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Abstract. In this work, we consider distributed agreement tasks in microbial distributed systems
under stochastic population dynamics and competitive interactions. We examine how competitive
exclusion can be used to solve distributed agreement tasks in the microbial setting. To this end,
we develop a new technique for analyzing the time to reach competitive exclusion in systems
with several competing species under biologically realistic population dynamics. We use this
technique to analyze a protocol that exploits competitive interactions to solve approximate
majority consensus efficiently in synthetic microbial systems.

We show that direct competition dynamics reach majority consensus with high probability
when the initial gap between the species is small, i.e., Ω(

√
n log n), where n is the initial population

size of the majority species. In contrast, we show that indirect competition alone is not efficient:
for example, solving majority consensus with high probability requires an initial gap of Ω(n). To
corroborate our analytical results, we use computer simulations to show that these consensus
dynamics occur within practical time scales.

1 Introduction

Computing permeates all areas of engineering, science, and nature. In the past few decades,
theoretical computer scientists have started to investigate computation in various biological
systems; e.g., [16, 20, 21, 32]. Microbiology in particular provides several fascinating examples of
large-scale dynamic distributed systems: bacterial species are known to use various molecular
communication mechanisms, such as quorum sensing, to coordinate their collective metabolic
actions in order to influence and shape their environments [10].

The computational power of these tiny, self-replicating biological devices has been put into
action by the discipline of synthetic biology, an area residing at the intersection of biology
and engineering. For over two decades, synthetic biologists have shown how to engineer and
re-program existing species to perform computation, yielding increasingly complex biological
circuits. Early success stories in the area showed how to build synthetic genetic toggle switches [22]
and biological oscillators [33, 37]. Recently, the area has rapidly shifted towards distributed
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computing [28, 34, 35]: instead of engineering complex metabolic pathways within a single cell,
the biological circuit is distributed across a consortium of multiple bacterial strains or species.

Naturally, this decentralization comes at a cost: computation across different parts of the
biological circuit has to be coordinated somehow. While distributed computing theory has
dealt with these types of issues for decades, most existing models of distributed computation
do not account for the unique features exhibited by microbial systems. For example, microbial
communities are subject to stochastic population dynamics, individual bacterial cells reproduce
and die at a fast pace, and species exhibit complex ecological interactions [23].

1.1 Our Focus: Computation in Competitive Microbial Systems

In this work, we consider distributed computation and coordination in microbiological systems
governed by stochastic population dynamics and ecological interactions. We focus on competitive
interactions between species and we examine how the principle of competitive exclusion can
be utilized to efficiently solve approximate majority and consensus – two fundamental tasks in
distributed computing – in microbial populations.

In the consensus problem, the system is initialized with two input values, and the goal is to
reach an output configuration where all participants agree on a single value. In the majority
problem, the goal is to output the value that had the majority support initially. In this work we
consider majority consensus, which is achieved if the initial minority population dies out.

The principle of competitive exclusion states that two complete competitors, i.e., with
overlapping niches, cannot stably coexist in a single population [26]. Indeed, due to stochastic
fluctuations in the population sizes, one of the species will eventually gain an upper hand and
drive the other species into extinction. We study how this principle can be used to solve consensus
efficiently in the microbial setting.

Competitive interactions. Bacterial communities exhibit a wide range of competitive in-
teractions [23]. In order to outcompete other species, bacteria have evolved various types of
methods of competition in the course of a biological arms race [25]. Broadly speaking, there are
two categories of competitive interactions:

(1) Exploitative competition: The species and individuals indirectly compete for shared
resources, e.g., nutrients or space. This is an indirect means of competition, where
competition is mediated by the shared resource. The species that better utilize available
resources eventually prevail over inferior competitors.

(2) Interference competition: The individuals use direct means to hinder or fight against
competing species. Bacteria may secrete molecules that inhibit the performance of
competing species, but they also employ a diverse selection of more lethal methods for
interference competition. These range from mechanical weapons that can be used to
puncture cell membranes of nearby competitors to using diffusive molecular weapons,
such as toxins and antibiotics, that wipe out other species [25]. In some environments,
e.g., in a mammalian gut, some bacterial species are even known to use elaborate schemes
to trigger host immune responses to attack against competing strains.

1.2 Contributions

We investigate distributed models of microbiological computation that capture the effects of
stochastic population dynamics and various competitive interactions. Formally, the population
dynamics and protocols are expressed in stochastic the biological reaction network (BRN) model,
which generalizes chemical reaction networks (CRN) [24].
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A model for microbial dynamics. We introduce a new modeling framework that allows us
to incorporate more realistic biological interactions; in particular in cases where (1) the growth of
the population is limited by the availability of resources, and (2) the individuals follow stochastic
birth-death dynamics. Moreover, we can model populations consuming multiple different types
of resources. For example, the introduction of two distinct resources allows for the modeling of
two-phase growth behavior, which is observed in experiments [31]. Our framework also allows for
modeling of open systems with continuous in-flow of resources and out-flow of resources and cells.
We emphasize that these type of biological dynamics are not captured by the standard population
protocol [9] and chemical reaction network models studied in the distributed computing literature.

Analytical results. As our main technical contribution, we give a new coupling technique that
allows us to bound the time to competitive exclusion in a (possibly complex) continuous-time
two-species model via a simple, discrete-time birth-death process. We apply this technique
to analytically bound the time to reach competitive exclusion. We model direct interference
competition, where the two competing species fight each other: on every interaction consisting of
two individuals of different species, one of these are killed. We show that in this model competitive
exclusion occurs and, if the initial discrepancy between the two species is Ω(

√
n log n), then the

majority species outcompetes the minority species with high probability.
We note that a similar model was studied recently by Cho et al. [13] who investigated

approximate majority consensus with direct competitive interactions under birth dynamics.
However, their model did not incorporate resource or individual death dynamics (beyond that
given by competitive interactions), and thus, the model assumes unbounded population growth.

