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HIGHLIGHTS

Xylem hydraulic failure has been shown to be a ubiquitous factor for tree death from
drought, but the mechanistic link between the two processes remains unclear.

As meristematic cells are involved in the recovery of trees from drought, determining
the damage they suffer during their progressive dehydration under water stress and its
relationship to the loss of hydraulic function will provide new information on the
mechanistic link between hydraulic failure and drought-induced mortality.

The RWC, altered redox status and physical constraints meristematic cells can support
more accurately define meristem membrane integrity, and consequently meristems
survival and so tree recovery, than the Pso and Pgg values used hitherto as thresholds for
drought-induced tree mortality in mechanistic models.

The capacity of trees to relocate stored water between tissues is crucial for buffering the
variation in the RWC and redox status of meristematic cells, determining the cell

mortality timeline and therefore the resistance of different species to drought.
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What is the sequence of events ending in meristematic cells death?

Is the hydraulic failure of the tree water transport system the triggering factor in the
irreversible dehydration of meristematic cells?

What level of hydraulic dysfunction is necessary to cause a reduction in RWC that
induces significant damage to meristematic tissues?

Does this hydraulic dysfunction level vary among species with different drought
resistance strategies?

Are ROS accumulation and RWC level critical for meristematic cells survival?

How do critical ROS and RWC vary with drought intensity and among species?

What level of cell damage can trees withstand before they lose their ability to recover,
and so die from drought?

Can meristematic cells dehydration be delayed through radial relocation of water in the

stem during drought?
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GLOSSARY

Apoplastic water: Water stored outside cell plasmalemma: e.g. cell wall, intercellular spaces,

or in dead cells: e.g. vessels, fibres, tracheids.

Cellular death: A cell is considered dead when: (1) the cell has lost plasma membrane integrity;
(11) the cell, including its nucleus, has undergone complete fragmentation into apoptotic bodies;

or (111) cell fragments have been engulfed by an adjacent cell in vivo.

Cellular cavitation: Cellular cavitation occurs when the evaporation of water from the cell
causes the radial walls to come closer and the lateral wall to cave inwards. When a critical

pressure is reached, the cytoplasm fractures and a gas bubble forms inside the cell.

Cytorrhysis: The permanent and irreparable shrinkage of the cell resulting in the cell wall
being mechanically deformed as the cell loses volume due to the loss of internal positive

pressurc.

Hydraulic failure: A physiological status in which the loss of hydraulic conductance of the

xylem undergoes a runaway effect leading to the irreversible dehydration of the distal organs.

Necrotic plant cell death or necrosis: Cell injury leading to premature cell death typically
observed in cells undergoing abiotic stress. Necrosis is an acute cell death response that

develops rapidly in several minutes to one day.

Primary meristems: Type of meristematic tissues responsible for the primary growth of the
plant (e.g. apical meristems), i.e. growth in height or length. Primary meristems are directly

derived from embryonic cells.

ROS: Reactive oxygen species. Oxygenated chemical species such as free radicals, oxygen
ions and peroxides that are made chemically highly reactive by the presence of unpaired valence

electrons.

RWC: Relative water content. Indicator of the water status of a tree organ or tissue. Calculated

relative to the water status at the saturation.

Secondary meristems: Type of meristematic tissues responsible for the secondary growth of
the plant (e.g. cambium, phellem), i.e. growth in girth or thickness. Secondary meristems are

derived from the permanent tissues.
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Symplastic water: Refers to the water stored in the cell plasmalemma, corresponding to the

intracellular continuum formed by plant cells through plasmodesmata.

Tree death/mortality: Irreversible cessation of the metabolism in a tree. From a plant-water
relation point of view, tree death occurs when a tree is no longer able to maintain its key

physiological functions, e.g. growth and or reproduction.

ABSTRACT

Xylem hydraulic failure has been recognized as a pervasive factor for triggering drought-
induced tree mortality. However, foundational evidence of the mechanistic link connecting
hydraulic failure with living cell damages and tree death has not been identified yet,
compromising our ability to predict mortality events. Meristematic cells are involved in the
recovery of trees from drought and focusing on their vitality and functionality after a drought
event could provide novel information on the mechanistic link between hydraulic failure and
drought-induced tree mortality. This opinion piece focuses on the cell critical hydration status

for tree recovering from drought and how it links with the membrane integrity of the meristems.

