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Abstract: Quantitative resistance is considered more durable than qualitative resistance as it does
not involve major resistance genes that can be easily overcome by pathogen populations, but rather
a combination of genes with a lower individual effect. This durability means that quantitative
resistance could be an interesting tool for breeding crops that would not systematically require
phytosanitary products. Quantitative resistance has yet to reveal all of its intricacies. Here, we
delve into the case of the wheat/Septoria tritici blotch (STB) pathosystem. Using a population
resulting from a cross between French cultivar Renan, generally resistant to STB, and Chinese Spring,
a cultivar susceptible to the disease, we built an ultra-dense genetic map that carries 148,820 single
nucleotide polymorphism (SNP) markers. Phenotyping the interaction was done with two different
Zymoseptoria tritici strains with contrasted pathogenicities on Renan. A linkage analysis led to
the detection of three quantitative trait loci (QTL) related to resistance in Renan. These QTL, on
chromosomes 7B, 1D, and 5D, present with an interesting diversity as that on 7B was detected with
both fungal strains, while those on 1D and 5D were strain-specific. The resistance on 7B was located
in the region of Stb8 and the resistance on 1D colocalized with Stb19. However, the resistance on 5D
was new, so further designated Stb20q. Several wall-associated kinases (WAK), nucleotide-binding
and leucine-rich repeats (NB-LRR) type, and kinase domain carrying genes were present in the QTL
regions, and some of them were expressed during the infection. These results advocate for a role
of Stb genes in quantitative resistance and for resistance in the wheat/STB pathosystem being as a
whole quantitative and polygenic.

Keywords: bread wheat; Septoria tritici blotch; quantitative trait loci; Stb20q; strain specificity;
resistance durability

1. Introduction

Bread wheat (Triticum aestivum) is a staple food in many countries worldwide and
is an economically important crop. Septoria tritici blotch (STB) is the most common
disease of wheat and is caused by the ascomycete fungus Zymoseptoria tritici (formerly
Mycosphaerella graminicola). It is responsible for high yield losses worldwide, ranging from
30 to 50% loss when environmental conditions are favourable to the disease’s develop-
ment [1,2]. Disease control is generally undertaken with the application of fungicide
treatments and/or cultivation of varieties carrying major resistance (R) genes. Neither of
these methods, nor indeed their combination, are considered to be durable, thus necessitat-
ing constant renewal and research. Indeed, with ever-increasing restrictions on the use of
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chemical treatments in crops, a fully chemical approach does not seem to be the way to go.
Another factor which encourages reducing the use of chemical treatments for this disease
is their cost, which comes to more than 400 million euros a year in Europe [3]. R genes
and their pyramiding appear as an excellent alternative. However, due to the existence
of a gene-for-gene interaction between R genes and Avr avirulence genes in the fungus,
the former are often overcome. Indeed, a single mutation in the Avr gene sequence can
suppress recognition by the plant, stopping resistance mechanisms’ action [4]. Quantitative
resistance is considered to be polygenic and to have a smaller effect than that due to R
genes. It therefore imposes less selection pressure on fungal populations, making it more
durable. Very few quantitative trait loci (QTL) or quantitative genes for resistance have
been cloned, and the few that have are varied in terms of gene families and underlying
mechanisms with cases of specificity and non-specificity [4–14]. The T. aestivum-Z. tritici
pathosystem is considered to be primarily quantitative, though 22 major resistance genes
in bread wheat have been described [15], the most recent being Stb19 [16]. In controlled
conditions as in the field, resistance to STB manifests itself as being quantitative, largely
additive and with varying heritability. Brown et al. (2015) [15] counted 89 STB resistance
QTL carrying regions, for a total of 167 individual QTL. Among these 89 regions are 62 QTL
and 27 meta-QTL. Brown et al. (2015) [15] describe QTL as showing lower plant stage
specificity than major resistance genes. These were not all detected at the same develop-
mental stage, 27 at a seedling stage, 48 in adult plants and 14 for both of these stages. These
regions are located on all wheat chromosomes but chromosome 5D, while chromosomes
3B, 6B, and 7B are more represented than others [15]. Moreover, several recent studies have
reported additional QTL for resistance to STB [17–22], with r2 values ranging from 3.3% to
29.52%. Notably, Vagndorf et al. (2017) [17] detected QTL on chromosomes 1B, 2A, 5D, and
7A, with the QTL on chromosome 5D being the most effective of all four. These different
studies show that STB resistance in wheat is complex, due to the combination of a large
number of QTL with varying effects on phenotypes. No STB quantitative resistance genes
have been cloned. However, major resistance gene Stb6 was the first cloned gene specifying
resistance to STB [23]. It encodes a wall-associated kinase-like protein, which detects the
presence of a matching apoplastic effector. A second major resistance gene Stb16q was
cloned in 2021, which confers broad-spectrum resistance against Z. tritici and encodes a
cysteine-rich receptor-like kinase [24]. There is a gene-for-gene relationship between Stb6
and AvrStb6 [25], which is the avirulence gene which encodes a small secreted protein, the
aforementioned apoplastic effector. This relationship entails specificity between cultivars
carrying Stb6 and strains carrying AvrStb6. Created in 1989 by INRA Rennes, Renan is a
four-way hybrid resulting from a complex cross between cultivars Courtot, VPMxMoisson,
Maris Huntsman, and Mironovskaia-808 (Doré and Varoquaux, 2006) [26]. Renan has the
advantage of having very good baking quality and a high tolerance to the cold. Renan is
resistant to a number of diseases such as cereal rusts, eyespot, septoria leaf blotch, and fusar-
ium. These resistances result in part from the introgression of two chromosomal fragments
from Aegilops ventricosa which carry the resistance gene to eyespot Pch1, on chromosome
7D, and resistance genes to rusts Lr37, Yr17, and Sr38 [27–29] on chromosome 2A. Until the
end of the 1990s, Renan had a good level of resistance to septoria leaf blotch. However, this
resistance has been overcome by certain strains, even if Renan’s global disease resistance
level remains reasonably good. Due to its disease resistance qualities, relative shortness and
reasonably good competitive value against weeds, Renan is a popular choice for organic
farming [30]. Chinese Spring is the reference genome for wheat and has been used in a
great number of studies [31]. It was the first wheat to have its genome fully sequenced
and assembled [32,33], and that sequence remains the most contiguous wheat assembly to
date [34]. Moreover, it is sensitive to a wide array of biotic and abiotic stresses, including
STB. This means that it is ideal as a sensitive parent for a bi-parental population with a
resistant parent such as Renan [35]. One thing to bear in mind when working with Chinese
Spring is that it carries resistance gene Stb6 and is therefore resistant to isolates carrying
the corresponding avirulence gene AvrStb6 [25]. The aim of this study is to better under-
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stand quantitative resistance to STB and the isolate-specificities of QTL. We hypothesize
that these specificities could be due to minor gene-for-minor gene interactions, such as
those that have already been suggested in other works, in the cases of barley—barley leaf
rust [36,37], barley—barley leaf stripe [38], potato—Phytophthora infestans [39] or indeed
pepper and potyviruses [40]. Further knowledge of these interactions would give us better
understanding of the durability of quantitative resistance.

2. Materials and Methods
2.1. Plant and Fungal Materials

The plant material used in this study consisted in a population of 236 Recombinant
Inbred Lines (RILs; F6 generation) obtained from a cross between wheat cultivars Renan
and Chinese Spring. Hereafter, this population will be referred to as RxCS. The fungal
strains used in this study are INRA09-FS0813 and INRA09-FS0732, which we will refer
to hereafter as I05 and I07, respectively. These two strains were isolated from leaves of
the cultivar Soissons collected from the same field in 2009 at Thiverval-Grignon in France.
They are both virulent on Stb6. They were chosen for this study out of a panel of eight
different strains as they were both pathogenic on Chinese Spring and showed contrasted
pathogenicity on Renan. I05 can infect Renan, while I07 cannot.

2.2. Experimental Setup and Procedure for Pathology Assays
2.2.1. Data Sets

Due to the size of the population, it could not be phenotyped in its entirety over
one experiment. It was therefore divided into two equal sets, which were tested in 2017
with two replications. All phenotypic traits were evaluated for this set. To corroborate
results, 148 individuals were chosen randomly out of the original 236, and tested over three
replications in 2018. For this data set, PYC and NBS (explained later on) were not evaluated.
For every experiment, Renan and Chinese Spring were used as controls.