We further show the inefficiency of indirect exploitative competition by show showing that
the probability of a species outcompeting the other is equal to its relative initial population in
many cases.

Simulation results. Using simulations, we observe that the protocol using exploitative com-
petition reaches consensus slower than the protocols relying on interference competition. From a
biological perspective, these results confirm the intuition that direct interference competition
is more effective when dealing with rival species, as expected. However, direct interference
competition tends to be more costly for the individuals, as they have to dedicate their energy in
producing suitable bacterial weaponry.

From an algorithmic viewpoint, we see that exploiting interference competition can yield
faster algorithms. In particular, this suggests that it may be beneficial to harness existing
mechanisms for direct competition, as developed by bacterial species, also in the context of
synthetic microbial consortia, despite their additional metabolic cost.

1.3 Outline of the Paper

We first review related work in Section 2. In Section 3 we introduce biological reaction networks
(BRNs) as a basic modeling framework for microbial population dynamics. We introduce a new
protocol in this formalism, called the mutual annihilation protocol, which serves as our main
example of microbial dynamics with interference competition between two species.

In Section 4 we first establish an upper bound on the number of steps by coupling the protocol
with an easier-to-analyze discrete-time Markov chain. Using this coupling, we show our main
result: the mutual annihilation protocol achieves majority consensus with high probability when
the initial gap between the two competing cell counts is large enough.

In Section 5, we prove that indirect competition alone is not sufficient to achieve majority
consensus with high probability in many cases. Specifically, in symmetric systems without in-flow
of new resources, the probability of reaching majority consensus is equal to the initial relative
population of the majority species.
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Finally, in Section 6 we provide simulation results that complement our analytical results.
Using biologically realistic birth and death rates for bacteria, we simulate and compare two
scenarios consisting of two competing strains of E. coli that use exploitative competition and
interference competition, respectively.

2 Related Work

We now briefly overview related work on majority consensus in molecular and biological models
of computation. In particular, we focus on the population protocol model and the chemical
reaction network model.

2.1 Population Protocols

Population protocols were designed to study the computational power of an ensemble of indistin-
guishable agents that interact in an unpredictable manner [6, 7]. In this model, individuals are
represented by finite state automata that communicate via pairwise interactions: in every step,
two individuals are chosen to interact. During this interaction, they read each other’s states and
update their own local states according to a predefined state transition function.

Recently, several papers have investigated fundamental space-time complexity trade-offs in
the population protocol model. Space complexity is given by maximum number of local states
used by the protocol. Time complexity in this model is studied under a stochastic scheduler that
picks two individuals to interact uniformly at random. The (parallel) time complexity is given
by the expected number of steps to reach a stable configuration divided by the total population
size n. A long series of papers have investigated how fast majority can be computed by protocols
that use a given number of states [11, 12, 17, 18]. Many of the recent results and techniques in
this area are surveyed by Elsässer and Radzik [19] and Alistarh and Gelashvili [1].

The main difference to our setting is that in the stochastic population protocol model the
total population size n is assumed to be static and all pairwise interactions occur at the same
rate. In contrast, we consider systems, where the population sizes fluctuate and interaction rates
may depend on the current configuration of the system. This allows us to more accurately model
biological dynamics occurring in microbial populations.

Approximate vs. exact majority. The majority problem has been studied from two per-
spectives by investigating protocols that compute either approximate or exact majority. Both
types of protocols typically guarantee consensus, but approximate majority protocols give only
probabilistic guarantees on stabilization to the majority opinion, provided that the initial discrep-
ancy between the two initial opinions is sufficiently large. In contrast, exact majority protocols
guarantee that majority consensus is always eventually reached.

Protocols for approximate majority. Angluin et al. [8] analyzed a simple 3-state protocol
for solving approximate majority in the clique in O(log n) time provided that the discrepancy
between majority and minority value is ω(

√
n log n). Despite its simplicity, the protocol is

challenging to analyze. Later, Mertzios et al. [29] studied protocols for approximate agreement
when the interactions are restricted to occur on general interaction graphs. In a recent work,
Alistarh et al. [5] study a generalized approximate majority problem where both initial opinions
may have small initial counts. They present logarithmic space and time protocols that are
self-stabilizing and withstand spurious faulty reactions.

Protocols for exact majority. Besides approximate majority, also exact majority has been
considered in the population protocol setting: regardless of the initial gap, the final outputs
should stabilize to the initial majority value. Draief and Vojnović gave a simple 4-state protocol
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that solves exact majority in any connected interaction graph [18]. In the clique, the protocol
stabilizes in O(n log n) parallel time.

Alistarh et al. [2] gave the first protocols with expected converge time of the order polylog n
using polylog n states. This result has been gradually improved [3, 11, 12], and recently, Doty et
al. [17] gave protocols that solve majority in O(log n) time using O(log n) states. In the spatial
setting, Alistarh et al. [4] showed how to solve exact majority in polylog n parallel time using
polylog n states per node in regular graphs with constant conductance.

2.2 Other Models of Molecular and Biological Dynamics

Czyzowicz et al. [15] investigated the convergence of discrete Lotka–Volterra dynamics in the
population protocol model. These dynamics can be used to model, for example, predator-prey
type dynamics. However, they operate in the population protocol model, so while the proportions
of the different species can change, the total population size is static throughout.

Condon et al. [14] investigated approximate agreement using multimolecular reactions in the
chemical reaction network model. Similarly to our result, they show that if the gap is Ω(

√
n log n),

then the majority opinion will with high probability win. However, their work does not consider
biological population dynamics.

Closely related to our work, Cho et al. [13] showed how to use competitive interactions to
solve approximate agreement in a two-species bacterial model. However, the studied model
ignores resource limitations by assuming unbounded (exponential) growth and assuming that
death only occurs during competitive interactions between individuals of different species. While
unbounded growth may be a satisfactory model for short-term population dynamics in a cell
culture, it is less so for mid- and long-term population dynamics.