MAIN TEXT
Dying of thirst

Ongoing climate change is modifying surface temperature and precipitation patterns in
many areas worldwide [1]. As a consequence, drought episodes are more frequent, longer, and
more intense [2], having already a marked impact on tree survival and forest dieback [3,4].
There is therefore an urgent need to predict what species will succumb to drought and where
and when this will occur [5] in order to anticipate the degree to which the expected future

climatic changes will affect forests structure and function.

Physiologically, tree death (see Glossary) is usually assessed by evaluating a tree’s
ability to recover its key physiological functions, such as exchanges of matter and energy with
its environment, or resprout, that is to say produce or regenerate new organs or tissues in the
following vegetative season [3,6,7]. A tree 1s considered to have died as a result of a drought
episode when, once exposed to more favourable conditions, it 1s unable to perform these key

physiological functions. The ability of a tree to survive a drought episode is therefore linked to
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its ability to ensure the survival of the key meristematic cells, both primary and secondary,
such as undifferentiated meristematic apical cells responsible for the development of new
organs, cambium cells involved in the development of vascular tissues and the subero-
phelloderm cells responsible for the development of bark tissues, as well as root and shoot
apical meristems responsible for the primary growth of the plant. If a drought episode is intense
enough to affect the vitality of one or more of these key meristematic tissues, it may hinder the

tree’s ability to maintain its metabolism and ultimately to survive.

In the last decades, much effort has been made to understand tree hydraulic functioning
and especially the link between xylem embolism and drought-induced tree mortality [8].
Embolism occurs when excessive tensions in the xylem tissue cause cavitation events in the
xylem conduits that block water transport from the roots to the leaves. Cavitation occurs under
severe drought conditions and has been identified as a ubiquitous factor for tree death from
drought (Box 1) [9]. Several studies have shown that the water potential inducing a loss of
hydraulic functioning of ca. 50% or ca. 88% (Pso for conifers and Pgg for angiosperms,
respectively) [6,7], can be considered as an indicator for drought-induced tree mortality or lack
of full recovery in some species [10—12]. These threshold levels of embolism thus define the
point of hydraulic failure of the xylem tissue that correspond to the point where the
conductance capacity of the sap pathway is unable to avert the runaway cavitation of the xylem
leading to the progressive dehydration of the distal organs. The process of cavitation has been
widely studied, and the critical Pso and Pss values have been determined for different species
[13,14] and used as thresholds for modelling tree mortality under drought conditions [15,16].
However, although Psp and Pss have been strongly correlated to tree resistance to drought in
many cases, recent studies have shown that Pso and Pgg values are not always correlated with
mortality. It has been reported that conifers showing a percentage loss of conductance (PLC)
of 80% (i.e. higher than 50%) and angiosperms with a PLC close to 100% (i.e. higher than 88%)
are still able to recover from drought once irrigated [17-19]. These findings thus question the
reliability of the Pso and Pgs indicators for predicting tree death and, more importantly, it
highlights the importance of determining the mechanistic link between xylem embolism and
mortality in order to determine how hydraulic failure affects the capacity of trees to recover
from drought. To explain the variation in PLC thresholds across individuals or species we argue
that besides the level of embolism, the level of cell damage in the meristematic tissues should
also be taken into account when evaluating a tree’s capacity to recover from drought. Indeed,

even though the cellular desiccation that results from hydraulic failure has been part of the
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framework proposed by McDowell et al. [9,20], studies focused on demonstrating explicitly
this link are virtually inexistent [21,22] and none have worked at the meristematic level. Thus,
there are two fundamental aspects that have so far been considered independently but which
must be brought together to properly identify, explain and understand the causes of drought
dieback: (1) tree mortality is physiologically determined by meristematic cells vitality, and (i1)
hydraulic failure is a strong determinant of drought-induced tree mortality. Only by considering
both aspects together we will be able to elucidate the mechanistic links between hydraulic
functioning, cell death and finally tree mortality. This opinion piece aims to shed the light on
the mechanistic links between hydraulic failure and drought-induced tree mortality by
providing a new approach on tree mortality that assumes that saving key meristematic cells
from dehydration and allowing their rehydration are the two critical points for tree survival.
This approach thus encourages new studies focused on cell water status, in particular at the
meristems level to set new thresholds for predicting tree mortality with mechanistic models

