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1Université de Bordeaux, INRAE, BIOGECO, 33612 Cestas, France
2Pleiade, EPC INRIA-INRAE-CNRS, Université de Bordeaux, 33405,
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1 Agglomerative Hierarchical Clustering

Let us consider the problem of grouping N individuals into K groups, based on the values of
the dissimilarity d(i, j) between each pair (i, j) of individuals. Agglomerative Hierarchical
Clustering (AHC) is a classical method to solve this problem (Hastie et al., 2009, sec. 14.3).
It is initialised with a partition of the individuals into N groups, one per individual. Then
at each step, two groups are merged. The choice of these two groups is made according
to an aggregation criterion ` (also referred to as a linkage function), which measures the
similarity between two groups. If we have already built a partition into k groups c1, . . . , ck,
the partition into k−1 groups is obtained by merging the two groups ca, cb such that `(ca, cb)
is minimal. Several linkage functions have been proposed (Murtagh, 1983; Müllner, 2013).
In this study we compared three choices: Single Linkage (`SL), Complete Linkage (`CL),
and Ward (`W ).
With SL, the similarity between two groups is defined as the smallest dissimilarity between
two individuals of each group:

`SL(ca, cb) = min
i∈ca,j∈cb

d(i, j)

With CL, it is the largest one:

`CL(ca, cb) = max
i∈ca,j∈cb

d(i, j)

The Ward linkage function was originally defined for Euclidean distances and is equal to
the difference between the inertia of the union of ca and cb (i.e., after merging) and the
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sum of the inertia of ca and cb (i.e., before merging). The Smith-Waterman dissimilarity is
not a Euclidean distance, but the definition of the Ward linkage function can be extended
to dissimilarities (Chavent et al., 2017).
In our study we used the R package cluster and the Python package scipy.cluster.hierarchy,
both using fastcluster (Müllner, 2013).

2 SBM

The idea underlying AHC is to form groups of individuals that are similar. The Stochastic
Block Model (SBM, Holland et al., 1983; Daudin et al., 2008; Lee and Wilkinson, 2019)
corresponds to a more general point of view: it builds groups such as individuals in a
given group must have the same pattern of connections to the other groups and to their
own group. Consequently, individuals in the same group can be dissimilar (but almost at
the same distance from each other) if they share the same pattern of dissimilarities with
the other groups at the same time. This happens, for instance, when the individuals are
organised into a central hub and several peripheral individuals. The group formed by the
hub has a pattern of small within-dissimilarities and intermediate dissimilarity with the
peripheral group, while the peripheral group has a pattern of large within-dissimilarities
and intermediate dissimilarities with the hub group. SBM relies on statistical modelling
and latent variables. It was originally defined for a binary dissimilarity matrix (i.e when
individuals are nodes of a graph, where an edge means similarity and absence of edge means
dissimilarity ), but we used its extension to dissimilarity matrices in our case. The observed
variable is the dissimilarity matrix and the latent variables are the group memberships of
each individual: Zi ∈ {1, . . . , K} is the group of individual i. The model relies on two
assumptions. First, the Zi’s are independent and their distribution is parameterised by the
vector of probabilities α = (α1, . . . , αK), such that P (Zi = k) = αk. Second, the dissim-
ilarity between i and j depends only on the groups of i and j. For the Smith-Waterman
dissimilarity P (d(i, j) | Zi = k, Zj = k′) is modeled by a Poisson distribution with param-
eter λk,k′ . For the distance based on kmers, it is modeled by a Gaussian distribution with
parameters µk,k′ and σ (the variance is the same for each couple (k, k′)). In our study we
used R package blockmodels with default settings.

3 Normalised Mutual Information

Let us consider two classifications A and B of N individuals into K groups. The groups sizes
are nA

1 , . . . , n
A
K for the first classification and nB

1 , . . . , n
B
K for the second one. The normalised

vectors of the groups sizes are pA = (nA
1 /N, . . . , n

A
K/N) and pB = (nB

1 /N, . . . , n
B
K/N).

Several indices exist to measure the similarity between pA and pB. We used a normalised
version of the Mutual Information, referred to as NMI1 in Pfitzner et al. (2009), and that
we refer to as NMI here. It is defined as the mutual information between A and B, I(A,B),
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divided by the joint entropy of A and B, H(A,B). The entropy H(A) is

H(A) = −
K∑
k=1

pAk log(pAk )

The joint entropy of A and B will then be

H(A,B) = −
K∑
k=1

K∑
l=1

pAB
kl log(pAB

kl )

where NAB
jk is the number of individuals that are both in class cAj and in class cBk and

pAB
jk = NAB

jk /N . The mutual information between A and B is

I(A,B) = H(A) +H(B)−H(A,B)

Finally, NMI(A,B) = I(A,B)
H(A,B)

. It can be shown that NMI(A,B) ∈ [0, 1] where NMI(A,B) = 0

if A and B are independent and NMI(A,B) = 1 if A and B are identical.