In our model, we incorporate individual death reactions, and resource-consumer dynamics
that limit the growth of the species. This leads to a models that better reflect microbiological
population dynamics. To analyze our models, similarly as Cho et al. [13], we use a coupling
argument to bound the behavior of the two-species dynamics. However, our coupling argument
is more general, and it allows us to handle a larger, more realistic, class of models.

3 Model

We start with some basic notation. We write N = {0, 1, . . . } for the set of non-negative integers.
For functions f, g : X → R, we write f � g if f(x) ≤ g(x) for all x ∈ X. For two nonempty sets
A and B, we write AB to denote the set of functions of the form B → A. When convenient, we
treat c ∈ AB as a vector with |B| elements.

3.1 Biological Reaction Networks

We model the stochastic behavior of bacteria over time by a biological reaction network (BRN)
that comprises of a set of species S a subset T ⊆ S of which are growing cell types, a set of
reactions R that act on these counts, and a volume v ∈ R+

0 . For simplicity we assume v = 1,
unless specified otherwise. While close to chemical reaction networks (CRNs), our model is a
generalization with kinetics that do not necessarily follow a mass-action law.

A configuration of the BRN is an element from the set of configurations C = NS, where c(s)
denotes the count of species s in configuration c. Intuitively a configuration is a snapshot of the
current state of the BRN. A reaction from R is a triple (r,p, α) where r,p ∈ NS and α, called the
propensity function of the reaction, is a function from C→ R+

0 . The propensity of the reaction in
configuration c ∈ C is α(c). The species s with r(s) > 0 are called the reaction’s reactants and
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those with p(s) > 0 are called products. We will also use the common notation∑
s∈S

r(s)s
α−−−→

∑
s∈S

p(s)s

for a reaction (r,p, α). A reaction (r,p, α) is applicable to configuration c if r(s) ≤ c(s) for all
s ∈ S. We call

∑
s∈S r(s), i.e., the number of involved reactants, the order of the reaction. For

the moment assume that reactions are at least of order 1; we will later argue that this is without
loss of generality.

We assume that there are two kinds of propensity functions: growth reactions and mass-action
reactions. They are specified as follows:

(1) Growth reactions: Let T = S \ T be the species that are not cell types. A growth reaction
for cell type T ∈ T is of the form

T +
∑
s∈T

r(s)
α−−−→ 2T +

∑
s∈T

p(s) .

Intuitively the reactants from T account for resources and waste products in the growth
medium that are (potentially) consumed and that determine the cell’s growth rate.
Assuming that cells grow independently of each other, we have that

α(c) = c(T ) · γ(c) ,

where γ(c) is the individual cell growth rate. We further assume that γ(c) is bounded by
a maximal growth rate Γ. This is motivated by the observation that cells do not increase
their growth rate arbitrarily with the number of available resources in the medium.

(2) Mass-action reactions: For reactions other than growth reactions, we assume the classical
mass-action kinetics to hold. Their propensity function α is given as

α(c) =
ξ

vo−1

∏
s∈S

(
c(s)

r(s)

)
,

where o is the order of the reaction,
(c(S)
r(S)

)
denotes the binomial coefficient of c(S)

and r(S), and ξ ≥ 0 is the rate constant of the reaction. We follow the convention that
the binomial coefficient is 1 if r(S) = 0, and it is 0 if r(S) > c(S). By slight abuse of

notation we write A+ . . .
ξ−−−→ B + . . . instead of A+ . . .

α−−−→ B + . . . for mass-action
reactions.

BRNs as Markov chains. The stochastic kinetics of a BRN from some initial configuration
of the BRN is a continuous-time Markov chain defined as follows. The states of the Markov
chain are the configurations of the BRN with the initial state being the initial configuration of
the BRN. Given that the BRN is in configuration c, the new configuration after an applicable
reaction (r,p, α) is equal to c′ = c− r + p.

We will use the notation Q(x, y) for the propensity of the transition from state x to state y
in a continuous-time Markov chain. For each continuous-time Markov chain, we can associate
a corresponding a discrete-time Markov chain that only keeps track of the sequence of state
changes, but not of their timing. We use P (x, y) for the transition probability from state x to
state y in the discrete-time chain. We have the formula

P (x, y) = Q(x, y)/
∑
z

Q(x, z) .

Finally note that BRNs with reactions of order 0 can be rewritten into ones with reactions of
order at least 1 such that both BRNs behave identically on the original BRN’s species. This is
achieved by introducing a dummy species as a reactant and a product.
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3.2 Two-Resource Protocols with Cell Types

Cells replicate dependent on the resources within the medium and die with a certain rate.
Typically such resource-dependent behavior is modeled with cell growth rates that depend on one
or two limiting resources [31]. In our model such a system is a BRN whose species are partitioned
into proliferating cells with birth and death reactions, and a set of passive resources. For that
purpose, we define: Let γ1, γ2 be propensity functions and δ, ρ+

1 , ρ
+
2 , ρ

− ≥ 0 be rate constants. A
two-resource protocol with cell types T, is a BRN with set of species S = {R1, R2} ∪ T, cell types
T, and reactions

∅
ρ+

1−−−→ R1

∅
ρ+

2−−−→ R2

 resource in-flow
R1

ρ−−−−→ ∅

R2
ρ−−−−→ ∅

 resource out-flow

and, for every cell type X ∈ T, the reactions

X +R1
γ1−−−→ 2X

X +R2
γ2−−−→ 2X

 growth X
δ−−−→ ∅

}
individual death X

ρ−−−−→ ∅
}
cell out-flow

All reactions except the growth reactions are mass-action reactions.