[23,24].
Looking at cell death to predict tree death
Cell mortality under drought conditions: Membrane integrity matters

One of the main causes of drought-induced tree mortality is the direct cellular
consequences of dehydration ending in cell death [9,25]. Cell death in plants occurs by two
different mechanisms: programmed cell death and necrotic cell death. Necrosis is the main
process induced by a range of abiotic stresses (e.g. drought) [26]. While undergoing necrosis,
cells usually present various anatomical features, such as swelling of the mitochondria [27],
early rupture of the plasma membrane and/or shrinkage of the protoplast [26,28]. The loss of
integrity of the membrane structure in necrotic cells and thus the early rupture of the plasma
membrane have already been reported in plants exposed to frost due to dehydration preceding
cell death [29]. Under fast dehydration, the cell’s membrane changes from a liquid crystalline
phase to a gel phase that can lead to a lateral phase separation of membrane constituents and
cause membrane leakage [30-32]. Guadagno et al. [33] showed how the stability of the cellular
membrane and thus its rupture was closely linked to a plant’s water status. They proposed a
theoretical mechanism of plant mortality based on membrane disruption as the most proximal
cause of plant mortality under drought conditions. Recent observations of Mantova et al. have
lent this theoretical mechanism some experimental support by showing how cell membrane
integrity can work as an indicator for evaluating capacity to recover from drought in conifers
[18]. To work towards elucidating the causes of drought-induced tree mortality and improve
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our capacity to predict it, it is thus crucial to focus future research on the mechanisms and

sequence of events associated with cell mortality and, especially with cell membrane failure.
What fails? Focus on cell membrane failure

Under drought conditions, membrane failure usually occurs by either structural changes
related to the loss of solvation of the polar groupings of amphiphilic lipids [31] or to the
biochemical modifications induced by the lipid peroxidation that results from the accumulation
of reactive oxygen species (ROS) [34,35]. Abiotic stress such as drought increases the
production and accumulation of ROS, leading to an oxidative stress [30, 31]. This ROS
accumulation damages a broad variety of organic substances including the membrane
components [34,35], in which it causes a modification of protein and lipid peroxidation leading
to membrane leakage and consequently to cell lysis and cell death [33—35]. Looking at the
survival strategy of plants able to support extreme dehydration levels, i.e. able to survive with
low water content in their tissues (e.g. resurrection plants), ROS accumulation is counteracted
by an increase in ROS-scavenging enzymes and antioxidant compounds [36,37], which prevent
cell membrane disruption and maintain cell integrity [38]. ROS accumulation, and the altered
cell redox status, is therefore an ubiquitous factor for cell mortality during water stress owing
to its effects on cell membrane integrity, whence the importance of focusing future research on
the relationship between drought-induced ROS accumulation, or more generally cell redox
status, and cell membrane stability in perennial organs. Our hypothesis is therefore that cell
ROS accumulation or the altered cell redox status are good candidates for identifying a
threshold for cell mortality during drought, excluding the possible effects of pathogens and
insects attacks, and to some extent for tissue vitality and more generally for organ and whole
tree death (Figure 1, Key Figure), especially when evaluating meristematic tissues. There 1s
thus an urgent need to consider both cell death and ROS accumulation or redox status of living
cells crucial for recovery when seeking an indicator for tree mortality or lack of recovery

capacity.