2.2.2. Culture Conditions

For each individual in the population, five seeds were sown per pot filled with Floradur
B (Floradur Pot Medium) potting soil (NPK 14, 16, 18 kg·m−3) (Floragard Vertriebs-GmbH,
Oldenburg, Germany). The pots were split into trays with 15 pots per tray, for a total of
8 trays per experiment. Before inoculation, plants were cultivated in a climate chamber
with a 16h photoperiod, hygrometry fixed at 70% and temperatures at 16 ◦C night and
20 ◦C day. Post-inoculation, plants were placed in a climate chamber with a 16h photope-
riod, hygrometry fixed at 90% by day, 80% by night and temperatures of 22 ◦C during
daytime and 18 ◦C at night-time. In the climate chambers, light conditions were maintained
at 300 µmol·m−2·s−1 with eight neon tubes (Osram Lumilux L58W/830 placed 40 cm above
the trays (OSRAM GmbH, Munich, Germany).

2.2.3. Inoculum Preparation

Inocula were prepared from strains conserved at −80 ◦C as spores in a 70% water and
30% glycerol mix. The strains are precultured 10 days prior to inoculation in 10 mL of a
YPD liquid culture medium (1% yeast, 2% bacto-peptone, 2% glucose). The precultures
were kept in a growth chamber for 6 days at 17 ◦C and a hygrometry of 70% under
agitation (140 rpm). Each preculture was then grown in a petri dish (Ø 90) on a PDA
(potato dextrose agar) solid culture medium with 50 to 80 µL of inoculum. The day
of the inoculation, 150 mL of inoculum were prepared from these cultures, each with a
concentration of 1.106 ± 0.1.106 spores·mL−1. Lastly, one drop of Tween 20 was added per
15 mL of inoculum to insure adherence of the inoculum to the leaf surface.

2.2.4. Inoculation

Plants were inoculated 16 days after sowing. The day before the inoculation, only three
plants out of a maximum of five were kept per pot. On the first true leaf (generally 3 to 5 cm
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from the base) of each plant, a surface of 7.5 cm in length was marked out with two black felt
tip lines. The inoculum was spread out on this surface using a square-tipped flat paintbrush
in six passages (3 times back and forth). Once all the pots of a tray were inoculated, the
procedure was carried out a second time. The paintbrush was dipped into the inoculum
before each set of six passages. After inoculation, each tray was watered and covered
with transparent polyethylene bags. The bags create a water-saturated atmosphere, which
encourages infection [41,42]. The bags were removed after three days, a 72 h incubation
period being the time it takes for the fungus to reach the mesophyll, which is necessary
to the rest of the colonisation process [43]. To optimise conditions for the survival of the
inoculated leaf and to homogenise the quantity of light received by each leaf, new leaves
were cut 2 to 3 cm above the first node 10 days post-inoculation (dpi).

2.3. Evaluation of Phenotypic Traits
2.3.1. Visual Evaluation of Symptoms

The leaf area marked out with black felt tip was visually evaluated at 14, 20, and
26 dpi. The percentage of the surface which was green, necrotic, and sporulating was
evaluated. The sporulating area is defined here as the area which presents pycnidia,
regardless of density, colour, or size. The values for sporulating area at 14, 20, and 26 dpi
were used as phenotypic traits in linkage analyses and are referred to as S14, S20 and S26.
The chlorotic area was not evaluated because it is deductible from the green and necrotic
areas. These notations were used to calculate AUDPCs (Area Under the Disease Progress
Curve) for the green, necrotic, and sporulating areas (AUDPCG, AUDPCN, and AUDPCS,
respectively) [44]. The formula for calculating an AUDPC is as follows:

AUDPC =
∑ [(ti+1 − ti)× (yi + yi+1)]

2

With:
ti+1−ti: number of days between two notations (6 days)
yi: percentage of green, necrotic, or sporulating area at day i (for AUDPCG, AUDPCN

and AUDPCS respectively)
yi+1: percentage of green, necrotic, or sporulating area at day i+1 (for AUDPCG,

AUDPCN and AUDPCS respectively).

2.3.2. Pycnidia Counting by Image Analysis

The procedure followed and macros used were developed by Stewart and McDonald
(2014) [45] and improved by Stewart et al. (2016) [46]. Images were obtained by scanning
the inoculated part of the leaf. Firstly, for sample identification, A4 pages are generated
using a Linux supported macro. The page is divided into eight sections, each carrying a
QR code which is specific to a sample. For each sample the three leaves are glued inside
the corresponding section. Pages are then scanned using a CanoScan 9000F MarkII scanner
(resolution = 1200 dpi, luminosity = contrast = 0) and the resulting images are saved as
.tiff files. Pycnidia density was evaluated using a macro in ImageJ [47]. This macro is able
to quantify several traits which are the percentage of the leaf surface covered by lesions
or by necrosis only (PLACL or PLACN respectively), the total number of pycnidia per
sample, the size of the pycnidia and the grey value of the pycnidia. For this study, only the
total number of pycnidia per sample was taken into account (one sample being the three
inoculated leaves for each strain). Parameters within ImageJ were adjusted for each image
as it was not possible to use the exact same parameters for each sample, depending on the
colours of the leaves.

Pycnidia density was calculated for each sample using the following formula:

PYC =
npycnidia total

Ntotal

With:
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npycnidia total: total number of pycnidia in the sample.
Ntotal: total necrotic surface of the sample.

2.3.3. Quantification of Sporulation

Sporulation was quantified with the use of the particle size & shape analyser Occhio
Flowcell FC200S+HR (Occhio s.a., Angleur, Belgium). This tool is controlled by a computer
which, with the help of image analysis, can precisely count particles while evaluating their
size and shape. It is used alongside the Callisto software which controls the quality of the
analysis. The user interface allows one to control various parameters such as light, image
resolution and particle selection settings (Table 1). The latter is particularly important as
it means that any particle that is not a pycnidiospore can be excluded from the analysis.
Preparation of the samples for analysis is done the day after the last visual notation (27 dpi).
The inoculated area of the leaf is cut out. The three leaves from each genotype are placed into
a 15 mL Falcon tube containing 0.75 mL of osmosed water and two pieces of blotting paper
(10.5 cm × 0.5 cm). The blotting paper maintains a water-saturated atmosphere within the
tube which favours the extrusion of cyrrhi from pycnidia, and thus sporulation [48]. Tubes
are then placed in a growth chamber for at least 18 h. On the next day, 5 mL of an 80%
water 20% glycerol mix is added to each tube. The tubes are then gently agitated so that the
spores present on the surface of the leaves are transferred to the liquid phase. The leaves
are then removed from the tubes and mounted on a white paper sheet for scanning. The
tubes containing pycnidiospores suspended in 5.75 mL water/glycerol are kept at −20 ◦C
awaiting analysis. Before the analysis, each tube is homogenized after the addition of a
drop of Tween 20 to the mix. 0.9 mL of the mix are used for each analysis. As each sample
is passed through the particle counter, an image control is used to verify that all particles
are counted independently. Over 350,000 particles mL−1, the initial mix is too concentrated
in particles thus it becomes necessary to dilute the sample and repeat the procedure. The
particle counter is rinsed with osmosed water between each sample.

Table 1. Settings for the Occhio Flowcell FC200S+HR.

Particle Counter

Diameter 0–8 µm

Size 7–85 µm

Circonference 0–0.70 µm

Grey value 195–205

Luminous intensity 7.5

Spacer thickness 150 µm

Resolution
Magnification ×4

Calibration 0.47 µm.pixel−1 (1 pixel = 1.67 µm)

For each sample, the total number of pycnidiospores was extracted from data obtained
from this particle counter. The total number of pycnidiospores was used to calculate the
number of pycnidiospores per pycnidium after image analysis.

The number of pycnidiospores per pycnidium (NBS) was calculated using the formula:

NBS =
npycnidiospores total

npycnidia total

With:
npycnidiospores total: total number of pycnidiospores extracted from the sample
npycnidia total: total number of pycnidia in the sample.
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2.4. Statistical Analysis of Phenotypic Data

The obtained data sets were analysed with the R software [49], for each trait an analysis
of variance (ANOVA) was performed with the following model:

Yij = µ + Ii + rj + Irij + εij

With Yij the trait which is being studied, µ the mean value for this trait, Ii the individual
genotype, rj the replication, Irij the interaction and εij the residual. For the following
analyses, Irij was included in the residual.

The following hypotheses were verified after the variance analyses.
ε ∼ N

(
o, σ2)→cov(ε, ε′) = 0 Homoscedasticity (homogeneity of var(ε))

Broad sense heritability is defined by the following formula:

H2 =
σg2

σg2 + σe2

With H2 the heritability, σg2 genotypic variance and σe2 residual variance.
The correlation between traits was also studied using the Bravais–Pearson correlation.

2.5. Genotyping RxCS

The wheat population was genotyped on two different single nucleotide polymor-
phism(SNP) arrays, the Breedwheat Affymetrix Axiom 410K array [50,51] and the Illumina
Infinium iSelect Wheat 90K array [52].

