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Abstract 18 

Viral Nervous Necrosis (VNN) is a major threat for the European sea bass (Dicentrarchus labrax) 19 

aquaculture industry. The improvement of disease resistance through selective breeding is a promising 20 

option to reduce outbreaks. With the development of high-throughput genotyping technologies, 21 

identification of genomic regions involved in the resistance could improve the efficiency of selective 22 

breeding. The aim of this study was to identify quantitative trait loci (QTL) involved in VNN resistance 23 

and to quantify their effect. 24 

Four experimental backcross families comprising 378, 454, 291 and 211 individuals and two commercial 25 

populations A and B comprising 1027 and 1042 individuals obtained from partial factorial crosses (59♂ x 26 

20♀ for pop A; 39♂ x 14♀ for pop B) were submitted to a redspotted grouper nervous necrosis virus 27 

(RGNNV) challenge by bath. A high-density single nucleotide polymorphism (SNP) chip panel was 28 

designed to develop the ThermoFisher AxiomTM 57k SNP DlabChip, which was used for genotyping all 29 

individuals and building a high quality linkage map. In the backcross families, composite interval mapping 30 

was performed on 30917, 23592, 30656 and 31490 markers, respectively. In the commercial 31 

populations, 40263 markers in pop A and 41166 markers in pop B were used to perform genome-wide 32 

association studies (GWAS) using a GBLUP and a BayesCπ approach. 33 
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One QTL was identified on chromosome LG12 in three of the four experimental backcross families, and 34 

one additional QTL on LG8 was detected in only one family. In commercial populations, QTL mapping 35 

revealed a total of seven QTLs, among which the previously mentioned QTL on LG12 was detected in 36 

both. This QTL, which was mapped to an interval of 3.45 cM, explained 9.21% of the total genetic 37 

variance in pop A, while other identified QTLs individually explained less than 1% of the total genetic 38 

variance. 39 

The identification of QTL regions involved in VNN resistance in European sea bass, with one having a 40 

strong effect, should have a great impact on the aquaculture industry. Future work could focus on the 41 

fine mapping of the causal mutation present on LG12 using whole genome sequencing. 42 

Keywords 43 
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1. Introduction 45 

European sea bass (Dicentrarchus labrax) is a major species for Mediterranean aquaculture, with a 46 

production of more than 150,000 tons in 2016 (FEAP, 2017). A major threat for the sea bass aquaculture 47 

industry is the occurrence of disease outbreaks, and especially of Viral Nervous Necrosis (VNN) disease 48 

mostly in warmer growing Mediterranean areas (Breuil et al., 1991; Le Breton et al., 1997; Vendramin et 49 

al., 2016). The VNN disease is caused by the Nervous Necrosis Virus (NNV), a RNA virus belonging to the 50 

Betanodavirus genus (Mori et al., 1992). NNV is widespread worldwide and can infect more than 70 51 

marine and freshwater species (Doan et al., 2017b). In sea bass production, mortalities up to 90% have 52 

been recorded especially at the very susceptible larval and juvenile stages (Le Breton et al., 1997). 53 

Several vaccine strategies have been tested, leading to an improvement of survival (Doan et al., 2017b). 54 

However, three points limit the use of vaccines in VNN outbreak management: i) vaccines are generally 55 

expensive, ii) the number of fish to vaccinate is high which increases the cost issue (Ulmer et al., 2006), 56 

and iii) VNN is more infectious in early life stages, while vaccination of small fish is challenging (Gomez-57 

Casado et al., 2011; Sommerset et al., 2005). 58 

One promising solution to reduce the effects of VNN outbreaks in aquaculture farms is selective breeding 59 

for improved resistance to VNN. Selective breeding for disease resistance in aquaculture species has 60 

demonstrated its interest with a genetic gain in survival of 12.5% per generation on average, across 61 

different host-pathogen pairs (Gjedrem and Robinson, 2014). For selective breeding to be successful, 62 

enough genetic variation for disease resistance within the species is however required. Moderate to high 63 

heritability has already been reported for resistance to VNN in European sea bass (from 0.26 to 0.43), 64 

confirming the interest of selective breeding for this trait (Doan et al., 2017a; Palaiokostas et al., 2018).  65 

Genomic markers can be used to detect Quantitative Trait Loci (QTL), which are regions of the genome 66 

involved in the phenotypic variation of the trait (Georges et al., 1993). Their use allows a better 67 

understanding of the genetic architecture of complex traits as well as the location of the potential 68 

candidate genes involved in the resistance phenotype. With the access to high-throughput genotyping 69 

technologies at a reasonable cost for non-model species, some disease resistance QTLs have been found 70 

in a limited number on aquaculture species (see review by Ødegård et al., (2011)). In Atlantic salmon, 71 

major QTLs were discovered for IPNV resistance, explaining up to 83% of the genetic variance (Houston 72 

et al., 2008; Moen et al., 2009). These results can then be used to accurately choose broodstock among 73 



the candidates for selection or commercial diffusion by Marker Assisted Selection (MAS) (Houston et al., 74 

2008; Moen et al., 2009). In Asian sea bass (Lates calcarifer), QTL mapping revealed nine QTLs involved in 75 

VNN resistance, explaining between 1.6% and 2.7% of the phenotypic variance (Wang et al., 2017). In 76 