In this work we analyze a specific two-resource protocol with two competing cell types: the
mutual annihilation protocol. The protocol is exemplary for interference competition between two
bacteria types A and B. While this protocol can be seen as an instance of naturally occurring
direct attacks between A and B, such a protocol also lend itself to be implemented in a system
of synthetic bacteria. For example, a setup where the two bacterial types carry a plasmid that is
lethal if introduced within the other bacterial type via conjugation upon contact.

Formally, the mutual annihilation protocol is a two-resource protocol with cell types T =
{A,B} with the additional mass-action reactions

A+B
α−−−→ A

A+B
α−−−→ B

where α > 0 is the annihilation rate constant. This parameter is used to model the effects of
direct interference competition between two species. In particular this can be used to model,
for example, mechanical attacks that puncture the cell membranes of opposing species, but also
mechanisms relying on bacterial conjugation.

Intuitively this protocol should strongly amplify any difference between the initial concentra-
tions of A and B until finally majority consensus is achieved. The following sections are devoted
to show that this is indeed the case. The proof is in two major parts: In Section 4.1 we prove
a bound on the number of steps that change species counts, e.g., growth events and resource
out-flow, until consensus is achieved. Section 4.3 then uses this result to prove our main result
of the protocol achieving majority consensus with high probability if the initial population gap
between A and B is large enough.

4 Analysis of the Mutual Annihilation Protocol

In this section, we analyse the mutual annihilation protocol. First, we bound the number of
steps until consensus (competitive exclusion). Afterwards, we show that if the initial gap is large
enough, then majority consensus is reaches with high probability
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4.1 Bounding the Number of Steps Until Consensus

In this section, we upper-bound the number of steps that a reaction is applied in the mutual
annihilation protocol, resulting in a change of species counts, until consensus is achieved. This
step upper bound is the main ingredient for our probability bound to achieve majority consensus.

Towards this goal we introduce three Markov chains that gradually abstract the behavior of
the mutual annihilation protocol while maintaining central stochastic properties: the S-chain,
the lower-bounding S-chain, and the M -chain.

4.1.1 The S-Chain of the Mutual Annihilation Protocol

Let S be a set of species of a BRN. Consider a discrete-time Markov process (S(k))k≥0 on the
state space of the BRN’s configurations C = NS such that Ss(k) is a random variable denoting
the number of individuals of species s ∈ S. A configuration c ∈ C gives the quantity of each
species so that cs is the number of individuals of species s. We call any such process an S-chain.

The mutual annihilation protocol includes the cell types A and B as well as the two resource
species R1 and R2. Its stochastic behavior is fully described via a corresponding S-chain with
species S = {A,B,R1, R2}.

4.1.2 The Lower-Bounding S-Chain

We next define an abstraction of an S-chain, for the particular case of the S-chain of the mutual
annihilation protocol. Let Γ be a uniform upper bound on the sum of the birth rates γ1(r1)
and γ2(r2) of cells A and B, respectively, which exists by the assumption on BRN growth
reactions.

Given an initial state (a, b, r1, r2) of the S-chain of the mutual annihilation protocol with
A(0) = a > b = B(0), we define the lower-bounding S-chain as a two-species chain with initial
state (a, b). In this chain, the majority species A has birth rate 0 and the minority species B has
birth rate Γ. There are no resource species in the lower-bounding chain.

It is straightforward to show that the probability of reaching majority consensus in the
lower-bounding S-chain is a lower bound on the probability of reaching majority consensus in
the S-chain of the mutual annihilation protocol.

4.1.3 The M-Chain

Towards the goal of abstracting S-chains, and in particular the lower-bounding S-chain of the
mutual annihilation protocol, we introduce the M -chain which tracks the population size of the
cell type that is currently the minimum among the cell types.

Formally, an M -chain is a discrete-time birth-death Markov process (M(k))k≥0 on the
state space N with birth probability function p′ : N → [0, 1] and death probability function
q′ : N→ [0, 1], where p′(m) + q′(m) ≤ 1 for all m ∈ N: a population of size m ≥ 0 increases by
one in the next step with probability p′(m) and decreases in the next step with probability q′(m).

Consider an S-chains with the two cell types A and B. For such an S-chain define the sequence
of random variables

Min(k) = min {SA(k),SB(k)}

and set p, q : C→ [0, 1] as follows:

p(c) = Pr[Min(k + 1) = Min(k) + 1 | S(k) = c]

q(c) = Pr[Min(k + 1) = Min(k)− 1 | S(k) = c] .

That is, p(c) gives the probability of the process transitioning from state c to a state c′, where the
minimum of cA and cB increases by one in the next step. Analogously, q(c) gives the probability
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that the minimum decreases by one during the next transition. Note that the probability of
Min(k) increasing or decreasing may depend on the entire configuration S(k).

We say an M -chain dominates the S-chain if for all c ∈ NS with m = min{cA, cB}, functions
p′, q′ satisfy

p(c) ≤ p′(m) (1)
q(c) ≥ q′(m) (2)
p(c) ≤ 1− q′(m+ 1) . (3)

4.1.4 Coupling the S-Chain to the M-Chain

In the following we construct a coupling (Ŝ, M̂) of the two S-chain and a dominating M -chain.
Analogously to the variable Min, we define the variable

M̂in(k) = min
{
ŜA(k), ŜB(k)

}
for all k ≥ 0 on the coupling. Moreover, we use p and q to denote the transition-probability
functions for the S-chain, and p′ and q′ the transition probability functions for a dominating
M -chain. We will next define the discrete time processes Ŝ and M̂ inductively.
Initially: Set Ŝ(0) = S(0) and M̂(0) = M(0).
Step: Let (ξ(k))k∈N be a sequence of i.i.d. random values sampled uniformly from the unit
interval [0, 1). Let k ∈ N. Assuming

(
Ŝ(k), M̂(k)

)
= (c,m), we set

(
Ŝ(k + 1), M̂(k + 1)

)
as

follows:

Minimum increases. If ξ(k) ∈ [0, p(c)), then sample Ŝ(k + 1) according to the conditional
distribution

µ(c′) = Pr
[
Ŝ(k + 1) = c′ | Ŝ(k) = c and M̂in(k + 1) = M̂in(k) + 1

]
.