2.5.1. Axiom 410K

In total, 429 individuals from the RxCS population were genotyped on the Axiom 410K
array in two sets of 282 and 147. Among these, 236 individuals were randomly selected for
further phenotyping. DNA extraction and genotyping were performed by the Gentyane
platform (INRAE, Clermont-Ferrand, France).

2.5.2. ISelect 90K

For genotyping on the iSelect 90K array, 159 individuals chosen randomly among
RxCS and both parental varieties were genotyped. DNA extraction and genotyping were
performed at TraitGenetics GmbH (Gatersleben, Germany).

2.6. Genetic Analyses
2.6.1. Construction of an Ultra-Dense Genetic Map

Markers were re-named so as to be tagged with their SNP array of origin and the
chromosome they most likely mapped to as this made following steps more straightfor-
ward. There are 13,462 markers in common between the 90K array and the 410K array.
These were considered to be distinct for map construction. Out of a total of 409,695 SNP,
were kept for the map building file only those that were polymorphic and for which the
information from both parents was available, leading to a total of 194,630 SNP. Additionally,
only 142 individuals’ information was used for map construction as for 17 individuals,
genotyping on the 90K had done poorly.

The file comprising all polymorphic markers from the TaBW410K and the iSelect90K
arrays was input into the Multipoint ultra-dense software developed by MultiQTL Ltd.
(Haifa, Israel) at Haifa University in Israel. This software allows ultra-dense genetic maps
to be built and is based on the “twin algorithm” [53]. A stringent filter for missing data
was applied, all SNP with over 5% missing data were filtered out. Then, a filter to correct
any potential segregation distortion was applied; it was less stringent, allowing a Chi2 up
to 9.5. After the first clustering, linkage groups, which belonged to the same chromosome,
were merged and the results from Multipoint were transformed with the Kosambi mapping
function [54]. The linkage map was graphically visualized with Mapchart V2.3 [55].
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2.6.2. Linkage Analysis

A linkage analysis was carried out using the R/qtl software [56] version 1.42-8. This
analysis included for each trait an initial Simple Interval Mapping (SIM), followed by a
Composite Interval Mapping (CIM). Analyses were performed replication by replication
and set by set (sets only concerning the first lot of phenotypic data). For SIM, 1000 genome-
wide permutations were used to calculate the significant logarithm of odds (LOD) threshold.
Only QTL that showed p-values < 0.05 were considered significant. The CIM was carried
out with the SNP with the highest LOD at QTL peaks used as a covariate. When there were
several significant QTL detected, the CIM was recalculated with two covariates, however,
this never led to any extra detections. QTL intervals were evaluated with the LOD support
interval with a drop in LOD of 1 and the “expandtomarkers” argument as true. QTL
effects were calculated with the “effectplot” and “effectscan” functions. Possible epistatic
interactions between QTL were looked into using the “addint” function.

2.6.3. QTL Gene Content

The gene content of the QTL regions was analysed using the IWGSC RefSeq v1.1
annotation, which is anchored on the IWGSC RefSeq v1.0 assembly (both available at https:
//wheat-urgi.versailles.inra.fr/; accessed on 3 December 2021). We specifically searched
for the content in wall-associated kinases (WAK), and nucleotide-binding and leucine-rich
repeats (NB-LRR) type genes using the IWGSC’s 2018 work on manually curated gene
families [32] and we searched through the annotated genes using the keyword “kinase”. By
using the Wheat Expression Browser powered by expVIP (http://www.wheat-expression.
com/; accessed on 3 December 2021) [57,58] we were able to access transcriptional data
for each of the listed genes in a kinetic of STB infected plants. The data available was
for the cultivar Riband at 1, 4, 9, 14, and 21 dpi infected with fungal strain IPO323 [59].
This cultivar is regarded as a good positive control for Z. tritici infection as it is highly
susceptible to the disease, moreover, it does not carry the major resistance gene Stb6, unlike
Chinese spring for instance [60]. To compare with known STB resistance genes, we included
the expression data for Stb6 and Stb16q, respectively known as TraesCS3A02G049500 and
TraesCS3D02G500800 in the RefSeq v1.1 annotation.

3. Results
3.1. Description of Phenotypes

Two phenotypic data sets were acquired on the Renan × Chinese-Spring population
for the isolates I05 and I07. The first data set was collected in 2017 on 236 RILs with
two replications, and the second data set was collected in 2018 on 148 RILs with three
replications. Overall, distributions of phenotypic traits within the population are simi-
lar between replications, and Renan is consistently more resistant than Chinese Spring
(Figures S1 and S2). The second replication from the 2018 data set of isolate I05 stands
out as being quite different from the others, in particular for S26 and AUDPCS. For this
replication, the level of infection was lower than for the other replications and heteroge-
neous, suggesting that infection failed. Therefore, the following analyses were performed
excluding the data from this particular replication, leaving only two replications for the
2018 data set of isolate I05. It is also important to notice that distributions are not bi-modal;
phenotypes follow a continuous distribution indicating the presence of several genes with
quantitative effect. Only for S26 in 2018, for both isolates I05 and I07, does the distribu-
tion not look strictly continuous, but rather skewed towards susceptibility. Finally, the
parental phenotypes do not mark the limits of the distribution. Transgressive individuals
can be observed for the great majority of studied traits indicating that despite Chinese
Spring being susceptible to both fungal strains, it can carry small effect resistance QTL.
Correlation coefficients were calculated from mean values between replications using the
Bravais–Pearson correlation coefficient (Figure 1). For these analyses, the 2017 sets were
analysed together. Overall, AUDPCN, AUDPCS, S20, S26 and PYC (only 2017 data) were
all strongly correlated. AUDPCG was poorly correlated to the other traits, except for the

https://wheat-urgi.versailles.inra.fr/
https://wheat-urgi.versailles.inra.fr/
http://www.wheat-expression.com/
http://www.wheat-expression.com/
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2018 I07 data, where it is strongly negatively correlated to the other traits. Overall, the
S14 and NBS traits were poorly correlated to the other traits. This is certainly due to the
low values and low variability in S14 data, and the low reproducibility in NBS data. These
results suggest a potential common genetic base for all of the studied traits.
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Figure 1. Bravais–Pearson correlograms for the four datasets; crossed out correlation values are not
statistically significant (p-value < 0.05). The left column presents the phenotypic trait correlations for
RxCS inoculated with I05, the right presents the phenotypic trait correlations for RxCS inoculated
with I07. PYC is the pycnidia density. NBS is the number of spores per pycnidiospore. AUDPCG
is the area under the disease progress curve for the green leaf area. AUDPCN is the area under the
disease progress curve for the necrotic leaf area. AUDPCS is the area under the disease progress curve
for the sporulating leaf area. S14, S20, and S26 are the sporulating leaf area at 14, 20, and 26 days
post-inoculation respectively.

The ANOVA results show that the individual genotype systematically had a signif-
icant effect on the phenotype in all cases but I05_2017/1 S14 and NBS, and I07_2017/2
S14 (Table 2). The replication overall had a strong effect on phenotypes, except for the
I07_2017/2. Subsequent linkage analyses were therefore carried out replication by replica-
tion. Broad-sense heritability was calculated for all traits and was systematically higher for
I07 data than for I05 data (Table 2). As the ANOVA assumptions are not respected in all
cases, low heritability value does not necessarily indicate that the trait will not lead to the
detection of resistance QTL.
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Table 2. Statistical analysis of the phenotypic data for each dataset.