Atlantic cod (Gadus morhua), five QTLs were detected, including three QTL with major effects, explaining 77 

between 14.2% and 19.7% of the phenotypic variance (Baranski et al., 2010). For VNN resistance in sea 78 

bass, a recent study reported three first QTLs, each of them explaining a small part of the genetic 79 

variance (1.5% to 4%) (Palaiokostas et al., 2018). 80 

In this study, we investigated the genetic architecture of VNN resistance in sea bass. We performed 81 

Genome Wide Association Studies (GWAS) based on two commercial cohorts and four experimental 82 

backcross families, all genotyped on the newly developed ThermoFisher AxiomTM Sea Bass 57k SNP 83 

DlabChip. Two approaches were considered to detect associations between SNPs and resistance to VNN, 84 

interval mapping and a multi-marker Bayesian variable selection model to estimate the sharing of 85 

genetic variance explained by the QTLs, as well as their credibility intervals. 86 

2. Material and Methods 87 

2.1. Ethics approval 88 

All infection challenges were carried out in accordance with the European guidelines (Directive 2010–63-89 

EU) and the corresponding French legislation. Animal experiment procedures were approved by the 90 

ethics committee on animal experimentation COMETH ANSES/ENVA/UPC No. 16 and were authorized by 91 

the French Ministry of Higher Education, Research and Innovation under numbers 2017022816255366, 92 

29/01/13-5 and 10/03/15-1. 93 

2.2. Fish material 94 

The animals challenged came from two commercial cohorts from the breeding programs of two different 95 

companies and four experimental backcross families. The global study workflow was presented in Table 96 

1. The commercial cohorts were produced by artificial mating and further mentioned as pop A and pop 97 

B. Pop A (1680 individuals) was produced from a mating of 59 sires by 20 dams in four partial factorial 98 

subsets (15x5, 14x5, 15x5 and 15x5). Pop B (1737 individuals) was generated from 39 sires and 14 dams 99 

mated in six factorial subsets (6x3, 6x1, 6x3, 7x2, 7x3, 7x2). Four experimental backcross full-sib families 100 

totalizing 2500 individuals were also produced by in vitro fertilization at Ifremer (Palavas-les-Flots, 101 

France). In a previous study (Doan et al., 2017a), 60 sires from four different geographic origins (north-102 

eastern, south-eastern and western Mediterranean Sea as well as Atlantic) were mated with nine west 103 

Mediterranean dams in a full factorial design (G0). Part of the offspring (G1) was challenged for VNN 104 

resistance and the estimated breeding values were estimated for the entire population, including the 105 

parents and the sibs of the challenged fish that were the candidates for selection. From these non-106 

challenged candidates, four males were selected from families in which one parent was highly resistant 107 

and the other highly susceptible to VNN, and those were from three different geographic origins (north-108 

eastern, south-eastern and western Mediterranean Sea). Those males were mated with four western 109 

Mediterranean females that we expected to be more susceptible due to their western-Mediterranean 110 

origin, in order to produce four full-sibs backcross families (G2). The G2 families were then named 111 

according to their grand-sire origin, NEM10, NEM12, SEM8 and WEM18 (NEM = north-east 112 

Mediterranean Sea, SEM = south-east Mediterranean Sea and WEM = western Mediterranean Sea). 113 

[Insert Table 1] 114 



2.3. VNN challenge 115 

All fish were challenged to VNN at the SYSAAF-ANSES Fortior Genetics platform (ANSES, Plouzané, 116 

France). For all experiments, fish were maintained in filtered seawater at a temperature of 27°C ± 2°C in 117 

an open circuit. Pop A, pop B and backcross families infectious challenges were performed separately but 118 

in the same way. All the fish sent to the infection challenge were individually tagged. A total of 1680 119 

from pop A (25g mean weight), 1737 from pop B (20g mean weight) and 2500 fish from the backcross 120 

families (8g mean weight) were received and acclimated for a minimum period of three weeks. Then, the 121 

whole batch of each population was split into a pre-test batch (120, 150 and 500 individuals for pop A, 122 

pop B and backcrosses, respectively), a challenge batch (1350, 1212 and 1719 individuals for pop A, pop 123 

B and backcrosses, respectively) and a negative control batch (120, 275 and 150 fish from the 124 

corresponding populations). For the pre-test and challenge batches contamination, the fish were 125 

immersed for 2 to 3 hours in a static bath of aerated seawater containing 1x105 TCID50/ml of the W80 126 

strain of RGNNV (redspotted grouper nervous necrosis virus), that was previously produced on a striped 127 

snakehead SSN1 cell line (Thiéry et al., 2004). Then, the batch was split into two tanks, water circulation 128 

was restarted and the mortality was recorded during 16 days. The mortality rate was 44% and 51% in the 129 

pop A pre-test, 51% and 53% in the pop B pre-test and 22.6% and 23.7% for backcross families. For the 130 

infectious challenges, a protocol similar to the pre-test was applied on the challenge batches. The 131 

negative controls were immersed for three hours into static seawater containing sterile cell culture 132 

medium. The mortality was recorded each day during the challenge period that was 27 days for pop A, 133 

42 days for pop B and 33 days for the backcross families. Bacteriologic and virologic analyses were 134 

performed before the pre-test and challenges as well as during the mortality peak to check the sanitary 135 

status of the fish. Virologic analyses were done by injecting a homogenized mixture of eye and brain 136 

sampled on random dead fish on SSN1 cells. Then, if cytopathic effects were observed, a virus 137 

identification was performed by immunofluorescence using anti-NNV antibodies. For bacteriological 138 

analyses, spleen and kidney are randomly sampled and used for bacterial cultures followed by MALDI-139 