Despite the altered redox status of the cells has been demonstrated as one of the causes
of membrane failure under drought conditions, not only biochemical processes but also
different physical constraints could be also involved in the processes provoking cellular death.
Indeed, cellular cavitation and cell cytorrhysis have been speculated as potential mechanisms
driving cell mortality under water stress [39,40]. On the one hand, the cellular cavitation [41]
could provoke lethal cellular injury by the rupture of the protoplasm when cell are exposed to
important negatives pressures under frost conditions [39]. Similarly, when trees are exposed to

6
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drought conditions and the water potential decreases progressively, cellular cavitation events
could probably occur in different cell types including the meristematic ones. On the other hand,
the cytorrhysis and collapse of the cell [37,42] has also been describe in previous studies in
cells undergoing a water-stress [39,43] and could represent a major form of cell injury and,
consequently, meristems damage in trees under severe drought conditions. However, whether
cellular cavitation and cytorrhysis provoke cellular death by membrane disruption is, to date,
unknown and would require experimental studies including microscopy techniques, such as
Cryo-SEM, to visualize both the cell shape and plasma membrane integrity. Whether those
physical constraints occur at the meristems level and could work as an indicator for tree
mortality or capacity of recovery is still unresolved and would require further studies targeting
especially those key tissues for tree survival (Figure 1). Therefore, whether these physical

processes are mutually exclusive of the oxidative stress is still unknown.
Tree water relations and meristematic tissues mortality

In the meristematic approach proposed for assessing drought-induced dieback,
meristematic elements (e.g. primary and secondary meristems) are the key elements for
evaluating a tree’s capacity to survive intense drought episodes [44—46]. During drought, it has
been shown how roots undergo progressive contraction and rupture of cambial cells leading to
their disintegration in severely water-stressed and non-recovering seedlings [46] highlighting
the relevance of these meristematic cells [47,48] when evaluating tree senescence and death.
Besides the meristematic tissues, it is also important to consider the relevance of other cell types
such as cortical parenchyma, that may dedifferentiate to produce ‘adventitious’ meristems once
the meristematic cells have lost their capacity to differentiate and develop into other tree tissues
and organs [49,50]. However, how the capacity of the meristematic cells to differentiate and to
the other cell type (e.g. parenchyma cells) to dedifferentiate 1s affected by the progressive
reduction in plant hydraulic functioning and the dehydration of the tissues, is largely unknown

and deserves further attention from both physiological and ecological points of view.

In plants undergoing a drought resulting in rapid extreme dehydration, cells also
undergo water stress by reduced relative water content (RWC), which can eventually induce
cell death [51]. Meristematic cells will thus also start to dehydrate and enter the cell death phase
[36], displaying evidence of necrosis as they approach their critical water status. It is therefore
to be expected that there will be a threshold in RWC below which these cells will show evidence
of dehydration-induced necrosis. However, previous studies on the critical water status
allowing cell survival under water stress conditions have highlighted that the critical water

7
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status for survival varies among cell types, organs and species. This is the case for some seed
types able to keep their capacity to germinate up to RWC values of ca. 22% [52], whereas the
critical RWC for leaf survival ranges between 7.0% and 58.5% depending on the species [22].
Like leaves, most mesophytic plants cannot withstand an RWC below 50% [53]. Reaching
critical RWC in meristematic tissues will therefore affect the capacity of a whole tree to recover
from drought. This RWC threshold, however, may vary across species according to their
resistance to drought and to their mechanisms to protect cells from dehydration (e.g. production
of late embryogenesis abundant proteins in seeds [37]). Using RWC, that has been recently
presented as a more mechanistically relevant metric of plant lethal water stress [54,55], as a
threshold for meristematic cells mortality and thus tree recovery capacity would greatly
improve mechanistic models aimed to predict and anticipate the resilience of trees after drought
events, a crucial step in forecasting catastrophic forest dieback [23,24] (Figure 1). As membrane
integrity seems a good indicator of cell vitality and is related to cell water content [29,33,56,57],
a focus on the sequence of events taking meristematic cells into necrosis with regard to RWC
could set a physiological threshold for meristematic cells death and thus tree survival (Figure 1).
Also, as RWC, oxidative stress and physical constraints are inter-related, ascertaining which
threshold is prominent would help precisely determine the physiological threshold for
meristematic cells beyond which they lose their ability to differentiate. The time at which
different species reach these threshold levels will therefore depend on both their dehydration
rates during drought [58] and on their resistance to drought according to their mechanisms to
avoid oxidative stress [37]. Describing the main processes taking meristematic cells to critical
dehydration levels during drought, how it varies across organs (bole, branch tips, roots) and
species and how they all interact with each other — including hydraulic functioning, residual
conductance, and capacitance of the different tissues and organs — is a promising future research
direction towards identifying the mechanistic processes underlying drought-induced tree