Isolate Set Trait
Statistical

Significance of
the Genotype 1

Statistical
Significance of the

Replication 1
MSg 2 MSε 3 Broad-Sense

Heritability

Shapiro–Wilk
Normality Test
on Residuals

Independence of
Residuals

Homoscedasticity Bartlett
Test of Homogeneity of

Variances

I05_2017/1

S14 *** 27 27 0.00 0.00 no 0.04
S20 *** *** 1094 444 0.42 0.11 yes 0.14
S26 *** *** 877 364 0.41 0.12 yes 0.03

AUDPCG * * 51,787 35,921 0.18 0.92 yes 0.05
AUDPCN * * 77,482 55,907 0.16 0.85 yes 0.31
AUDPCS *** *** 83,562 32,115 0.44 0.11 yes 0.26

PYC *** 21,769 9037 0.41 0.29 yes 0.29
NBS *** 1,003,915 868,109 0.07 0.00 yes 0.05

I07_2017/1

S14 ** 2 2 0.04 0.00 no 0.00
S20 *** *** 401 157 0.44 0.00 yes 0.85
S26 *** *** 765 233 0.53 0.40 yes 0.98

AUDPCG *** 57,879 30,256 0.31 0.00 no 0.00
AUDPCN *** *** 92,012 25,943 0.56 0.95 yes 0.77
AUDPCS *** *** 40,045 12,909 0.51 0.00 yes 0.97

PYC *** 29,153 8834 0.53 0.01 no 0.04
NBS *** 1,865,055 630,731 0.49 0.00 no 0.00

I05_2017/2

S14 *** * 14 7 0.34 0.00 no 0.00
S20 ** . 533 344 0.22 0.94 yes 0.54
S26 ** 665 378 0.28 0.40 yes 0.89

AUDPCG * *** 38,627 27,765 0.16 0.02 no 0.04
AUDPCN * *** 62,573 42,711 0.19 0.93 yes 0.35
AUDPCS ** . 44,817 26,387 0.26 0.74 yes 0.79

PYC *** *** 22,651 12,737 0.28 0.97 yes 0.34
NBS ** *** 816,528 495,995 0.24 0.00 yes 0.04

I07_2017/2

S14 *** 31 13 0.42 0.00 no 0.00
S20 *** 1195 189 0.73 0.00 no 0.01
S26 *** 1411 222 0.73 0.60 yes 0.33

AUDPCG *** 79,008 28,924 0.46 0.16 yes 0.22
AUDPCN *** 115,168 23,787 0.66 0.24 yes 0.01
AUDPCS *** 102,594 13,479 0.77 0.00 no 0.03

PYC *** *** 59,415 18,267 0.53 0.82 yes 0.65
NBS * * 1,341,693 906,931 0.19 0.00 yes 0.27

I05_2018 only
replications 1 and 3

S14 ** *** 140 86 0.24 0.00 no 0.00
S20 *** *** 1649 747 0.38 0.28 yes 0.94
S26 * *** 877 661 0.14 0.00 no 0.82

AUDPCG *** *** 32,787 17,602 0.30 0.00 no 0.00
AUDPCN *** *** 58,506 28,592 0.34 0.86 yes 0.26
AUDPCS *** *** 115,164 50,508 0.39 0.66 yes 0.65
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Table 2. Cont.

Isolate Set Trait
Statistical

Significance of
the Genotype 1

Statistical
Significance of the

Replication 1
MSg 2 MSε 3 Broad-Sense

Heritability

Shapiro–Wilk
Normality Test
on Residuals

Independence of
Residuals

Homoscedasticity Bartlett
Test of Homogeneity of

Variances

I07_2018

S14 *** 43 22 0.25 0.00 no 0.00
S20 *** ** 3061 368 0.71 0.00 no 0.00
S26 *** *** 3270 477 0.66 0.00 no 0.00

AUDPCG *** 144,099 32,073 0.54 0.32 yes 0.02
AUDPCN *** ** 170,267 29,795 0.61 0.00 yes 0.00
AUDPCS *** *** 242,232 25,587 0.74 0.01 yes 0.00

1 Significance codes: 0 ‘***’, 0.001 ‘**’, 0.01 ‘*’, 0.05 ‘.’, 0.1 ‘ ’, 1; 2 MSg is the mean square value for the individual genotypes output by the ANOVA; 3 MSε is the mean square value for the
residuals output by the ANOVA.
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3.2. An Ultra-Dense Genetic Linkage Map

We genotyped 159 RILs from the RxCS population with both TaBW410K and iSelect90K
arrays. These two arrays share 13,670 common markers, but comparison of parental
genotypes between arrays for these common markers revealed an average divergence of
11.1% for both cultivars. Due to these divergences common markers between both arrays
were given different names and considered separately for map construction. Overall, only
markers which were polymorphic between both parents and presented no missing data,
lack of amplification or heterozygosis for either parent were kept, leading to a total of
183,773 usable markers from the TaBW410K array, representing 43.4% of the original data
set, and a final list of 10,857 markers for the iSelect 90K array, representing 13.3% of the
original data set. Consequently, for this population, the rate of polymorphic markers was
more than three times higher on the TaBW410K than on the iSelect90K. The 194,630 SNP
markers available for map construction were all re-named to show which array they came
from and onto which chromosome they were expected to map based on best BLAST values
on the reference genome (Chinese Spring). This enabled us to associate linkage groups and
corresponding chromosomes more easily when building the map. From the 159 individuals
genotyped with both TaBW410K and iSelect90K arrays, 17 individuals were discarded
because of their high number of missing data from the iSelect90K genotypes. Moreover,
applied filters deleted 13.4% of the markers, leaving us with a matrix of 142 individuals x
168,522 high quality markers for map construction. After the initial clustering, 25 linkage
groups were obtained. Those that corresponded to different parts of the same chromosome
were merged. The map we obtained comprised 21 linkage groups, each corresponding
to a chromosome (Table 3). It is composed of 5357 genetic bins or unique positions, for
a total of 148,820 markers and covers a total genetic distance of 4277 centiMorgans (cM).
Table S1 provides the complete map. Of all mapped markers, 3.54% were skeleton markers,
each representing a genetic bin. Of the original number of available markers from the
SNP arrays, 30% were mapped, and of the markers chosen for mapping after all filters,
78% were mapped. Sub-genomes A and B carry more SNP than sub-genome D. When
working with the full set of markers, sub-genome D represents only 16.50% of this latter
set, while A and B sub-genomes represent 42.78% and 40.72%, respectively. However, sub-
genome B has a shorter genetic length than either of the other two. The great majority of
mapped markers are from the Breedwheat Axiom 410K array; indeed, these SNP represent
94.73% of sub-genome A, 94.61% of sub-genome B and 97.91% of sub-genome D. The 90K
array is particularly underrepresented on the D sub-genome with markers making up a
minimum of 0.84% on chromosome 4 and a maximum of 3.73% on chromosome 6. The
distance between consecutive markers ranges from 0.35 cM to a maximum of 21.54 cM.
However, a gap this size is exceptional. Indeed overall, consecutive markers are quite
close together, with the average distance between consecutive markers being 0.74 cM in
sub-genome A, 0.69 cM in sub-genome B and 1.07 cM in sub-genome D. The third quartile
in the distribution of the distance between consecutive markers is 0.72 and 0.71 cM for
sub-genomes A and B respectively, while it is slightly higher for sub-genome D with a value
of 1.1 cM. In sub-genome A, six gaps in the map are larger than 10 cM on chromosomes
3A, 4A, 5A and 7A. In sub-genome B, only one gap is larger than 10 cM and is on the
long arm of chromosome 3B. Moreover, sub-genome D has four gaps larger than 10 cM on
chromosomes 1D, 6D (twice), and 7D.

The comparison between the order of the markers on the genetic map and their
assumed physical position shows that, overall, the genetic map follows the assumed
physical positions very well (Figure 2). The exception is chromosome 4D, which presents
a cluster of markers at the end of the linkage group, which would have been expected
to be found in the short arm according to their assumed physical positions (Figure 2).
The ratio between genetic and assumed physical positions is also interesting to comment
on as it clearly shows the structure of the different chromosomes with SNP distribution
following a neat sigmoidal pattern. Indeed, the position of centromeres is marked out by
the recombination suppression surrounding them on all chromosomes (Figure 2).
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Table 3. Characteristics of the RxCS genetic linkage map.

Chromosome Number of
SNP

Number of
Genetic Bins

Map Length
(cM)

Marker Density
(Markers/cM)

A—genome

1 10,479 358 234.44 44.7

2 11,716 288 189.72 61.8

3 8413 302 233.28 36.1

4 8465 203 170.24 49.7

5 6723 411 312.17 21.5

6 7816 226 189.03 41.3

7 10,051 378 273.38 36.7

total A 63,663 2167 1602.26 39.7

B—genome

1 10,503 309 176.4 59.5

2 9158 298 197.98 46.3

3 12,016 374 268.03 44.8

4 5888 180 140.45 41.9

5 5019 234 192.98 26

6 10,210 173 109.66 93.1

7 7803 336 215.35 36.2

total B 60,597 1905 1300.85 46.6

D—genome

1 3609 157 172.81 20.9

2 4601 134 150.27 30.6

3 3512 225 225.25 15.6

4 2131 174 156.99 13.6

5 2581 203 234.75 11

6 4180 183 204.6 20.4

7 3946 211 228.97 17.2

total D 24,560 1287 1373.64 17.9

Total 148,820 5357 4276.75 34.8

3.3. Mapping QTL for Resistance

The analyses of the 2017 and 2018 datasets lead to the detection of several QTL on eight
different chromosomes. Among these, only three were detected more than once throughout
the analyses, we will therefore focus on these three. The complete linkage analysis results
can be found in Table S2. The three robust QTL were detected on chromosomes 1D, 5D
and 7B (Tables 4 and 5). The parent carrying the resistant allele is Renan for all three QTL.
The QTL however, do not impart resistance to the same strains. Indeed, Qstb.renan-1D
imparts resistance to I05 while Qstb.renan-5D imparts resistance to I07 and Qstb.renan-7B is
effective against both strains. Qstb.renan-7B explained up to 32% of phenotypic variation
with a mean r2 value of 20% when detected with the 2017 datasets and up to 38% with a
mean value of 21% when detected with the 2018 datasets. Qstb.renan-1D was detected the
fewest times out of the three repeatable QTL and explained the least phenotypic variation,
between 6 and 13.5% on average, to a maximum of 15%. This QTL was not detected with
the 2017/2 dataset (Figure 3B). Finally, Qstb.renan-5D explained up to 35.5% of phenotypic
variation with a mean r2 value between 15.5 and 26%. We did not identify any QTL trait
specificity in the various linkage analyses, as was to be expected regarding the correlations
between traits. The traits that led to the most detections are S26, AUDPCS and PYC. The
traits associated with the highest r2 values overall are AUDPCN, AUDPCS, S26, and PYC.