TOF identification. 140 

2.4. Design of the Sea Bass 57k SNP DLabCHIP array 141 

The design of the high-density SNP array was based on the selection of high-quality variants from a 142 

database of ~2.6 million SNPs identified through whole-genome resequencing of 8 parents-offspring trios 143 

generated by experimental crossing of wild sea bass in Duranton et al. (2018). From this database, we 144 

excluded rare variants using a minor allele count threshold of 4 over 16 diploid parental genomes, and 145 

only retained SNPs located more than 35bp away from another known variant in order to ensure a high 146 

probe specificity. The final set of variants were chosen to cover the whole genome (including ungrouped 147 

scaffolds), but with a variable density depending on the estimated local nucleotide diversity (π) reported 148 

by Tine et al. (2014). This strategy aimed at increasing the density of SNPs within chromosome regions 149 

displaying a higher recombination rate, in order to homogenize recombination distances between two 150 

consecutive markers on the map. A list of 57,907 selected makers was submitted to ThermoFisher to 151 

develop the AxiomTM Sea Bass 57k SNP DlabChip array. 152 

2.5. Genotyping and Parentage assignment 153 

All individuals were genotyped with the ThermoFisher AxiomTM Sea Bass 57k SNP DlabChip at the 154 

genotyping platform Gentyane (INRAE, Clermont-Ferrand, France). A total of 1152 individuals were 155 

genotyped in each commercial cohort and 1536 fish in total were also genotyped in the experimental 156 

backcross families. In pop A and pop B, the genotyped individuals were randomly selected from the 157 



challenged ones among the dead and the surviving individuals. In the backcross families, they were 158 

selected to have the same average mortality per family as the whole challenged family. SNP calling was 159 

done using ThermoFisher software AxiomAnalysisSuiteTM. Preliminary quality controls were applied with 160 

threshold values of 95% for SNP call rate and 90% for sample call rate. Parentage assignment was done 161 

using 1000 randomly sampled markers with the R package APIS (Griot et al., 2019) with a positive 162 

assignment error rate set to 1%. 163 

 164 

2.6. Creation of the genetic map 165 

A genetic map was constructed with LepMap3 (Rastas, 2017). Backcross families were merged with 166 

another Ifremer sea bass dataset composed of the ThermoFisher AxiomTM Sea Bass 57k SNP DlabChip 167 

genotypes of 880 individuals from 94 sires mated with 39 dams in three partial factorial designs. The 168 

resulting data set included 2232 individuals genotyped at 51179 markers. 169 

We ran the recommended procedure of LepMap3 with custom settings: 1% segregation distortion for 170 

Filtering2, a LOD score of 50 as well as a subset of 25% of the markers for SeparateChromosomes2, and 171 

LOD score of 30 for JoinSingles2All. 172 

 173 

2.7. Genotyping and sample quality control 174 

For each commercial cohort, the SNPs retained for further analysis had a minor allele frequency (MAF) 175 

above 5% and a p-value for the Hardy-Weinberg equilibrium test above a threshold of 10-8. From the 176 

remaining markers, we subset the ones mapped on the genetic map. After quality controls, 1089 177 

individuals genotyped for 40623 markers were kept for pop A and 1110 individuals genotyped for 41166 178 

markers for pop B. Prior to GWAS analysis, which is known to be highly sensitive to population structures 179 

(Hayes, 2013; Pritchard et al., 2000), we performed a principal component analysis (PCA) based on the 180 

SNP genotypes, on both commercial cohorts, using PLINK 1.9 (Purcell and Chang, 2015). A strong within 181 

population structure was observed for pop B, and consequently we discarded individuals that belonged 182 

to minor groups which were distant from the main one (Suppl. Fig. 1), leading to only 476 individuals 183 

retained for the genetic analysis of pop B. All individuals were kept in pop A. 184 

In backcross families, we retained only SNPs with a MAF above 5% that were mapped on the genetic 185 

map. We obtained 30917, 23592, 30656 and 31490 informative markers for NEM10, NEM12, SEM8 and 186 

WEM18 respectively, with a sample size of 378 in NEM10, 454 in NEM12, 291 in SEM8 and 211 in 187 

WEM18 family. 188 

Finally, within each cohort, the few missing genotype data were imputed using Fimpute software 189 

(Sargolzaei et al., 2014) to obtain complete genotypes for GWAS analysis. 190 

 191 

2.8. Heritability estimation 192 

For each data set, we estimated the heritability of VNN resistance under a threshold model using 193 

THRGIBBSF90 (Tsuruta and Misztal, 2006) and a linear model using AIREMLF90 (Misztal et al., 2002), 194 

both from the blupf90 program suite. Only individuals with a phenotype, a genotype and a pedigree 195 

were used in heritability estimates, thus the sample size was 1027 in pop A and 476 in pop B. Heritability 196 

was also estimated within each of the backcross families, as reliable estimation of heritability within a 197 

single family using genomic information was shown to be accurate by Ødegård and Meuwissen (2012). 198 

The following model was computed in each cohort using both threshold and linear models: 199 

� = 1� + �� + � 200 

 201 



With y  the vector of the phenotypes measured as binary dead/survival trait, 1 the incidence (unity) 202 

vector of the intercept, b the estimate of the intercept effect, u the vector of breeding values and Z the 203 

corresponding incidence matrix. It is assumed that � follows a multivariate normal distribution N(0, �σ²g) 204 

with � the genomic relationship matrix proposed by VanRaden (2008) and σ²g is the additive genetic 205 

variance. e is the vector of the random residual errors that follows a normal distribution N(0, Iσ²e) with 206 