mortality.
Hydraulic functioning and dysfunctioning

The water content of any organ or tissue of a tree is determined by the balance between
water loss and absorption. Water losses are mainly due to stomatal or residual transpiration
[59,60] and are therefore imposed by microclimatic conditions. Water absorption depends
mainly on the ability of trees to extract water from the soil and transport it upwards to the
meristematic cells (Figure 2). Thus under drought conditions, the increasing environmental

evaporative demand causes an increasing tension in the xylem, inducing cavitation events and
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finally the hydraulic failure of the water transport system when it undergoes a runaway effect
leading to complete loss of its conductance [61]. This dysfunction of the water transport system
causes a significant reduction in the amount of water supplied to the tree’s living tissues, which
will accordingly decrease their RWC, increase the percentage of water-stressed cells and finally
trigger cell necrosis processes (Figure 2) [22]. While McDowell ef al. (2008) has already
mentioned that hydraulic failure leads to cellular death, little is known on the desiccation of the
actual meristems, probably because of the difficulty to access those elements. However, the
desiccation of the meristems could provide us with the mechanical link between hydraulic
failure and tree mortality [17,18]. Thus, as significant correlations between high levels of PLC
and tree mortality have been reported for several species [6,7,10], the central hypothesis we
advance here is that the hydraulic failure of the xylem 1s the triggering factor in the irreversible
dehydration of meristematic cells, severely impairing their water absorption capacity and thus
their water content, so leading to their death. A reduced RWC resulting from hydraulic failure
should therefore be ubiquitous to all tree tissues independently of their function [22,54,55,62]
and would certainly be found at meristematic tissues level causing cells death and ultimately
the inability of the tree to recover from drought [9,25] (Figures 2, 3). However, accessing the
meristematic tissues might be challenging in practice. Therefore, as a first step, the sampling of
buds would allow to efficiently link the hydraulic failure of the xylem with meristems mortality.
Then, once this link is evaluated, accessing cambial cells using e.g. transmission electron
microscopy would allow to make a significant step forward in the understanding of tree death
from drought [46]. As RWC thresholds have the potential to be use for remote sensing tree
mortality [63,64] another step forward would be to observe how meristems RWC might relate
to canopy moisture content [65,66] to be able to predict more accurately the consequences of

drought on trees’ survival at the population and the landscape level.

Recent studies have reported tree mortality events when the losses in stem xylem
conductance were higher than the proposed PLC thresholds of 50% and 88% for conifers and
angiosperms, respectively and that the PLC value provoking tree death likely varies across
individuals and species [17,18,67]. This has thus highlighted the importance of (1) revisiting the
Pgg and Pso thresholds and (i1) the need to determine more accurately the PLC leading to the
runaway dehydration of meristematic cells. Under hydraulic failure conditions, the water lost
through transpiration will not be compensated by the water entries, and meristematic tissues
will ultimately dehydrate, desiccate and die (Figure 3). As suggested by Hammond et al. [17],

there should thus be a sequence of events occurring on reaching significant losses in hydraulic
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functioning, and leading to meristems and tree death (Figures 1, 3). Along this sequence, we
hypothesize that the cell metabolism would depend first on the tree’s water reserves at the
apoplastic level, and once this water 1s depleted, on their own water content (symplastic). As
this is in turn exhausted, meristematic cells will undergo dehydration and death by necrosis [9]
(Figure 1). Thus to validate our hypothesis, evidence of meristematic cell necrosis should
appear after high losses in plant hydraulic functioning that would alter the water status of the
meristems (Figure 3). As meristem water content depends to a large extent on tree water supply
related to tree hydraulic functioning, a better understanding is needed of the minimal tree
hydraulic conductance required to keep the meristematic tissues hydrated and so allow the tree’s
recovery from drought. What matters is (1) whether meristematic cell dehydration can be
delayed through the radial relocation of water within the stem during drought [68-70] and

(1) under what conditions the cell can rehydrate once re-supplied with water.
Avoiding meristematic cells mortality