Genes 2022, 13, 100 13 of 28

Concatenated results between the 2017 and 2018 data sets result firstly in Qstb.renan-7B
that is 50.86 Mb long, spanning 64.62 cM. Secondly, Qstb.renan-1D is 4.28 Mb long, covering
17.79 cM and carrying 5 SNP with known physical positions. Finally, Qstb.renan-5D is
312 Mb long, spanning 28.58 cM. The physical intervals were estimated using markers in
the QTL with known positions mapping to the chromosome in question. These numbers
take into account every detection of each QTL, and therefore include the least precise
detections; this explains, in part, the very large intervals. We however do detect maximum
LOD score peaks in the same area throughout the analyses (Figures 3 and 4). No significant
interactions were detected between QTL.
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Figure 2. Comparison between markers’ genetic and assumed physical positions for each chromo-
some in each sub-genome. The x-axis corresponds to the genetic position of the mapped SNP on
the RxCS genetic map in cM. The y-axis corresponds to the assumed physical position of the SNP
on the chromosome they are on in bp. Each column corresponds to a wheat sub-genome, A, B and
D respectively. Each line corresponds to a chromosome number; the chromosomes are numbered 1
through 7. Each black dot corresponds to a SNP.

3.4. Gene Content of the QTL

There are two cloned major resistance genes to STB in wheat to date. The first is
Stb6, which encodes a wall-associated kinase-like protein and detects the presence of a
matching apoplastic effector [23]. The second is Stb16q, which encodes a cysteine-rich
receptor-like kinase and confers broad-spectrum resistance against Z. tritici [24]. With this
in mind, along with the very large QTL intervals we are working with, we opted to focus
on three particular gene families when analysing gene content within the QTL intervals.
These families are wall associated kinases (WAK), nucleotide binding leucine-rich receptors
(NB-LRR) type genes and genes carrying a kinase domain, all of which have often been
associated with disease resistance [24,61].
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Table 4. QTL for resistance to STB detected with the phenotypic data generated in 2017 and the RxCS genetic map.

QTL.2017 Number of
Detections r2 Max (%) Mean r2

(%)
Peak Marker Associated with

r2 Max
Parent Carrying the

Resistance Allele Traits Detected with

Qstb.renan-1D 3 7.5 6 cfn1317667_410K_1DS Renan S20, S26, AUDPCS I05

Qstb.renan-5D 22 35.5 26 cfn2823104_410K_5DS Renan S20, S26, AUDPCG, AUDPCN, AUDPCS, PYC I07

Qstb.renan-7B 37 32 20 cfn0449267_410K_7BL Renan S14, S20, S26, AUDPCG, AUDPCN, AUDPCS, PYC, NBS I05 and I07

Table 5. QTL for resistance to STB detected with the phenotypic data generated in 2018 and the RxCS genetic map.

QTL.2018 Number of
Detections r2 Max (%) Mean r2

(%)
Peak Marker Associated with

r2 Max
Parent Carrying the

Resistance Allele Traits Detected with

Qstb.renan-1D 5 15 13.5 cfn1315024_410K_1DS Renan S20, AUDPCN, AUDPCS I05

Qstb.renan-5D 18 21.5 15.5 cfn2827993_410K_5DS Renan S14, S20, S26, AUDPCG, AUDPCN, AUDPCS I07

Qstb.renan-7B 22 38 21 cfn0916416_410K_7BL Renan S14, S20, S26, AUDPCG, AUDPCN, AUDPCS I05 and I07
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Figure 3. LOD score profiles for the linkage analyses of the 2017 datasets. (A) presents the results
for Set 1, (B) presents the results for Set 2. In dotted lines are represented the minimal and maximal
LOD threshold values obtained in the linkage analyses after 1000 permutations tests. The x-axis
represents the position of the markers on the genetic map in cM. The y-axis represents the LOD score
associated to the markers. Each column corresponds to a chromosome, chromosomes 1D, 5D and
7B respectively. Each line corresponds to a fungal strain, I05 and I07 respectively. The colours in
the graphs correspond to the studied traits for each replication. PYC is the pycnidia density. NBS is
the number of spores per pycnidiospore. AUDPCG is the area under the disease progress curve for
the green leaf area. AUDPCN is the area under the disease progress curve for the necrotic leaf area.
AUDPCS is area under the disease progress curve for the sporulating leaf area. S14, S20 and S26 are
the sporulating area at 14, 20 and 26 days post-inoculation respectively. Each trait was studied over
two replicates, 1 and 2.
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Figure 4. LOD score profiles for the linkage analyses of the 2018 dataset. In dotted lines are
represented the minimal and maximal LOD threshold values obtained in the linkage analyses after
1000 permutations tests. The x-axis represents the position of the markers on the genetic map in
cM. The y-axis represents the LOD score associated to the markers. Each column corresponds to a
chromosome, chromosomes 1D, 5D, and 7B respectively. Each line corresponds to a fungal strain, I05
and I07 respectively. The colours in the graphs correspond to the studied traits for each replication.
AUDPCG is the area under the disease progress curve for the green leaf area. AUDPCN is the
area under the disease progress curve for the necrotic leaf area. AUDPCS is area under the disease
progress curve for the sporulating leaf area. S14, S20, and S26 are the sporulating area at 14, 20, and
26 days post-inoculation respectively. Each trait was studied over three replicates, 1, 2, and 3.

Qstb-renan-1D holds a total of 141 annotated genes. Of the 141, 25 are NB-LRR-
type genes, while 5 are WAKs and one has a kinase domain. Qstb-renan-5D holds 1981
annotated genes, none of which are NB-LRR-type genes. It holds 12 WAKs and 22 genes
with kinase domains, two of which are projected to be receptors or receptor-like, these are
TraesCS5D02G166400 and TraesCS5D02G181500. Qstb-renan-7B holds 616 annotated genes.
This QTL holds no NB-LRR type genes, one WAK, and one gene with a kinase domain.
Table 6 presents the details concerning the NB-LRR, WAK and kinase domain carrying
genes in the QTL intervals.

With the data extracted from expVIP (http://www.wheat-expression.com/; accessed
on 3 December 2021), we were able to see that for a majority of the genes, there was no
expression in the inoculated plants. However, for 35 of them, we were able to identify
expression patterns over the course of the infection (Figure 5). What we can observe
with this data is that for the two known resistance genes Stb6 and Stb16q, expression is
maximal at 9dpi, this is also the case for some of the WAK and NB-LRR type genes in
the QTL intervals. At 9dpi, the infection is still in the biotrophic phase but at the onset of
switching to the necrotrophic phase [62]. For Qstb-renan-1D, these are BST_chr1D_nlr_113,
TaWAK40_1D-gene, TaWAK41_1D-gene, TaWAK42_1D-gene, and BST_chr1D_nlr_102. For
Qstb-renan-5D, these are TaWAK355_5D-gene, TaWAK356_5D-gene, TaWAK358_5D-gene, and
TraesCS5D02G081700. For the two receptor or receptor-like kinases in Qstb-renan-5D, there
was no expression. The only gene with any expression in our list for Qstb-renan-7B was
TraesCS7B02G466300, which had low expression overall, but it was maximal at 1 dpi.

http://www.wheat-expression.com/
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Table 6. WAK 1, NB-LRR 2, and kinase domain carrying genes identified in the three QTL intervals.