σ²e the residual variance and I the identity matrix. 207 

With the threshold model, the variance components (σ²g and σ²e) were estimated using a Gibbs sampler 208 

with 500,000 iterations, 100,000 of burn-in and one sample was kept every 20 iterations for posterior 209 

analysis. The posterior distributions were analyzed with the R package boa (Smith, 2007). With the 210 

linear model, the same components were estimated using a restricted maximum likelihood algorithm, 211 

considering the observed binary phenotype as a continuous variable. 212 

The heritability for survival was estimated as: 213 

ℎ� =  
�²�

�²� +  �²�
 214 

Heritability on the observed scale (h²o) was estimated using the variance components from the linear 215 

model, while the heritability on the underlying liability scale (h²u) was computed using the variance 216 

components from the threshold model.  217 

 218 

2.9. QTL mapping in experimental crosses 219 

In the experimental backcross families, we used a composite interval mapping approach from the R 220 

package qtl (Broman et al., 2003). The LOD score under the hypothesis of the absence of a QTL on the 221 

chromosome was computed for each interval between two consecutive markers of each chromosome 222 

using a Haley-Knott regression (Haley and Knott, 1992). Genome-wide significance LOD thresholds were 223 

estimated by permutation tests considering 1000 permutations (Churchill and Doerge, 1994). 224 

2.10. QTL mapping in commercial cohorts 225 

We performed GWAS under multi-marker linear regression models using GBLUP and Bayesian 226 

approaches.   227 

2.10.1.   GBLUP-based GWAS 228 

We used the blupf90 suite of programs to perform GWAS by GBLUP analysis for VNN resistance in both 229 

commercial data sets. The breeding values were estimated with BLUPF90 using the following linear 230 

model: 231 

� = 1� + �� + � 232 

 233 

With the same notation as in section 2.8. The p-values were computed using POSTGSF90 (Aguilar et al., 234 

2019). The –log10 of the p-values were compared to the chromosome-wide significance threshold and to 235 

the genome-wide significance threshold at 5% after Bonferroni correction for the average number of 236 

markers per chromosome and the total number of markers, respectively. 237 

2.10.2.  Bayesian-based GWAS 238 

Because GBLUP is known to shrink SNP effects towards 0, we also used a Bayesian variable selection 239 

model with a BayesCπ approach (Habier et al., 2011) to refine QTL positions as well as to estimate the 240 

proportions of genetic variance explained by the QTLs. In this model, a proportion π of the markers is 241 

assumed to have a non-zero effect. The marker effects are estimated with a mixture of a proportion π of 242 

markers with effects following a normal distribution N(0, σ²a) and a proportion 1 – π of markers with a 243 



zero effect. σ²a is the part of total genetic variance explained by the SNP markers. In addition to the SNP 244 

effect described as above, we added a random polygenic genetic effect to account for the genetic 245 

variation that could not be captured by the markers (Legarra et al., 2008; Solberg et al., 2009). This 246 

model is defined as follows: 247 

� = 1� + �� + �� + � 248 

With y  the vector of the phenotypes measured as binary dead/survival trait, 1 the incidence (unity) 249 

vector of the intercept, b the estimate of the intercept effect, u the vector of the polygenic effects, Z the 250 

corresponding incidence matrix, g the vector of the SNP random effects, W the corresponding incidence 251 

matrix and e the vector of the random residual errors. The total genetic variance is decomposed into one 252 

part explained by the polygenic effect and one part explained by the marker effects. As initial priors in 253 

pop A, the part of genetic variance explained by the polygenic effect represented 95% of the total 254 

genetic variance and the markers genetic variance represented 5% of the total genetic variance. 255 

��
� =  0.95��

� +  0.05��
� 256 

Where ��
� is the total genetic variance, ��

� is the genetic variance explained by the polygenic effect and 257 

��
� is the genetic variance explained by SNP markers. In pop B, the small sample size led to a share of 258 

polygenic and SNP variance that remained quasi-identical to the priors, whatever they were, thus the 259 

total genetic variance was split between polygenic and SNP variance in the priors with the same 260 

proportions (57 and 43 %, respectively) obtained in pop A after 200,000 iterations of Gibbs sampling. 261 

σ²u and σ²e were sampled from a scaled inverse chi-square distribution. The initial values for residual 262 

variance and total genetic variance priors were the variance component estimates from the linear model 263 

described in section 2.8. 264 

In pop A, the degrees of freedom of both parameter distributions were set to 5. In pop B, as the number 265 

of individuals was small and to keep the sampling values of σ²e within a reasonable range, the degrees of 266 

freedom of σ²u were set at 5 and the ones of σ²e were set at 10,000 to put a strong degree on belief on its 267 

prior and ensure the convergence. 268 

The BESSiE software was used to compute this model (Boerner and Tier, 2016). A total of 200,000 269 

iterations of Gibbs sampling were performed with a burn-in of 10,000 iterations. One Gibbs sample was 270 

kept every 20 iterations for further analysis. For every iteration, the proportion 1 - π was sampled in a 271 

beta distribution B(α, β). α was set as the total number of makers in each cohort and β was set at 40. 272 

The degree of confidence in the association between the phenotypes and each SNP was computed using 273 

the Bayes Factor (Kass and Raftery, 1995) calculated as: 274 

#$% =  

&%
1 − &%

(
)