Respectively, if ξ(t) ∈ [0, p′(m)), then sample M̂(k + 1) according to the conditional
distribution

µ(m′) = Pr
[
M̂(k + 1) = m′ | M̂(k) = m and M̂(k + 1) = M̂(k) + 1

]
.

Minimum decreases. If ξ(t) ∈ [1− q(c), 1), then sample Ŝ(k+ 1) according to the conditional
distribution

µ(c′) = Pr
[
Ŝ(k + 1) = c′ | Ŝ(k) = c and M̂in(k + 1) = M̂in(k)− 1

]
.

Respectively, if ξ(t) ∈ [1− q′(m), 1), then sample M̂(k + 1) according to the conditional
distribution

µ(m′) = Pr
[
M̂(k + 1) = m′ | M̂(k) = m and M̂(k + 1) = M̂(k)− 1

]
.

Minimum does not change. Otherwise, sample Ŝ(k + 1) according to the conditional distri-
bution

µ(c′) = Pr
[
Ŝ(k + 1) = c′ | Ŝ(k) = c and M̂in(k + 1) = M̂in(k)

]
.

Respectively, sample M̂(k + 1) according to the conditional distribution

µ(m′) = Pr
[
M̂(k + 1) = m′ | M̂(k) = m and M̂(k + 1) = M̂(k)

]
.
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Observe that by construction, the marginal distributions of Ŝ(k) and M̂(k) equal the distributions
of S(k) and M(k) for all k ∈ N.

We will next show that M̂in � M̂ in the coupled process under certain dominance conditions
of the transition probabilities in the original S-chain and a dominating M -chain.

Lemma 1. Given an S-chain and a dominating M -chain, Min(0) ≤M(0) implies M̂in � M̂ .

Proof. We show by induction that M̂in(k) ≤ M̂(k) for all k ∈ N. The base case k = 0 is vacuous.
For the inductive step, suppose M̂in(k) ≤ M̂(k) holds for some k ≥ 0. Observe that since
|M̂in(k + 1)− M̂in(k)| ≤ 1 and |M̂(k + 1)− M̂(k)| ≤ 1, the claim follows if:

M̂in(k + 1) < M̂in(k) or (4)

M̂(k + 1) > M̂(k) . (5)

Let c = Ŝ(k) and m = min{cA, cB}. We distinguish two cases:

(1) Suppose M̂in(k) = M̂(k) = m. To show that M̂in(k + 1) ≤ M̂(k + 1), we consider the
following subcases:

(1) If M̂in(k + 1) = m+ 1, then ξ(k) ∈ [0, p(c)) ⊆ [0, p′(m)), by Assumption (1) of
the lemma. Now the update rule of the coupling yields M̂(k+1) = m+1 > M̂(k);
i.e., (5) is fulfilled and the claim follows.

(2) If M̂(k+ 1) = m− 1, then ξ(k) ∈ [1− q′(m), 1) ⊆ [1− q(c), 1), by Assumption (2)
of the lemma. Thus, the update rule implies M̂in(k + 1) = m− 1 < M̂in(k); i.e.,
(4) is fulfilled and the claim follows.

(3) Otherwise, M̂in(k + 1) ≤ m and M̂(k + 1) ≥ m; the claim follows in this case.

Thus, in all three cases the claim follows.

(2) Otherwise, by the induction hypothesis, M̂in(k) < M̂(k). If M̂(k)− M̂in(k) > 1, then
the claim follows immediately, since both variables can change by at most one per step
and thus no reordering can happen.

Hence, suppose that M̂(k) = M̂in(k) + 1 holds. The only remaining case is the event
where M̂in(k+1) = M̂in(k)−1 = m and M̂(k+1) = M̂(k)+1 = m+1. This implies that
ξ(k) ∈ [0, p(c))∩[1−q′(m+1), 1). Thus, p(c) > 1−q′(m+1), contradicting Assumption (3)
of the lemma. Therefore, the case where M̂in increments and M̂ decrements does not
occur.

4.1.5 An M-Chain for the Lower-Bounding S-Chain

We first define p′(m) by setting

p′(m) =
mΓ

2mρ− +mΓ + 2mδ + 2m2α

The maximum of p′ is achieved for m = 1. This maximum is strictly smaller than 1 because
p′(m) < 1 for all m ∈ N. Call the maximum P .

We then define q′(m) by setting

q′(m) = min

{
1− P ,

m2α

2mρ− +mΓ + 2mδ + 2m2α

}
.

We observe that p′(m) = O(1/m) and q′(m) = Ω(1).
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Lemma 2. The functions p′ and q′ define an M -chain that dominates the lower-bounding chain
of the mutual annihilation protocol.