As already described, xylem hydraulic failure disrupts the water supply to a tree’s living
tissues [71] and forces downstream organs to rely on their own water reserves (symplastic) [72].
Although plant water storage has been widely studied in terms of localisation [68,73], the link
between water release and hydraulic failure, mobilisation to maintain the metabolism of
meristematic cells, and possible refilling after a drought event, have been poorly evaluated [69].
In general, there are two main types of water storage reservoirs in plants: symplastic reservoirs
(i.e. inside the living cells) and apoplastic reservoirs (Figure 1) [68,73]. The water stored in
these two reservoirs can be mobilised during drought as tree’s water potential decreases [73,74].
In general, there is a bidirectional transport of water between inner bark and xylem in
angiosperms through the symplasmic space of ray parenchyma cells. Thus, water moves from
phloem to the mature xylem via the parenchyma cells and the cambial zone [70]. As the
formation of emboli in the xylem is initiated, the apoplastic water pools seems to be mobilised
to preserve living tissue (i.e. symplastic compartments) hydration state rather than to buffer
xylem cavitation [73,75]. Indeed, as demonstrated with X-ray micro-CT, the water contained
in the xylem matrix embedding xylem vessels (i.e. mainly fibres) is released to the adjacent
tissues concomitantly to stem shrinkage and the formation of embolism, and not before the
onset of cavitation [73,75]. As the xylem tension increases, more cavitation events are observed
in those xylem vessels located close to the vascular cambium, along with more air-filled cells
within the xylem matrix [75]. This suggests that the mobilisation of these water reserves could

partially buffer the water depletion in the symplastic reservoirs that could include key living
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tissues for tree survival (Figure 1) [69,75]. By bringing together all these recent results, it can
be hypothesized that water released from the xylem matrix (apoplastic compartment) is moved
to the adjacent tissues and consequently to meristematic tissues (symplastic compartment) to
keep their cells metabolically active. Once all the water stored in both the apoplastic and the
symplastic compartments has been released, tree living tissues and cells will ultimately dry out,
and meristematic cells will suffer from mainly oxidative stress, cavitation and cytorrhysis and
finally die (Figure 1). However, there are still significant open questions about the possible role
of the water supplied from the bark in protecting the cambial cells from dehydration. Testing
this hypothesis will require new experimental studies focused specifically on describing the
processes of water release and water relocation, their mechanistic link with hydraulic
functioning, and the sequence and timing of the events and processes occurring in the apoplastic

and symplastic compartments to protect the meristematic cells during drought [68,76].
Concluding remarks and future perspectives

Tree mortality is physiologically determined by meristematic cells vitality. However,
the consequences of drought on these cells and the subsequent recovery of the trees are still
under-researched. As different recent studies have identified a significant correlation between
losses in hydraulic functioning and drought-induced tree mortality, it is now crucial to
determine the mechanistic link between these two processes by evaluating the effect of
hydraulic failure on the water content of the different tree organs and tissues, and especially on
the meristematic cells. In addition, evaluating meristematic cell integrity with regard to RWC,
redox status and physical constraints would provide novel and valuable information about the
physiological thresholds determining cell mortality, which would be most useful when
implementing mechanistic models aimed at predicting tree mortality and so forest dieback
under drought conditions (Figure 1). Following the dynamic of dehydration of the meristematic
cells from the beginning of tree dehydration and especially once the tree has reached xylem
hydraulic failure at stem level is central to addressing key physiological questions related to

drought-induced mortality, such as:

(1) Whether there is a mechanistic link between xylem cavitation, meristems water
content, ROS accumulation and membrane stability.

(1)  Whether there is any critical threshold in RWC and/or oxidative stress and/or
physical constraints from which the meristematic cells begin to show significant
damage, and whether they are influenced by the duration and intensity of the

drought.
11
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from dehydration to maintain their capacity to recover from drought.
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523  Figure 1, Key Figure. Integrative framework representing the main processes explaining

524  the correlation between hydraulic failure and tree mortality

525  Drought-induced tree mortality is currently predicted with mechanistic models using thresholds
526  that mark a point of no return from drought. Although there is a strong correlation between a

527  high loss of conductance in trees (P, for conifers and Py, for angiosperms) and their mortality,

528 some trees can still survive drought after high losses in their hydraulic capacity. This new
529  approach emphasises the importance of studying the link between the disruption of cell water
530 supply due to xylem hydraulic failure and a change of water status in the meristematic cells. It
531 also shows the consequences of a critical water status on the production of reactive oxygen