1 −  )(
 275 

where &% is the probability of the SNP i to have a non-zero effect and ) is the proportion of markers with 276 

a non-zero effect. BF was transformed into *+�#$ = 2log(#$) to produce values within the same range 277 

as -log(p-values). Strong evidence for the existence of a QTL was considered when at least one SNP had a 278 

logBF greater than 8 according to Michenet et al. (2016). 279 



As the causative mutation may not be the marker with the highest logBF (hereafter named the peak 280 

SNP), the definition of QTL region was done following the method described in Michenet et al. (2016). All 281 

markers close to the peak SNP and having a logBF greater than 3 were considered to be in the QTL 282 

region. For each chromosome, the algorithm started at the peak SNP. Then, in a sliding window of 0.5 cM 283 

starting from the peak SNP, every SNP with a logBF greater than the noise detection threshold of 3 was 284 

included in the QTL region. A sliding window was applied until no SNP had a logBF greater than 3 in the 285 

current window. The border of the QTL region was then defined by the last SNP included in the window. 286 

This procedure was applied on both sides of the peak SNP, which leads to a QTL region defined as a 287 

credibility interval for the causative mutation. 288 

The genetic variance explained by one SNP was calculated as: 289 

�234
� = 25(1 − 5)6² 290 

With p the MAF of the SNP and a the effect of the SNP. To obtain the proportion of the genetic variance 291 

explained by one SNP, �234
�  was divided by σ²g. The proportion of the genetic variance explained by the 292 

QTL region was the sum of the proportions explained by each SNP located in the QTL region as previously 293 

defined. 294 

3 Results 295 

3.1. VNN challenge 296 

The three challenges were conducted up to 42 days. VNN presence was confirmed by virologic analyses 297 

on several subset of fish dead during the infection kinetic, in absence of significant bacterial coinfection. 298 

Survival rates ranging from 37.8% to 78.7% were recorded (Figure 1). The peak of mortality was around 299 

10 days after infection.  300 

[Insert Figure 1] 301 

3.2. Performance of the Axiom DlabCHIP SNP array assessed with commercial 302 

populations 303 

Among submitted SNPs, 56,730 markers were spotted on the SNP array after ThermoFisher internal 304 

selection procedure, among which 537 markers were duplicated. Genotyping commercial populations 305 

with the new 57K SNP array revealed a large number of polymorphic SNPs with high clustering resolution 306 

(PolyHighResolution, MonoHighResolution and NoMinorHom categories) respectively 50,186, 675 and 307 

2,400 (93.1%) in pop A and 51,686, 252 and 2,045 (94.4%) in pop B.  For passing samples, the average 308 

genotype call rate was >99.6% in pop A and >99.8% in pop B. The minor allele frequency (MAF) 309 

distribution for PolyHighResolution SNPs was similar in both populations (Supplementary Table 1) with 310 

an average frequency of 0.28 for pop A and 0.29 for pop B. 311 

3.3. Heritability estimates 312 

The estimates of genomic heritability using linear and threshold models are summarised in Table 2. 313 

Estimates of the genomic heritability of the death/survival binary trait on the observed scale (h²o) were 314 

0.23 (± 0.05) in pop A and 0.08 (± 0.09) in pop B. In backcross families, h²o estimates were 0.38 (± 0.09) in 315 

the NEM10 family, 0.59 (± 0.07) in the NEM12 family, 0.50 (± 0.09) in the SEM8 family and 0.23 (± 0.15) 316 

in the WEM18 family. The heritabilities estimated with a threshold model on the underlying liability scale 317 

(h²u) were higher than h²o estimates, as expected. Estimates of h²u obtained by transforming h²o with the 318 



formula by Dempster and Lerner (1950) were similar than the ones obtained with the threshold model in 319 

pop A and the WEM18 family, smaller in pop B and higher in the NEM10, NEM12 and SEM8 families 320 

(data not shown). 321 

[Insert Table 2] 322 

3.4. Genetic map reconstruction and QTL mapping in the backcross families 323 

We obtained a new high-density genetic map containing 49638 markers that were homogeneously 324 

mapped on 24 linkage groups (LG) corresponding to the 24 known chromosomes in the species’ 325 

karyotype. The total length of the genetic map was 1873.1 cM, corresponding to a density of 26.5 326 

markers per cM. 327 

In the composite interval mapping analysis done in the backcross families, LG12 had a very high LOD 328 

score compared to other chromosomes in the NEM10, NEM12 and SEM8 families (Figure 2). At 5% LOD 329 

threshold, 725, 322 and 840 markers were detected as potential QTLs on LG12 (out of a total number of 330 

1273, 925 and 1282 on this chromosome for NEM10, NEM12 and SEM8 respectively). In the WEM18 331 

family, no QTL was detected. Additionally, in the NEM12 family, 4 markers of LG8 (out of 925 in this 332 

chromosome) were detected as potential QTLs. 333 

[Insert Figure 2] 334 

3.5. QTL detection using GBLUP approach in the commercial cohorts 335 

In the GWAS performed by GBLUP analysis, the p-values of 20 markers on LG12 exceeded the 336 

chromosome-wide significance threshold in pop A and, among them, 6 exceeded the genome-wide 337 

significance threshold (Figure 3). One additional marker located on LG8 exceeded the chromosome-wide 338 

significance threshold. In pop B, one marker on LG12 and one marker on LG15 exceeded the 339 

chromosome-wide significance threshold (Figure 3).  340 

[Insert Figure 3] 341 

3.6. QTL detection using a BayesCπ approach in the commercial cohorts 342 

The estimation of the share of genetic variance explained by the polygenic effect represented 57% of the 343 

total genetic variance in pop A and 55% in pop B (Table 2). From the BayesCπ model, a total of 5 QTLs 344 

were detected with strong evidence (logBF>8) in pop A and were located on LG3, LG8, LG12, LG14 and 345 