Proof. We first prove Condition (1). Assume m = b < a. Then we have:

p(a, b) =
bΓ

(a+ b)ρ− + bΓ + (a+ b)δ + 2abα

≤ bΓ

2bρ− + bΓ + 2bδ + 2b2α
= p′(b) = p′(m)

If m = a ≤ b, then p(a, b) = 0 and the inequality trivially holds.
We next prove Condition (2). Assume m = b < a. Then we have:

q(a, b) =
bρ− + bδ + abα

(a+ b)ρ− + bΓ + (a+ b)δ + 2abα

≥ abα

(a+ b)ρ− + bΓ + (a+ b)δ + 2abα

≥ abα

2aρ− + aΓ + 2aδ + 2abα

=
bα

2ρ− + Γ + 2δ + 2bα

=
b2α

2bρ− + bΓ + 2bδ + 2b2α
≥ q′(b) = q′(m)

If m = a ≤ b, then:

q(a, b) =
aρ− + aδ + abα

(a+ b)ρ− + bΓ + (a+ b)δ + 2abα

≥ abα

(a+ b)ρ− + bΓ + (a+ b)δ + 2abα

≥ abα

2bρ− + bΓ + 2bδ + 2abα

=
aα

2ρ− + Γ + 2δ + 2aα

=
a2α

2aρ− + aΓ + 2aδ + 2a2α
≥ q′(a) = q′(m)

Lastly, Condition (3) easily follows from Condition (1) and the definition of q′(m) since

p(a, b) + q′(m+ 1) ≤ p′(m) + (1− P ) ≤ P + (1− P ) = 1

where m = min{a, b}.

4.1.6 Number of Steps in the M-Chain

We now show that the number of steps until extinction in the M -chain is at most linear in the
initial population, both in expectation (Lemma 3) and with high probability (Lemma 4). Because
the M -chain dominates the S-chain, the upper bound also holds for the number of steps until
consensus in the lower-bounding S-chain.

Lemma 3. The expected number of steps until extinction of any M -chain with p′(m) = O(1/m)
and q′(m) = Ω(1) is O(M) where M is the initial state.
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Proof. Let C ≥ 1 be a big-oh constant for p′(m), i.e., p′(m) ≤ C/m for all m ≥ 1. Let D > 0
be a big-omega constant for q′(m), i.e., q′(m) ≥ D for all m ≥ 1. From known results for
discrete-time birth-death processes [27], setting α = C/D, we get that the expected number of
steps until extinction from initial state M is equal to

M∑
j=1

∞∑
k=j−1

p′(j) · · · p′(k)

q′(j) · · · q′(k + 1)
≤

M∑
j=1

∞∑
k=j−1

Ck−j+1(j − 1)!

Dk−j+2k!
=

1

D

M∑
j=1

∞∑
k=j−1

αk−j+1 (j − 1)!

k!

≤ 1

D

M∑
j=1

∞∑
k=j−1

αk−j+1 1

(k − j + 1)!
=

1

D

M∑
j=1

∞∑
k=0

αk
1

k!

=
1

D

M∑
j=1

eα = O(M) .

Here, we used the inequality (j−1)!
k! ≤ 1

(k−j+1)! , which is equivalent to
(
k
j−1

)
≥ 1.

Lemma 4. The number of steps until extinction of any M -chain with p′(m) = O(1/m) and
q′(m) = Ω(1) is O(M) with probability 1−O(1/

√
M) where M is the initial state.

Proof. We distinguish two phases: the first from states M to Θ(
√
M) and the second from

Θ(
√
M) to 0.
For the first phase, we start by bounding the number of birth reactions and then the number

of stuttering steps to show that enough death reactions occur. Let D > 0 be a big-omega constant
for q′(m), i.e., q′(m) ≥ D for all m ≥ 1. The probability of an individual step being a stuttering
step is at most β = 1−D < 1. Let C ≥ 1 be a big-oh constant for p′(m), i.e., p′(m) ≤ C/m for
all m ≥ 1. We pose KM as an upper bound on the number of steps of the first phase where
K ≥ 2

1−β .
The expected number of stuttering steps in the first KM steps is at most µ ≤ βKM . Setting

δ = 1−β
2β , by the Chernoff bound, the probability of having more than (1 + δ)βKM = 1+β

2 KM

stuttering steps in the first KM steps is upper-bounded by e−δ2βKM/3 = e−Ω(M). By the choice
of K, the same bound holds for the probability that there are less than M non-stuttering steps
in the first KM steps.

The first phase ends when a state ≤ 4C
√
M is reached. We have m ≥

√
M and thus

p′(m) ≤ C/
√
M in particular in the first phase. Let E be the event that a state ≤ 4C

√
M is

reached in the first M non-stuttering steps. The event that the number b of births in the first M
non-stuttering steps is at most 2C

√
M implies event E. Therefore, the inverse event ¬E implies

b > 2C
√
M . By the Chernoff bound, the probability of ¬E is bounded by

Pr[¬E] ≤ Pr[b ≥ 2C
√
M ] = Pr[b ≥ (1 + δ)µ] ≤ e−δ2µ/3

where µ ≤ C
√
M and δ = 1. We thus have:

Pr[¬E] = e−Ω(
√
M)

In the second phase, denote by L the number of events until extinction. By Lemma 3, the
expected value of L is upper-bounded by EL = O(

√
M). By Markov’s inequality we thus have:

Pr[L > M ] ≤ EL
M

= O(1/
√
M)

Combining the analyses of both phases shows that extinction happens in the first (K + 1)M
steps with high probability.
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4.2 Number of Steps Until Consensus in the Lower-Bounding S-Chain

We can now prove our probability bound for majority consensus with the mutual annihilation
protocol.

Lemma 5. The number of steps until consensus in the lower-bounding S-chain is O(n) with high
probability where n is the total initial population size.

Proof. The number of steps until consensus with a smaller initial gap and the same total
population stochastically dominates the number of steps until consensus with a larger initial
gap. It is hence sufficient to prove the lemma for a constant initial gap. But then a = Ω(n) and
b = Ω(n) initially. The corresponding M -chain thus has initial state m = Θ(n). An invocation of
Lemma 4 concludes the proof.

4.3 Probability of Reaching Majority Consensus

Equipped with the step upper bound from Lemma 5, we can now prove our probability bound
for majority consensus.

Theorem 6. The mutual annihilation protocol achieves majority consensus with high probability
whenever the initial gap is Ω(

√
n log n) where n is the total initial population size.