532  species (ROS) as well as changes in the physical constraints on the cells, which can cause severe
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membrane damage in the meristematic cells and eventually induce their death. This framework
thus presents the new possible thresholds that, according to the different hypotheses presented
in the text, could be used to implement mechanistic models for predicting tree mortality in the
context of climate change. In this figure, the arrows represent the sequence of event leading to
tree mortality. The dashed blue arrow represent the hypothetical sequence of event requiring

further studies.
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Figure 2. Consequences of water stress on tree water transport and tree cells

Under mild water stress conditions, trees are able to keep their hydraulic system almost fully
functional, and water is continuously transferred from the xylem (apoplastic water) to the cells
in the living reservoir (symplastic water) maintaining the turgidity and integrity of the cells.
As water stress is exacerbated, the loss of hydraulic conductance in the xylem pathway (PLC)
increases until it causes xylem hydraulic failure, when the water supply cannot meet the tree’s
water requirements. Concomitantly to the loss of xylem conductance, water transport from the
xylem to the living tissues (e.g. cortex and cambium) is disrupted and the metabolism of cells
relies first on water supply and finally on their own water reserves. Consequently, cells start to
dehydrate, shrink, collapse or cavitate and finally die from necrosis when they lose their

membrane integrity.

21



554
555

556
557
558
559
560
561
562
563
564
565

Hydraulic
failure

Water supply

Hydraulic functioning

Runaway
cavitation / desiccation

Tree water content

Meristem water content

Oxidative stress

galeonstraints

Recovery capacity |

1
ﬂ. "
Drought intensity :

Mortality risk

|

Time

Figure 3. Drought consequences on tree water transport and content

As drought intensity is exacerbated (from yellow to orange) and water supply decreases, xylem
hydraulic functioning decreases until it reaches hydraulic failure, when water supply no longer
meets water demand. Concomitantly to the loss of hydraulic functioning, tree water content
diminishes and causes the dehydration of the meristems and an increase in oxidative stress.
After reaching xylem hydraulic failure, meristematic cells enter the phase of irreversible
dehydration and finally incur damage, particularly at membrane level. Consequently, the
recovery capacity of the tree diminishes, and the mortality risk increases. Quantifying
meristematic cell water content at the time of increasing cell damage (i.e. evidence of meristems
damage) (black dashed line) could identify thresholds below which the tree will be unable to

recover from drought and will ultimately die.
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Box 1. Drought-induced mortality: Dying of thirst

Drought-induced tree mortality is related to drought intensity, duration and frequency [9].
Under extreme drought conditions (i.e. long intense droughts), tree mortality mostly arises from

xylem hydraulic failure [10,14].

During a severe drought event, soil water availability decreases while evaporative demand and
cuticle conductance increase, resulting in an increment of the xylem tension that induces the
occurrence of cavitation events in the xylem. Cavitation is the change from liquid water to water
vapour under increased tension. This change in water phase results in the formation of gas
bubbles termed ‘emboli’ in xylem conduits [77,78]. The cavitation of one xylem element can
spread throughout the xylem vessel [71] when xylem tension increases owing to an increased
vapour pressure deficit. As the percentage of cavitated vessels increases, the hydraulic
conductance of the xylem decreases until the flow of water stops and causes the dehydration of

the tree tissues, cell death, and the death of the tree.

Vulnerability to cavitation i1s extremely variable across species and biomes [13,14] and is
usually evaluated by constructing vulnerability curves representing the percentage loss of
hydraulic conductance (PLC) induced by cavitation with regard to xylem tension (i.e. xylem
water potential). From these curves are extracted the xylem tension inducing 50% loss of
hydraulic conductance (Pso) and that inducing 88% loss of hydraulic conductance (Pgg). Pso 1s
generally used as an indicator of tree resistance to cavitation. When modelling tree survival
from drought, Psp and Pss have been used, so far, as lethal thresholds for conifers and
angiosperms respectively [15,16]. However, recent experimental results do not always support
both of these numbers and particularly Pso[17,18] which emphasize the need to consider other

physiological traits when trying to define a mortality threshold.
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