LG19 (Figure 4). The QTL on LG12 was located between 31.71 and 35.16 cM and explained 9.21% of the 346 

total genetic variance. Other QTLs explained less than 1% of the total genetic variance each and their 347 

locations are summarized in Table 3. QTLs on LG3 and LG19 in pop A were single marker QTLs. In pop B, 348 

three QTLs located on LG12, LG15 and LG20 were detected. They all explained 1% of the total genetic 349 

variance or less. The QTL on LG12 was located in a smaller confidence interval than the one in pop A, 350 

between 33.26 and 33.91 cM.  351 

[Insert Figure 4] 352 

[Insert Table 3] 353 

4. Discussion 354 

In this study, we designed and used a high-density SNP array specifically developed for mapping studies 355 

in the European sea bass. The average physical distance (<12kb) and genetic distance (<0.5cM) between 356 



consecutive markers make this array an excellent tool for implementing cost-effective screening of QTLs 357 

and genomic selection. The high call rate (>99.6%) and the high number of polymorphic SNPs in the 358 

studied populations (>88%) also validate the SNP selection strategy, that permitted to cover the whole 359 

genome with high-quality variants, while avoiding technically undesignable SNPs. We used the SNP array 360 

to construct a high-density linkage map for composite interval QTL mapping in the backcross families. 361 

The accuracy and level of resolution of this new genetic map exceeds that of previous map built in the 362 

European sea bass (Palaiokostas et al., 2015). 363 

Using different types of populations (four large backcross families and two commercial admixed 364 

populations) and complementary analytical strategies (Composite Interval Mapping, as well as GBLUP 365 

and BayesCπ based GWAS), we were able to detect QTLs involved in VNN resistance, the major viral 366 

threat to European sea bass aquaculture (Vendramin et al, 2016). While the commercial cohorts were 367 

used to estimate the genetic parameters and to detect potential QTL for direct improvement in ongoing 368 

breeding programs, the backcross families constitute classical QTL mapping populations. We confirmed 369 

that VNN resistance in European sea bass has a moderate heritability in the commercial populations 370 

(0.24 to 0.38 using a threshold model), similar to the previously reported estimates (0.26 to 0.43; (Doan 371 

et al., 2017a; Palaiokostas et al., 2018)). In the backcross families, the heritability estimates were much 372 

higher (0.48 to 0.84). Even though the genomic relationship matrix enables the estimation of genetic 373 

parameters in full-sibs families, the estimates can be inaccurate when the family size is too small and 374 

when QTLs segregate within the families (Ødegård and Meuwissen, 2012). Except in pop A where the 375 

heritability estimated with a threshold model was similar to the one using a linear model and corrected 376 

with the Dempster and Lerner formula, all the heritabilities estimated using a threshold model were very 377 

different the ones estimated with a linear model and corrected with the Dempster and Lerner formula. 378 

In the backcross families, the heritability estimation was challenging due to the single-family structure as 379 

well as the small number of individuals. In pop B, it could be because of the small number of individuals, 380 

which causes high sampling variance in heritability estimates. 381 

Regardless of the detection method, one QTL was detected on the LG12 in five of the six data sets. Its 382 

effect was strong, explaining up to 9.21% of the total genetic variance in the commercial population pop 383 

A. The combination of the different results reduced the confidence interval of the QTL to a likely position 384 

between 33.26 and 33.91 cM, equivalent to 3.7 Mb and containing 125 of our SNP markers, 385 

corresponding to the intersection of all the confidence intervals. From the results we obtained, we 386 

cannot yet reach a putative causal mutation and thus, the best markers to use in MAS to predict the 387 

phenotype. Another cross-population QTL was detected on LG8, shared by pop A and the NEM12 family. 388 

This QTL explained 1.1% of the total genetic variance in pop A. Other QTLs were population-specific as 389 

they were only detected in one population. 390 

A previous study led to the detection of minor effect QTLs (Palaiokostas et al., 2018) located on 391 

chromosome 3, 20 and 25 explaining 4%, 1.5% and 2% of the total genetic variance respectively. After 392 

chromosome correspondence checking by aligning markers sequences on the European sea bass 393 

reference genome (GCA_000689215.1) using BLAST (Altschul et al., 1990), chromosome 3 and 20 from 394 

that previous study corresponded to the LG12 and LG6 in our study. The QTL explaining the largest part 395 

of genetic variance was located on the same chromosome (LG12) in both studies. In Asian seabass, only 396 

minor effect QTLs were found, explaining between 1.6% and 2.7% of the phenotypic variance (Wang et 397 

al., 2017). Those QTLs, located on chromosomes 1, 8, 14, 15, 16, 19, 20, 21 and 24 were linked with 398 

potential candidate genes, all involved in stress response. However, using syntenic blocks proposed by 399 



Vij et al. (2016), we found that no homologous genomic regions were in common between QTLs 400 

detected in European seabass and Asian seabass.  In Atlantic cod, five QTLs were detected on LG1, LG6, 401 