Proof. Without loss of generality, let A0 > B0. We define the discrete-time stochastic process
Xk = Ak −Bk from the lower-bounding S-chain. By hypothesis, we have X0 = Ω(

√
n log n). As

long as Xk ≥ 0, the process (Xk) is a sub-martingale. We will use Azuma’s inequality [30] to
prove the theorem.

With high probability, the number K of steps until consensus is O(n) by Lemma 5. The
maximum step size of the process (Xk) is bounded by |Xk −Xk−1| ≤ 1. Setting ε equal to the
initial gap, i.e., ε = Ω(

√
n log n), Azuma’s inequality thus gives:

Pr[XK ≤ 0] ≤ exp

(
−ε2

2
∑K

k=1 1

)
≤ exp

(
−Ω(n log n)

2K

)
= exp

(
−Ω(n log n)

O(n)

)
= e−Ω(logn)

= 1/nΩ(1)

This concludes the proof of the theorem.

5 Inefficiency of Purely Indirect Competition

In this section, we evaluate the performance of the naïve protocol, which does not employ any
direction interactions between the bacterial species and relies on indirect competition via shared
resources only, for majority consensus.

For simplicity, we will first assume equal birth rates and death rates for both species A and B.
These rates can change after each transition and depend on the current population counts. We
denote by γk,A,B the birth rate for each bacterium after the kth transition, and by δk the death
rate for each bacterium after the kth transition.

Denote by Pk(A,B) the probability of species B being extinct before species A with the
naïve protocol, starting with the populations (A,B) right after the kth transition. Ultimately we
are interested in the case k = 0, i.e., the probability P0(A,B). Almost-sure consensus can be
achieved only if one of the species gets extinct almost surely. This requirement translates into a
condition on the sequence of birth and death rates. In a two-resource model, it is the case in
particular if there is no resource in-flow.
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Lemma 7. If the species A and B are symmetric and get extinct almost surely, then we have

Pk(A,B) =
A

A+B
whenever A+B ≥ 1.

Proof. The probabilities Pk(A,B) are bounded between 0 and 1 and satisfy the recurrence

Pk(A,B) =
γk,A,B

γk,A,B + δk,A,B

A

A+B
Pk+1(A+ 1, B) +

γk,A,B
γk,A,B + δk,A,B

B

A+B
Pk+1(A,B + 1)

+
δk,A,B

γk,A,B + δk,A,B

A

A+B
Pk+1(A− 1, B) +

δk,A,B
γk,A,B + δk,A,B

B

A+B
Pk+1(A,B − 1)

(6)

for A ≥ 1 and B ≥ 1 with the boundary conditions Pk(0, B) = 0 and Pk(A, 0) = 1.
It is straightforward to verify that Pk(A,B) = A

A+B satisfies this recurrence: We have

A

A+B
· A+ 1

A+B + 1
+

B

A+B
· A

A+B + 1
=

A2 +A+AB

(A+B)(A+B + 1)
=

A

A+B

as well as

A

A+B
· A− 1

A+B − 1
+

B

A+B
· A

A+B − 1
=

A2 −A+AB

(A+B)(A+B − 1)
=

A

A+B

which shows that the right-hand side of (6) is indeed equal to:

γk,A,B
γk,A,B + δk,A,B

· A

A+B
+

δk,A,B
γk,A,B + δk,A,B

· A

A+B
=

A

A+B

To prove uniqueness, let Pk(A,B) and P̂k(A,B) be two solutions of the recurrence that are
bounded between 0 and 1, and set ∆k(A,B) = Pk(A,B)− P̂k(A,B). We will prove ∆k(A,B) = 0
by showing |∆k(A,B)| ≤ ε for all ε > 0.

Let ε > 0. We write T = {A↗, A↘, B↗, B↘} for the set of possible transitions, i.e.,
birth/death of A and birth/death of B. The differences ∆k(A,B) satisfy the same recurrence
as Pk(A,B), but with the boundary condition ∆k(0, B) = ∆k(A, 0) = 0. We can rewrite the
recurrence as

∆k(A,B) =
∑
τ∈T

Pr[τk+1 = τ | A(k) = A , B(k) = B] ·∆k+1(τ(A,B)) (7)

for all A,B ≥ 1, where we denoted the (k + 1)th transition by τk+1 and used the transition τ
as an operator on the bacterial species counts to update them to their new values after the
transition. That is, we define τ(A,B) = (A+ 1, B) for the case τ = A↗ and analogously for the
three other transitions.

Using the recurrence (7) multiple times leads to the formula

∆k(A,B) =
∑
σ∈T `

σ is live

Pr
[
(τr)

k+`
r=k+1 = σ | A(k) = A , B(k) = B

]
·∆k+`(σ(A,B))

where we call a sequence σ ∈ T ` live if neither species A nor B is extinct after any of the
transitions in σ when starting with the populations (A,B) right after the kth transition. All
terms of the sum that do not correspond to live sequences are zero because of the boundary
condition for ∆k+`.

Because of the almost-sure extinction hypothesis we have:

lim
`→∞

Pr
[
(τr)

k+`
r=k+1 is live

]
= 0
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There hence exists an ` ≥ 1 such that the probability of (τr)
k+`
r=k+1 being live is less or equal to ε.

Since the bounds on the solutions guarantee |∆k+`(σ(A,B))| ≤ 1, we get:

|∆k(A,B)| ≤
∑
σ∈T `

σ is live

Pr
[
(τr)

k+`
r=k+1 = σ | A(k) = A , B(k) = B

]
·
∣∣∆k+`(σ(A,B))

∣∣
≤ Pr

[
(τr)

k+`
r=k+1 is live

]
≤ ε

We can thus conclude ∆k(A,B) = 0, which proves that Pk(A,B) = A
A+B is the unique

solution of recurrence (6) that satisfies the boundary conditions and is bounded between 0
and 1.