QTL Gene.ID RefSeq v1.1 ID Start (bp) Stop (bp) Annotation

Qstb-renan-1D BST_chr1D_nlr_115 TraesCS1D02G015500 7277369 7280463 NB-LRR
Qstb-renan-1D BST_chr1D_nlr_114 TraesCS1D02G016026 7381284 7384806 NB-LRR
Qstb-renan-1D BST_chr1D_nlr_113 TraesCS1D02G016100 7419157 7422949 NB-LRR
Qstb-renan-1D BST_chr1D_nlr_9 TraesCS1D02G016900 7592690 7609204 NB-LRR
Qstb-renan-1D BST_pseudo_chr1D_nlr_10 TraesCS1D02G016983 7671168 7676063 NB-LRR
Qstb-renan-1D BST_pseudo_chr1D_nlr_11 TraesCS1D02G016991 7678267 7680938 NB-LRR
Qstb-renan-1D BST_chr1D_nlr_12 TraesCS1D02G017400 7820918 7823449 NB-LRR
Qstb-renan-1D BST_chr1D_nlr_13 TraesCS1D02G017600 7868467 7872465 NB-LRR
Qstb-renan-1D BST_pseudo_chr1D_nlr_112 TraesCS1D02G018700 8182627 8186066 NB-LRR
Qstb-renan-1D BST_expressed_pseudo_chr1D_nlr_111 TraesCS1D02G018800 8226547 8230158 NB-LRR
Qstb-renan-1D BST_pseudo_chr1D_nlr_110 TraesCS1D02G019600 8605145 8610344 NB-LRR
Qstb-renan-1D BST_chr1D_nlr_14 TraesCS1D02G019700 8610887 8616204 NB-LRR
Qstb-renan-1D BST_pseudo_chr1D_nlr_109 TraesCS1D02G020619 8838803 8842102 NB-LRR
Qstb-renan-1D BST_chr1D_nlr_108 TraesCS1D02G021000 9028322 9037195 NB-LRR
Qstb-renan-1D BST_pseudo_chr1D_nlr_106 TraesCS1D02G021200 9086119 9091764 NB-LRR
Qstb-renan-1D BST_pseudo_chr1D_nlr_104 TraesCS1D02G021751 9309301 9328352 NB-LRR
Qstb-renan-1D BST_chr1D_nlr_16 TraesCS1D02G022500 9575753 9593333 NB-LRR
Qstb-renan-1D BST_chr1D_nlr_102 TraesCS1D02G026000 10661025 10664946 NB-LRR
Qstb-renan-1D BST_chr1D_nlr_17 TraesCS1D02G028200 11175841 11182532 NB-LRR
Qstb-renan-1D BST_chr1D_nlr_18 TraesCS1D02G028600 11272449 11278362 NB-LRR
Qstb-renan-1D BST_expressed_pseudo_chr1D_nlr_19 TraesCS1D02G028700 11287245 11292876 NB-LRR
Qstb-renan-1D BST_pseudo_chr1D_nlr_20 TraesCS1D02G028736 11319796 11321348 NB-LRR
Qstb-renan-1D BST_chr1D_nlr_21 TraesCS1D02G029000 11408761 11415088 NB-LRR
Qstb-renan-1D BST_chr1D_nlr_22 TraesCS1D02G029100 11451423 11459353 NB-LRR
Qstb-renan-1D BST_chr1D_nlr_23 TraesCS1D02G029200 11493627 11499140 NB-LRR
Qstb-renan-1D TaWAK38_1D-gene TraesCS1D02G016200 7429822 7445013 WAK
Qstb-renan-1D TaWAK39_1D-gene TraesCS1D02G016800 7583590 7587977 WAK
Qstb-renan-1D TaWAK40_1D-gene TraesCS1D02G017700 7874518 7876881 WAK
Qstb-renan-1D TaWAK41_1D-gene TraesCS1D02G017800 7877418 7880329 WAK
Qstb-renan-1D TaWAK42_1D-gene TraesCS1D02G017900 7896854 7899155 WAK
Qstb-renan-5D TaWAK349_5D-gene TraesCS5D02G043400 42925913 42928461 WAK
Qstb-renan-5D TaWAK350_5D-gene TraesCS5D02G043500 42930408 42932902 WAK
Qstb-renan-5D TaWAK351_5D-gene TraesCS5D02G043532 42944893 42947212 WAK
Qstb-renan-5D TaWAK352_5D-gene TraesCS5D02G052500 50569632 50576495 WAK
Qstb-renan-5D TaWAK353_5D-gene TraesCS5D02G052800 50635242 50646756 WAK
Qstb-renan-5D TaWAK354_5D-gene TraesCS5D02G061800 58138943 58142318 WAK
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Table 6. Cont.

QTL Gene.ID RefSeq v1.1 ID Start (bp) Stop (bp) Annotation

Qstb-renan-5D TaWAK355_5D-gene TraesCS5D02G061900 58143379 58149665 WAK
Qstb-renan-5D TaWAK356_5D-gene TraesCS5D02G062100 58151124 58155524 WAK
Qstb-renan-5D TaWAK357_5D-gene TraesCS5D02G062200 58226914 58230221 WAK
Qstb-renan-5D TaWAK358_5D-gene TraesCS5D02G062600 58419864 58422609 WAK
Qstb-renan-5D TaWAK359_5D-gene TraesCS5D02G073900 72901902 72907097 WAK
Qstb-renan-5D TaWAK360_5D-gene TraesCS5D02G096200 106519841 106525422 WAK
Qstb-renan-7B TaWAK556_7B-gene TraesCS7B02G463200 720131495 720134235 WAK
Qstb-renan-1D TraesCS1D02G026200 TraesCS1D02G026200 10715309 10722269 Probable serine/threonine-protein kinase WNK3
Qstb-renan-5D TraesCS5D02G060900 TraesCS5D02G060900 57843934 57851315 Non-specific serine/threonine protein kinase
Qstb-renan-5D TraesCS5D02G065700 TraesCS5D02G065700 61052683 61060726 Phosphatidylinositol 3-kinase VPS34
Qstb-renan-5D TraesCS5D02G068700 TraesCS5D02G068700 65753632 65755248 Non-specific serine/threonine protein kinase
Qstb-renan-5D TraesCS5D02G069700 TraesCS5D02G069700 67578001 67588803 pfkB-like carbohydrate kinase family protein

Qstb-renan-5D TraesCS5D02G081700 TraesCS5D02G081700 82186877 82189457 Serine/threonine protein kinase%2C Abscisic acid (ABA)-activated protein
kinase%2C Hyperosmotic stress response%2C ABA signal transduction

Qstb-renan-5D TraesCS5D02G089700 TraesCS5D02G089700 97036711 97041067 Diacylglycerol kinase
Qstb-renan-5D TraesCS5D02G091000 TraesCS5D02G091000 98227410 98230028 L-type lectin-domain containing receptor kinase S.4
Qstb-renan-5D TraesCS5D02G104600 TraesCS5D02G104600 118455172 118460088 Nucleoside diphosphate kinase
Qstb-renan-5D TraesCS5D02G104900 TraesCS5D02G104900 118834967 118838504 ATP-dependent 6-phosphofructokinase
Qstb-renan-5D TraesCS5D02G120500 TraesCS5D02G120500 170376901 170381844 Diacylglycerol kinase
Qstb-renan-5D TraesCS5D02G138800 TraesCS5D02G138800 221007037 221012985 Pyruvate kinase
Qstb-renan-5D TraesCS5D02G140700 TraesCS5D02G140700 224325320 224328774 Phosphatidylinositol 4-phosphate 5-kinase
Qstb-renan-5D TraesCS5D02G144800 TraesCS5D02G144800 231350992 231353762 Non-specific serine/threonine protein kinase
Qstb-renan-5D TraesCS5D02G145100 TraesCS5D02G145100 231743581 231750603 Mitogen-activated protein kinase
Qstb-renan-5D TraesCS5D02G166400 TraesCS5D02G166400 259233864 259236422 Receptor like protein kinase S.2
Qstb-renan-5D TraesCS5D02G181500 TraesCS5D02G181500 282151742 282156543 BR receptor kinase%2C Brassinosteroid (BR) perception in the roo
Qstb-renan-5D TraesCS5D02G191900 TraesCS5D02G191900 294637785 294639948 NAD(H) kinase 3
Qstb-renan-5D TraesCS5D02G203600 TraesCS5D02G203600 308863403 308865114 Serine/threonine-protein kinase BLUS1
Qstb-renan-5D TraesCS5D02G214300 TraesCS5D02G214300 323911872 323914256 Serine/threonine-protein kinase
Qstb-renan-5D TraesCS5D02G232500 TraesCS5D02G232500 339652596 339654075 Non-specific serine/threonine protein kinase
Qstb-renan-5D TraesCS5D02G232600 TraesCS5D02G232600 339712134 339713477 Non-specific serine/threonine protein kinase
Qstb-renan-5D TraesCS5D02G234000 TraesCS5D02G234000 341192646 341202493 ATP-dependent 6-phosphofructokinase
Qstb-renan-7B TraesCS7B02G466300 TraesCS7B02G466300 723900282 723903056 Serine/threonine-protein kinase