LG18, LG19 and LG20, explaining up to 19.7% of the phenotypic variance (Baranski et al., 2010). As VNN 402 

resistance in Atlantic cod has a high heritability (0.75), the QTLs explaining 14.2%, 18.2% and 19.7% of 403 

the phenotypic variance could be considered as strong effect QTLs. 404 

In back-cross full-sib families, we used a Composite Interval mapping approach that is the most 405 

appropriate for such data. From those analyses, we obtained very high LOD values for the detection of 406 

the QTL on LG12 as well as very wide confidence interval (37.8 cM in NEM10, 9.74 cM in NEM12 and 42.3 407 

cM in SEM8) mainly due to strong linkage-disequilibrium between markers. No QTL was found in the 408 

WEM18 even though it was the family with the highest survival rate. This absence of the QTL detection 409 

may be due to the fact that the WEM18 family did not segregate for resistance QTLs. The mating that 410 

produced those families was designed to produce families that segregate for resistance QTLs (section 411 

2.2), by mating putative Rs (R : resistant ; s : susceptible) sires with putative ss dams. Thus, it is likely that 412 

each parent of this particular WEM18 family carried the resistance QTLs in only one version. As the 413 

global resistance of the family was high, it is rather likely that the WEM18 family could be from a RR sire 414 

x ss dam or from a RR sire x RR dam, thus not segregating for the QTL on LG12. 415 

In commercial data sets, we used GBLUP and Bayesian GWAS. In the GBLUP analysis, only the QTL on 416 

LG12 exceeded the genome-wide significance threshold in pop A. In pop A and B, the QTL on LG12 417 

exceeded the chromosome-wide significance threshold, as did one marker on LG19 in pop A. In GWAS by 418 

BayesCπ, more QTLs were detected due to the variable selection process that increases the power of 419 

detection (Tam et al., 2019). In addition, as we had very different number of phenotypes in commercial 420 

cohorts, BayesCπ allowed us to test different priors to fit the best model for each data set. 421 

Thanks to the high number of individuals in pop A and thus, the high power of the QTL detection, we 422 

were able to refine the location of the QTL on LG12. Both GBLUP and BayesCπ approaches revealed a 423 

strong association between VNN resistance and markers located on LG12 as well as a moderate part of 424 

the total genetic variance explained by this QTL. Even though the QTL on LG12 explained 9.21% of the 425 

total genetic variance, several markers located on the chromosome and detected in pop A seemed to 426 

have a potential interest in MAS. Among them, one marker (LG12_8815613) detected had the highest 427 

effect on that chromosome and the third highest logBF on LG12. In addition, it had a low MAF (0.13), 428 

which is expected when resistance is not well spread in a population, and which also mechanically 429 

decreases the percentage of variance explained. Thus, this marker had interesting properties to be a 430 

candidate marker to MAS. Its effect on survival across data sets is shown in Figure 5. Interestingly, this 431 

marker had a strong effect on survival both in commercial populations (Figure 5) and in the backcross 432 

families, with an average of 43.3% survival for genotype AA, 72.8% survival for genotype AB and 78.3% 433 

survival for genotype BB. In pop B only, the BB genotyped survived less than the AB genotype, but only 434 

five individuals were BB in pop B, and thus the condition to quantify the effect of the BB genotype in this 435 

population are far from optimal. Although the consistent effect of this marker on six different cohorts 436 

highlights its potential interest, further validation in additional populations or cohorts from the same 437 

population would be of great value. The low observed frequency for allele B in the commercial 438 

populations could be due to a founder effect or maybe from the fact that these populations have been 439 

selected for several traits, among which growth rate for at least 6 generations. As there is a moderate 440 

but negative genetic correlation of VNN resistance with body weight (−0.35 ± 0.14; Doan et al., 2017a), 441 

this selection for growth might have had a negative effect on the frequency of a VNN resistance allele. 442 



The QTL detection in pop B was more challenging. The strong population structure that we revealed with 443 

the PCA led to a strong decrease in the number of individuals that could be used in this data set and 444 

thus, to a decrease in the QTL detection power. We only managed to detect two QTLs at chromosome-445 

wide level using GWAS by GBLUP, and three QTLs with Bayesian GWAS. Bayesian GWAS was very 446 

sensitive to the part of genetic variance explained by the markers given as priors. In this population, the 447 

proportions estimated after 200,000 iterations of Gibbs sampling was similar to the priors, contrary to 448 

pop A that estimated new values for those proportions. Thus, a larger number of individuals would be 449 

needed to accurately estimate those priors and improve the overall QTL detection. For example, in Korte 450 

and Farlow (2013), the authors showed that 800 individuals are necessary to detect a QTL explaining 5% 451 

of the phenotypic variance with a power of 0.8 when applying a false discovery rate of 5%. Here, we only 452 

had 476 usable individuals in the pop B cohort. 453 

This study produced encouraging results with the discovery of one important QTL involved in VNN 454 

resistance in European sea bass. Even though the part of genetic variance explained by this QTL is limited 455 

(9.21%), further work on the location of the causal mutation and the discovery of diagnostic marker 456 

informing on the resistance genotype of individuals could greatly improve the global sea bass 457 

aquaculture. The best example of the application of MAS in aquaculture is the discovery of one major 458 

