The availability of web-based course material appears also to be sparse. Instruments 613 
such as Massive Open Online Course (MOOCs) and Small Private Online Courses (SPOCs) have 614 
the potential to expand KT on to a large audience, while these can also be deployed to educate 615 
and train professionals. Below, three initiatives that illustrate this potential are highlighted. 616 

In 2014, a special interest group of the ISEKI Food Association (IFA) started the International 617 
School on Modelling and Simulation in Food and Bio Processes (MSFS), which applies a short-618 
term intensive training format. The Cost Action CA15118, FoodMC33, chose this school as its 619 
training school and over 100 scholars, coming from all over the world, have attended it so far. 620 
To the best of our knowledge, it is the only attempt to create a transversal community in which 621 
food engineers, food technologists and food scientists improve their modelling skills, interacting 622 
with each other and embracing the power of numerical techniques and tools for design and 623 

                                                
31 https://genepio.org/ 
32 https://opensource.org  
33 https://www6.inrae.fr/foodmc 
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innovation in the food sector. Datta (2016) agrees that the development of human resources is 624 
important to favour a generalised use of modelling tool in the food industry and KT. Yet, there is 625 
a relatively small and geographically dispersed student population eager to acquire the required 626 
skills. Therefore, the deployment of MOOCs for an international audience would allow for 627 
increasing the global outreach of existing and future initiatives. 628 

Physics-based simulators when embedded in virtual tools could be an excellent medium to 629 
support KT and training in the food domain. Singh and Erdogdu (2009) developed a set of 630 
interactive computer simulations of food processing operations for students to conduct basic 631 
virtual experiments, along with a website that offers the resources34. Each of their 23 virtual 632 
experiments offers contextual information (e.g. industrial procedure, link to related-information 633 
on the internet), theory and data analysis information, a description of the experimental 634 
procedure and a simulator that mimics the actual experiment and allows for changing its setup 635 
by changing input parameters. Similarly, FEPSIM35 provides a free web-based education tool 636 
that offers various physics-based modules (built on Matlab and ANSYS CFX/FLUENT) related to 637 
food engineering (Koulouris et al., 2015). 638 

MESTRAL36 is another example of pedagogical material based on simulators enriched with 639 
related information (Suciu et al., 2021). MESTRAL converted actual research results into 640 
educational materials and is currently available for master and PhD students in food 641 
engineering. The online repository contains 15 modules. Each module is built along the same 642 
conceptual framework that includes a (i) simulator (that re-uses scientific software from 643 
previous research), (ii) contextual information, and (iii) background knowledge both captured 644 
in standardized conceptual maps (Cmaps, sheets  A 645 
Cmap is a knowledge modelling technique using diagrams that represent semantic relationships 646 
between concepts. Each Cmap in MESTRAL respects a template (i.e. meta-model) that imposes a 647 
tree-like organisation, a type of concept and a limitation on the number of concepts, to facilitate 648 
assimilation of the content. The digital material is composed of hypermedia that embed links 649 
from Cmaps towards (i) other Cmaps or the simulator, (ii) knowledge sheets that contain text, 650 
photos or videos, and (iii) external resources via URLs. The simulators run simulations based on 651 
case-study datasets that the user can display at will using sliders and plots. 652 

6. Conclusion 653 

This review paper illustrates the challenge of KT in food science through (i) a discussion on 654 
existing and emerging dissemination channels and (ii) arguing the need for an increased 655 
collaboration when building food-oriented software. Section 2 discusses the channels for 656 
physics-based models and phenomenological models embedded in software. Physics-based 657 
models are often transferred to end-users following a learning-by-doing strategy. This strategy 658 
can be improved by the development of adequate Computer-Aided-Engineering solutions and 659 
by a stronger emphasis on modelling in food science education programmes. For 660 
phenomenological models, the traditional diffusion channels for scientific models (i.e. scientific 661 

                                                
34 http://rpaulsingh.com/learning/virtual/virtual.html  
35 http://fepsim.food.teithe.gr/fepsim/default.aspx 
36 https://lms.agreenium.fr/course/index.php?categoryid=27  
 



18 
 

publication) insufficiently support the reuse of the scientific software by a large audience even 662 
though the Ludovic® example shows that KT can be fruitful for both academia and industry. 663 

Section 3 argues that new diffusion channels relying on web-based technologies develop rapidly 664 
and become increasingly relevant for KT. Most promising solutions provide tools for archiving, 665 
annotating, querying and publishing software, so as to give any user access to the necessary 666 
materials and accompanying information regarding a software (e.g. metadata, documents, 667 
running example) and also give credit to the authors. 668 

Section 4 reviews the idea that building scientific software from shared knowledge can facilitate 669 
KT between miscellaneous stakeholders, including experts and practitioners, in an iterative 670 
process. It may even allow for encoding tacit (i.e. unarticulated) knowledge. Collaborative 671 
modelling takes this a step further by supporting a multi-user context, while web-based 672 
technologies allow for involving a physically dispersed community. 673 

Section 5 notes that the scarcity of modelling skills amongst food engineers currently hampers 674 
successful KT. Several educational programs now teach food modelling through learning-by-675 
doing strategies. In parallel, a few resources for teaching modelling online have been developed 676 
by food scientists. However, offering online, easily accessible and high-quality educational 677 
material is still an outstanding challenge in the food domain. 678 

By highlighting miscellaneous approaches regarding scientific software, this paper aims at 679 
promoting KT between and within academia, industry and other stakeholders, and at opening 680 
prospects for synergistic efforts that will allow the food community to face the oncoming 681 
challenges. 682 
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