1 Wall-associated kinases (WAK); 2 Nucleotide-binding and leucine-rich repeats (NB-LRR); Genes highlighted are the candidate genes found in common with Yang et al. (2018) [16].
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Figure 5. Heatmap representing the expression for each candidate gene where expression values 
were not equal to zero for the cultivar Riband inoculated with fungal strain IPO323. The x-axis rep-
resents post inoculation days, 1, 4, 9, 14, and 20 dpi respectively. The expression data is expressed 
in log2(tpm), with tpm transcripts per million. The first two lines present the data for Stb6 and Stb16q 
for reference. The subsequent lines represent the candidate genes, which are ordered by physical 

Figure 5. Heatmap representing the expression for each candidate gene where expression values were
not equal to zero for the cultivar Riband inoculated with fungal strain IPO323. The x-axis represents
post inoculation days, 1, 4, 9, 14, and 20 dpi respectively. The expression data is expressed in
log2(tpm), with tpm transcripts per million. The first two lines present the data for Stb6 and Stb16q for
reference. The subsequent lines represent the candidate genes, which are ordered by physical position,
top to bottom. The data represented here was extracted from http://www.wheat-expression.com/;
accessed on 3 December 2021.

4. Discussion
4.1. An Ultra-Dense Genetic Map Built from Two SNP Arrays

In this study, we built an ultra-dense genetic linkage map for bread wheat from
the RxCS population. The map we obtained boasts 5357 unique positions for a total of
148,820 mapped markers. At present, this is the most densely marked genetic map built
from a single segregating population. It does contain eleven gaps that are larger than 10 cM,
which could hinder the detection of QTL in these regions. Moreover, for the most part the
assumed physical position of the markers and their order in the genetic map corresponds
well. There is a cluster of markers on chromosome 4D that mapped on the long arm of
the chromosome while their physical position is assigned to the short arm. This could be
due to chromosomal rearrangements between Chinese Spring and Renan, although the

http://www.wheat-expression.com/
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D sub-genome is not the most prone of the three to chromosomal rearrangements [63,64].
The Renan–Chinese Spring genetic map built by Rimbert et al. (2018) [65] corroborates
the marker ordering we find with this map for chromosome 4D and indeed for the rest of
the genome (Figure S3). Finally, a recent refined assembly of Chinese Spring [33] includes
several major corrections at the 4D long arm telomere, suggesting that the misplacement is
indeed due to errors in the original assembly.

Two studies, which used only Illumina Infinium iSelect 90K markers, provide a good
base for comparison with the map we built here. The first is that of Wang et al. (2014) [52]
which was the first built with this array. They built a consensus map using six doubled
haploid mapping populations; the map contains 40,267 markers distributed in 5564 genetic
bins. In the genetic maps that they built for their various mapping populations, the
majority of markers were to be found in the A and B sub-genomes while the D sub-genome
represented a mere 15% of mapped markers, consistent with what we found in this study.
The order of the markers in our map is for the most part consistent with that in Wang
et al. (2014) [52] (Figure S4). The second study we used for comparison is that of Wen
et al. (2017) [66]. They built a consensus map comprising 29,692 markers distributed in
8960 bins; it was built with the maps of four mapping populations genotyped with the
Illumina Infinium iSelect 90K array and five maps from previous reports. Firstly, all four
of their maps consistently have a lower number of markers on the D sub-genome than on
sub-genomes A and B, with the percentage of total markers on the D-sub-genome ranging
from 7.64% to 12.8%, this corroborates with our results and other studies which show
lower diversity in the D sub-genome [66–68]. The total number of markers on each map
is 10,986 for 2840 bins, 11,819 for 3242 bins, 9824 for 3198 bins and 14,862 for 3460 bins.
The map presented here carries a total of 148,820 markers for 5357 bins. It is therefore
very densely covered and rivals the Wang et al. (2014) [52] consensus map in terms of
unique genetic positions despite being a map built from a single mapping population. Its
particularity lies in the fact that two different SNP arrays were used to construct it, the
TaBW410K Breedwheat array and the Illumina Infinium iSelect Wheat 90K array. The final
RxCS map contains 95% of markers from the TaBW410K Breedwheat array and only 5%
from the second array, this can in part be explained by the fact that the markers constituting
both arrays were not chosen following the same strategies. For the TaBW410K Breedwheat
array, a particular effort was made to target polymorphic markers, notably in modern
wheat cultivars. Though the Infinium iSelect Wheat 90K array SNP in the RxCS genetic
map are fewer compared to those of the Breedwheat array, they are present throughout the
map on sub-genomes A and B (Figure S5A). Both arrays therefore contribute to the map’s
construction and structure (Figure S5). The 13,670 SNP markers, which are supposedly
common to both arrays, do not often appear in the same genetic bins, though they do for the
most part appear at close genetic positions. Indeed, out of 13,670, only 33 markers appear in
the same bin as their counterpart in the other array. The average distance overall between
two paired markers is 3.19 cM, while the median value is 2.27 cM. In one exceptional case,
that of BS00044983_51, the markers of the pair do not appear on the same chromosome
but on the homoeologous chromosomes 2B and 2D. The largest gap between a pair of
markers, which are mapped on the same chromosome, is 21.1 cM and is the case for marker
BobWhite_c12355_1548. In total, 27 marker pairs are more than 10 cM apart. This could be
due to error rates between genotyping experiments, slightly different scoring methods for
SNP calling between the arrays or indeed duplications in the sequence. All these results
in addition to the very low number of mapped markers from the iSelect Wheat 90K array
shows that the TaBW410K Breedwheat array performs better as a base for mapping.

As of yet, this is the only map which carries markers from both of the SNP arrays
previously mentioned. As such, this map can be used as a “bridge” to compare maps from
studies using only one or the other SNP array.
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4.2. Phenotypic Traits Involved in the Resistance of Renan to STB

All of the experiments presented here were carried out in controlled conditions at
the seedling stage. This simplifies phenotyping as, in field conditions, other diseases
with similar symptoms to STB can infect crops. Septoria nodorum blotch caused by
fungal pathogen Parastagonospora nodorum in particular can lead to confusion [69]. Other
external factors such as environmental variations can also greatly impact field conditions,
compromising experiments’ success [70]. Another reason for choosing to work in controlled
conditions is that quantitative interactions can be highly variable within and between
experiments [44,45,71], controlled conditions allow one to reduce background variation
that might exist in field conditions, although it is not completely suppressed. As the values
for S26, AUDPC for green area, necrotic area, and sporulating area were all generated
using data from visual symptom assessments, it was necessary to reduce background
noise as much as possible, this included always having the same person perform the
assessments within a triplicated or duplicated experiment. These precautions allowed us to
obtain data, which though not necessarily normally distributed or statistically repeatable
according to ANOVA results, enabled us to identify reliable QTL when comparing overall
results. Precision phenotyping with image analyses has already been used successfully for
studying the Z. tritici/wheat interaction [46]; it is suggested that pycnidia counting and size
evaluation could be helpful in evaluating the epidemic potential of fungal strains and that
the host can influence these traits. Yates et al. (2019) [21] identified previously undetected
loci for quantitative resistance to STB using the ImageJ macro for four phenotypic traits
evaluated on a GWAS panel of 335 European winter wheat cultivars infected with a natural
highly diverse Z. tritici population. In our case, though the PYC trait corresponding to
pycnidia density did enable us to detect QTL, these were not different to the ones we
were already able to identify using the visual assessment data. Precision phenotyping
with a particle counter has also previously been used successfully in the Z. tritici/wheat
interaction. Boixel, et al. (2019) [72] evaluated the number of spores in a sample and they
also evaluated spore size, shape and melanisation. They showed that for spore counting, the
particle counter is a good means of gaining in accuracy and with the study of morphological
variation between spores, they provide insight into more phenotypic traits that could be
accessed by using a particle counter. Particle counters have been used in the study of
the Melamspora larici-populina/poplar interaction [73], the Phytophthora infestans/potato
interaction [74] and the two main species of the ascochyta blight complex of pea/pea
interaction [75]. In this latter case, the particle counter’s image analysis capacities were
used to evaluate spore length. This type of phenotyping offers a large diversity of potential
phenotypic traits, which could lead to the identification of novel QTL, however, much as
for PYC, the sporulation trait NBS did not yield the results we had hoped for, however it
did confirm the QTL that we could already identify with our visual assessment data. These
traits have previously led to the detection of QTL that were different to those detected with
visually acquired data, however this was in the context of a GWAS with a diversified panel
of cultivars [21].