QTL involved in the Infectious pancreatic necrosis virus (IPNV) resistance in Atlantic salmon and 459 

explaining 90% of the genetic variance (Houston et al., 2008; Moen et al., 2009). Since its use by the 460 

salmon aquaculture industry to improve selection based on pedigree information, IPNV outbreaks 461 

occurrence decreased by 75% (Hjeltnes, 2014). This success was due to the identification of one SNP 462 

located on the gene responsible of the resistance and the genotyping of selection candidates to improve 463 

the IPNV resistance in aquaculture farms. In the context of VNN resistance in European sea bass, the 464 

effect of the QTL on LG12, although significant, is smaller. Its use in MAS will have less benefits due to 465 

the smaller part of genetic variance explained. In that situation, genomic selection could be more 466 

appropriate to improve VNN resistance. As shown with the example of marker LG12_8815613 (Figure 5), 467 

it remains possible that a marker with very large effects on survival would only explain a moderate part 468 

of the genetic variance if the resistance allele is rare in the population studied. The presence of a major 469 

QTL explaining a large part of the genetic variance in VNN resistance is thus still a valid hypothesis and 470 

could be investigated in further work using genome sequence combined with fine mapping approach. 471 
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Figure 1 : Evolution of the Kaplan-Meier probability of survival of six different European sea bass 

populations during their respective VNN infection challenge. Pop A and pop B are commercial 

populations, and NEM10, NEM 12, SEM8 and WEM 18 are backcross families. 



 



Figure 2: Manhattan plot of the LOD obtained by composite interval mapping for VNN resistance 

QTLs in European sea bass in the NEM 10 (a), NEM12 (b), SEM8 (c) and WEM18 (b) experimental 

backcrosses. The horizontal black line represents the 5% genome-wide significance threshold 

calculated over 1000 permutations. 

  



 

Figure 3: Manhattan plot of -log10(p-value) obtained from GWAS for VNN resistance QTLs in 

commercial European sea bass populations pop A (a) and pop B (b). The horizontal black line 

represents the genome-wide significance threshold and the red line the chromosome-wide 

significance threshold calculated with the Bonferroni correction. 

  



 

 

Figure 4: Genome-wide logBF plot for VNN resistance across the genome in the European sea bass 

populations pop A (a) and pop B (b) using a BayesCπ model. Horizontal black lines represent the 

logBF threshold of 8, corresponding to strong evidence for the presence of a QTL. 

  



Figure 5: Average survival rate (%) to VNN for each genotype at marker LG12_8815613 in six cohorts 

of European sea bass. Each colour corresponds to one data set. The numbers in the boxes are the 

numbers of individuals per genotype. 



Table 1: Study design and sampling strategy applied for each of the six sea bass populations 

challenged for VNN and the additional one used to create the genetic map. 

    
pop A pop B   NEM10 NEM12 SEM8 WEM18   

additionnal 

population 

number of individuals produced  1680 1737  2500  880 

number of parents (sires / dams)  59 / 20 39 / 14  1 / 1 1 / 1 1 / 1 1 / 1  94 / 39 

number of individuals challenged  1350 1212  1719   

average survival rate  45.2 59.7  37.8 67.2 53.6 78.7   

number of individuals genotyped  1152 1152  1536  880 

number of markers retained for 

the creation of the genetic map  

   51179  51179 

number of individuals retained 

after quality control  
1089 476  378 454 291 211   

number of markers retained after 

quality control 
 40623 41166  30917 23592 30656 31490   

type of analyses   
GBLUP 

BayesCpi 
  composite interval mapping   

building of the 

genetic map 

  



Table 2: Variance components and genetics parameters for VNN resistance in European sea bass 

estimated with three models in six different populations. h²o is the heritability on the observed 

(binary) scale and h²u is the heritability estimate on the underlying liability scale. 

population   linear model   threshold model   BayesCpi 

  Vg  Ve  h2  Vg  Ve*  h2  Vpoly  Vsnp  Ve  h2 

                       

pop A   0.057   0.189   0.231 (± 0.049)   0.627   1.086   0.377 (± 0.065)   0.029   0.039   0.182   0.272 

                       

pop B  0.019  0.223  0.078 (± 0.085)  0.404  1.016  0.244 (± 0.140)  0.010  0.012  0.223  0.090 

                       

NEM10  0.111  0.180  0.381 (± 0.089)  1.538  1.018  0.584 (± 0.088)         

                       

NEM12  0.187  0.130  0.591 (± 0.067)  5.711  1.013  0.838 (± 0.044)         

                       

SEM8  0.164  0.165  0.499 (± 0.094)  2.328  1.023  0.677 (± 0.078)         

                       

WEM18   0.043   0.147   0.227 (± 0.147)   1.164   1.028   0.478 (± 0.170)                 

* : In threshold models, �²� is constrained to a value close to 1 

 

  



Table 3: QTL detection by BayesCpi for resistance to VNN in two commercial populations of European 

sea bass : position of the peak SNPs, credibility intervals and proportions of genetic variance 

explained 

population   chromosome   
peak SNP 

position (cM) 
  

start QTL 

position (cM) 
  

end QTL 

position (cM) 
  

share of total genetic 

variance explained (%) 

pop A 

  LG3   5.89   5.89   5.89   0.45 

 LG8  23.65  23.27  23.65  1.10 

 LG12  34.47  31.71  35.16  9.21 

 LG14  55.93  55.68  55.93  0.29 

  LG19   22.24   22.24   22.24   1.04 

pop B 

  LG12   33.64   33.26   33.91   1.09 

 LG15  57.94  57.94  57.94  0.50 

  LG20   41.58   41.51   41.58   0.39 

 