To generalize to non-symmetric species, we denote by γ(X)
k,A,B and δ(X)

k,A,B the birth and death
rates of species X ∈ {A,B} after the kth transition in configuration (A,B), respectively. We say
that species X dominates species Y if γ(X)

k,A,B ≥ γ
(Y )
k,A,B and δ(X)

k,A,B ≤ δ
(Y )
k,A,B.

Theorem 8. If the species A and B are symmetric or if one species dominates the other, without
resource in-flow, the naïve protocol cannot guarantee majority consensus to be achieved with a
probability larger than the relative initial population of the majority species.

Proof. The lack of resource in-flow guarantees almost-sure extinction of both species. If the
species are symmetric, then the claim hence follows from Lemma 7. If one species dominates the
other, starting the system in a configuration in which the dominating species is in the minority,
the probability of the dominated, majority species winning is upper-bounded by the probability
of it winning with in a system with symmetric species.

6 Simulations

In this section, we complement our analytical results with simulations to validate that the
asymptotics shown in the previous sections can be already observed in realistic biological settings.

6.1 Setup

We modeled a culture of two bacterial types, A and B, that grow in a closed system of volume 1µl.
Both bacterial types have identical growth behavior, feeding on two resources R1 and R2 that
model components of the medium with different nutrient efficiencies. The duplication reactions
for X ∈ {A,B} are thus

X +R1
γ1−−−→ 2X X +R2

γ2−−−→ 2X

where we set the growth rate functions to

γ1(R1) = R1/R1(0) · 1/20min−1 and γ2(R2) = R2/R2(0) · 1/20 · 0.08min−1 .

This corresponds to an initial expected duplication time of 20min with the help of resource
R1, and only 8% of that duplication rate using resource R2. As initial resource concentrations
we chose [R1] = 2 · 106 ml−1 and [R2] = 108 ml−1 resulting in a carrying capacity of about 108

bacteria per ml. Observe that the growth rates are bounded, as required by our model, since
resources are not regenerated and there is no resource inflow.

Further, bacteria die with an individual death rate that was set to δ = 10−4 min−1; within
the order of 0.43 d−1, which was measured [36] for E. coli. We modeled two types of systems:
one following exploitative competition, and the other following interference competition. For the
second one, we assumed that each of the bacteria carries a respective plasmid that, if introduced
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Parameter Value Note

Cell death rate const. δ = 10−4 min−1 order as in [36]
Cell growth rate for R1 γ1(R1) = R1/R1(0) · 1/20min−1 20min duplication time
Cell growth rate for R2 γ2(R2) = R2/R2(0) · 1/20 · 0.08min−1 reduced nutrition efficiency
Resource in-flow ρ+

1 = ρ+
2 = 0 closed system

Resource/cell out flow ρ− = 0 closed system
Conjugation rate const. α = 5 · 10−10 ml−1min−1 from [38]
Increased death rate const. α′ = 10−1 min−1 death after 10min

Table 1: Parameters of the simulation model.

via conjugation into the other bacterial type upon an interaction, leads to its death. For a more
realistic setting, instead of immediate death as assumed in the previous sections, we consider a
shortly lived intermediate bacterial type AB with increased death rate for bacteria that carry
both plasmids. We thus have

A+B
α−−−→ A+AB A+B

α−−−→ AB +B ,

as well as
AB

α′−−−→ ∅ ,

where we chose α = 5 · 10−10 ml−1min−1 in accordance with measurements of conjugating E.
coli [38] and an increased death rate of α′ = 10−1 min−1. Table 1 summarizes the parameterization
of the model.

6.2 Simulation Results

We ran stochastic simulations of two competing bacteria populations, A and B, with initial
concentrations of [A]+[B] = 3·105µl−1. We compared the performance of the mutual annihilation
protocol to the case of resource-consumer dynamics without direct interference competition.

Interference competition as an amplifier. Figure 1 shows a single stochastic trajectory
during the first 1400min of simulated time with a total initial population of A + B = 3 · 105.
Here, the initial population counts of A and B have been set to differ by 2000 with A being
the majority. We can clearly see that the initial difference between the two population sizes is
amplified over time: already after 1400 minutes, the count of the minority species has decreased
by three orders of magnitude.

Figure 2 shows the prevalence of type A after 60min and 120min as a function of initial
fraction of type A individuals. Here, the initial fraction of type A varies from 0 to 1. Observe the
steep s-shaped behavior that is typical for a large amplification away form the midpoint of equal
concentrations. Figure 3 zooms into the middle of the s-shaped curve, with the top abscissa
showing the difference A−B.

Comparison with resource-consumer dynamics. The dynamics of the mutual annihilation
protocol show that direct interference competition quickly amplifies the differences between the
two populations. We also compared this scenario to a setting with only indirect exploitative
competition. To this end, we set the conjugation rate parameter α = 0 so that there is no direct
competitive interactions. In this case, competition is mediated only by consumption of shared
resources.

Figures 4 and 5 show the obtained results after 60 minutes of simulated time. We can see
that compared to the case of interference competition, there is little to no amplification of
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the differences under exploitative competition during the first 60 minutes of simulated time.
Moreover, this holds even after a single day (1440min), as shown by Figure 6.

Figure 1: Stochastic simulation with initial population counts A = 151000 and B = 149000 over
1day. Population counts are per µl and shown on a logarithmic scale.

Figure 2: Fraction of A in the bacterial pop-
ulation after 60min and 120min. N = 10
simulations per initial fraction. Error bars indi-
cate maximum and minimum, markers average
fractions.

Figure 3: Zoomed version with initial popula-
tion difference on the top abscissa.
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Figure 4: Same setting as in Figure 2, but with
α = 0 and snapshot after one day instead of
60min.

Figure 5: Zoomed version corresponding to
Figure 3, but with α = 0 and snapshot after
one day instead of 60min.

Figure 6: Stochastic simulation as in Figure 1, but with α = 0 and shown over 1 day.
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