4.3. Quantitative Resistance Durability Is a Multi-Layered Issue

Our objective was to identify regions in the T. aestivum genome, which could carry
genes that contribute to quantitative resistance to STB. The continuous distribution of
phenotypes that we observed in our data is indeed indicative of a quantitative and polygenic
type of resistance (Figures S1 and S2). We were able to identify three robust QTL on
chromosomes 1D, 5D, and 7B, each explaining between 6% to 26% of the phenotypic
variation on average. These quantitative and polygenic attributes contribute to resistance
durability for several reasons. Firstly, quantitative resistance, in theory, exerts less selection
pressure on pathogen populations, meaning that the latter are less likely to adapt in the
short term [76]. Secondly, the polygenic nature of quantitative resistance provides more
arguments for durability and is illustrated in the present case by the identification of three
different QTL. Polygenic resistance is more durable as it is a combination of factors which
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provides resistance, rendering adaptation to each of these factors more complex [77]. This
can be illustrated with studied cases of viral plant pathogens where the higher the number
of mutations required for virulence is, the lower the probability of adaptation gets, and
therefore polygenic resistance is more durable than monogenic [78–80]. In the case of
the Capsicum anuum/Potato virus Y in particular, it was shown that polygenic resistance
breakdown is slower than monogenic, indeed the virus required a step-by-step selection
for virulence, first towards major resistance genes, then towards the QTL and major gene
combinations [80,81]. Brought back to our study case, as a combination of resistance
QTL is efficient against a fungal strain, the adaptation to one of the QTL will not render
overall resistance void. This is illustrated by the strain specificities of the identified QTL;
i.e., though a strain has adapted to a specific QTL, this same QTL remains effective against
the other strain. Qstb-renan-1D was detected only with fungal strain I05, while Qstb-renan-
5D was only detected with fungal strain I07. Finally, Qstb-renan-7B did not discriminate
between the strains. We therefore have different QTL combinations that are efficient against
different fungal strains. This entails no specific strain selection as the selection pressure
is in a way diluted between strains [76]. It has been previously suggested that either
pyramiding broad-spectrum factors or using host genotypes carrying narrow-spectrum
resistance QTL could minimize resistance erosion [82] and that combining specific QTL
that can complement each other can slow selection of one particular pathogen strain [82]
increasing the durability of quantitative resistance.

Though there are many arguments in favour of durable quantitative resistance, it is
not necessarily the panacea. There are pathosystems where quantitative resistance has been
overcome through pathogen adaptation. In the case of the aforementioned pepper/Potato
virus Y, quantitative resistance alone was not sufficient to halt adaptation, emphasis was put
on the possibility of implementing cultivar mixtures [83]. In the apple/Venturia inaequalis
pathosystem use of broad-spectrum quantitative resistance was shown to present a risk of
encouraging the emergence of generalist pathogen populations [84]. In the wheat/Puccinia
recondita f. sp. tritici pathosystem, it has been shown that partial resistance can be eroded
when natural selection is high [85]. Another example is the grapevine/Plasmopara viticola
interaction, where partial host resistance rapidly selected for pathogens with higher viru-
lence [86]. These different examples show that though quantitative resistance is considered
to be durable, its use does need to be carefully thought through, with emphasis on diver-
sification of resistance mechanisms, a combination of both broad spectrum and narrow
spectrum resistance QTL, and the implementation of certain cultural practices, such as
cultivar mixtures for example.

4.4. Molecular Mechanisms Underlying Resistance QTL

Identifying the genes underlying the detected QTL would provide more insight into
quantitative resistance and reveal the variety of mechanisms potentially involved in re-
sistance to Z. tritici. Moreover, the use in breeding of resistance factors with distinct
mechanisms could yet more complexify any pathogen adaptation [76,87].

For the three QTL detected in this study, the parent carrying the resistance allele is the
cultivar Renan. Renan carries known resistance genes to a number of diseases, including
rust resistance genes Yr17, Lr37, and Sr38, all originating from a chromosomal introgression
from Aegilops ventricosa on wheat chromosome 2AS [88–90], eyespot resistance gene Pch1
on chromosome 7D [91,92], and powdery mildew resistance gene Pm4b on chromosome
2AL [91,93]. None of these known resistances to other diseases colocalize with the three
QTL detected in this study. Qstb-renan-7B was detected on the long arm of chromosome 7B.
Two Stb genes are found on chromosome 7B [15], these are Stb13 and Stb8. Qstb-renan-7B
could colocalize with Stb8 as it was detected towards the telomeric region of the long
arm of chromosome 7B although this should be validated by using microsatellite markers
Xgwm146 and Xgwm577 [94]. Chromosome 1D carries two known Stb genes, these are
Stb10 and Stb19 [15,16]. Stb10 is however not found close to the telomere as Qstb-renan-1D
is, but rather near the centromere [95]. This QTL does however colocalize with Stb19 [16].
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The twenty-seven candidate genes in the Stb19 region identified by Yang et al. (2018) with
known R gene families are included in the Qstb-renan-1D confidence interval [16]. Nine
of these are in our NB-LRR type gene list (Table 6) and four of these BST_chr1D_nlr_13,
BST_chr1D_nlr_113, BST_pseudo_chr1D_nlr_112, and BST_chr1D_nlr_14 had expression
in the case of a Z. tritici infection (Figure 5). Therefore, Qstb-renan-1D could be an allele
at Stb19 although this remains to be validated through an allelism test between cultivars
Renan and Lorikeet, the cultivar from which Stb19 was identified [16]. Chromosome 5D
does not carry any known Stb genes although STB resistance QTL have been previously
identified on the short arm of the chromosome. Bearing in mind that the Qstb-renan-5D
confidence interval overlaps both the short and long arm, we can therefore not exclude the
possibility that it colocalizes with previously identified QTL [18]. Qstb-renan-5D explained
up to 36% of phenotypic variation and is located in a region where no Stb gene has been
mapped before. As previously discussed, the percentage of explained phenotypic variation
cannot be considered as a criterion for the designation of a new Stb gene, because this
percentage will strongly vary depending on the combination of effective resistances against
a particular strain [24]. We therefore propose to designate this locus Stb20q in accordance
with the Stb nomenclature adding a ‘q’ to indicate the quantitative nature of this locus
despite its strong effect on resistance.

The three QTL detected here span overall quite a large interval on the genetic map and
contain large numbers of genes, it is therefore impossible to consider studying all of these
one by one. It is also possible that the gene or genes underlying the QTL are not present
in Chinese Spring, it could therefore be interesting to look at other cultivar annotations.
Renan in particular would be pertinent and the data will be available soon (F. Choulet,
personal communication). The next best option would be to prune the list of genes to look
into. Here, we chose to look into WAK, NB-LRR type and kinase domain carrying genes
present in the QTL regions as these are seemingly the most likely gene families involved
in quantitative disease resistance [6,7,10,14] in the context of a potential gene-for-gene
interaction [23,24,96], a hypothesis we are encouraged to support by the strain specificities
of the identified QTL. We are able to identify a short-list of genes in these gene families
which could explain the detected QTL based on expression data, however, it would be
interesting to test these further in the I05/Renan or I07/Renan interactions as the RNAseq
data we have available was acquired from Riband inoculated with IPO323 [58]. So far,
our results do not exclude that the genes underlying the detected resistance QTL could be
based on similar mechanisms as known major R genes. However, other as yet unexplored
possibilities cannot be ignored, such as those suggested by Poland et al. [87] who proposed
a variety of possibilities, including host plant development or morphology regulating genes,
mutations in basal defence genes, detoxification mechanisms, defence signal transduction
or partially altered weaker forms of R genes. Their last suggestion was that the genes
underlying resistance QTL could be a unique set of previously unidentified genes.

5. Conclusions

This study showed that the resistance in Renan to STB is quantitative and polygenic. In
particular, it showed that Renan has a resistance QTL with a small effect, which colocalizes
with Stb19 and a QTL with a strong effect on chromosome 5D, which was designated as
Stb20q. For breeding, it could be interesting to introgress these regions from Renan into
wheat cultivars as they would, in theory, be able to hold up resistance after pyramided
major resistance genes are overcome, or even limit the erosion of major resistance genes [76].
Nevertheless, the QTL were detected with data generated in controlled conditions and
at seedling stage, they should be validated in field conditions before any possible imple-
mentation in breeding programs. It seems the next step would be to fine-map the QTL
intervals, as this would give us a better idea as to which of the identified candidate genes,
if any, are responsible for the resistance QTL. Furthermore, we are currently investigating
pathogenicity QTL in our strains of interest I05 and I07, in order to evidence potential
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interactions between known resistance QTL in Renan and fungal QTL, with the aim of
deciphering the mechanisms of minor gene-for-minor gene interactions.
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