4 Procedure to define thresholds for a quantitative

analysis of the Normalised Mutual Information

We present here a procedure, based on simulated partitions, to define intervals of Nor-
malised Mutual Information values corresponding to a very good, good, poor, very poor
agreement between two classifications. Let us consider a partition A of a set of N individu-
als into K classes. We create a perturbed, or noised partition, Ã, by randomly reallocating
a percentage p of the N individuals into a different class. Each individual is randomly cho-
sen and its new class is also randomly chosen. We consider that if p is lower than 0.05, the
agreement between A and Ã is very good, between 0.05 and 0.15 it is good, between 0.15
and 0.3 it is average, between 0.3 and 0.5 it is poor and beyond 0.5 it is very poor. In order
to convert these thresholds on the level of noise into thresholds on the Normalised Mutual
Information scale, for each value of p (0.05, 0.15, 0.3, 0.5), we generated 5000 partitions.
To generate a partition A, N and K were randomly generated according to a uniform
distribution with bounds respectively [10, 1400] and [N, 55]. The bounds correspond to the
range of values of K and N observed on the subsets of the data set studied in the article.
Then we generated a multinomial distribution, using the Dirichlet distribution with all
parameters equal to 1, and the class of each of the N individuals was simulated according
to this multinomial distribution. Then we computed NMI(A, Ã). A violin representation of
the probability density of NMI(A, Ã) is represented on Figure 1. Each density is computed
based on 5000 values. Thresholds on the Normalised Mutual Information scale are the
median value of the 4 probability densities, leading to the following intervals:
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NMI interval Agreement
]0.86, 1] very good

]0.66, 0.86] good
]0.45, 0.66] average
]0.27, 0.45] poor

[0, 0.27] very poor
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Figure 1: Distribution of Normalised Mutual Information values for increasing percentage
of reallocation of individuals. The Normalised Mutual Information is computed between
an original partition and a noisy one generated by randomly reallocating some individuals
to another class. Each violin corresponds to a particular percentage of noise.

5 Measures of the relative differences between within

group and between group dissimilarities

Let us consider a set of N sequences organised into K groups for a given taxonomic level,
and let us denote the dissimilarity between two sequences i and j by d(i, j). We then
consider M(k) the maximal dissimilarity value between two elements of group ck, and
m(k, k′) the minimal dissimilarity value between an element of group ck and an element of
group k′:

M(k) = max
i,j∈ck

d(i, j)

and
m(k, k′) = min

i∈ck, j∈ck′
d(i, j)

We expect that the automatic recovery of the K groups based on the dissimilarities will be
easier if the M(k) values are much smaller than the m(k, k′) values. Therefore, based on
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these quantities, we defined three measures of the relative difference between within group
and between group dissimilarities:

rminmax =
minkM(k)

maxk,k′ m(k, k′)

rmaxmin =
maxkM(k)

mink,k′ m(k, k′)

rmean =
1
K

∑K
k=1M(k)

K(K−1)
2

∑K−1
k=1

∑K
k′=k+1m(k, k′)

The ratio rminmax corresponds to the smallest observed ratio between M(k) and m(k, k′),
whereas the ratio rmaxmin corresponds to the largest one, and rmean captures a mean be-
haviour. Intuitively when the dissimilarity314matrix is well structured into several groups
each with a small within-class dissimilarity then rmean will be lower than 1. On contrary,
when there are no clearly delimited groups of similar individuals then rmean will be larger
than 1. This is illustrated on Figure 2.
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Figure 2: Illustration of a situation where rmean is larger than 1. The partition is composed
of 3 groups. Distances of interest to compute rmean are: M(1) = a, M(2) = b, M(3) = c,
m(1, 2) = d, m(1, 3) = e and m(2, 3) = f . Since a+ b+ c is larger than d+ e+ f , rmean is
larger than 1.

We expect that the quality of the automatic recovery of the K groups increases when
any of these ratios decreases. In our experiments, no pattern was found between the NMI
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value and rminmax, probably because this ratio is a too optimistic measure of the level of
structure in the dissimilarity matrix. Correlation patterns between rmaxmin and NMI were
less obvious than with rmean.

6 Neighbor-joining

We ran neighbor joining (Saitou and Nei, 1987) using ape library in R on the dissimilarity
array between the 1387 sequences of the 11 orders with 15 sequences or more (first row
of Table 1 in the manuscript). We drew the tree with a color pattern as follows: (i) for
each order, we selected the leaves with this order as a label (ii) we computed the Most
Recent Common Ancestor of this set of leaves (iii) we colored (with one color per order)
all the paths between the Most Recent Common Ancestor and each leaf labelled with this
order. The graphics is shown as figure 8 here in SI. We can see a couple of things: (i)
several orders, like the Ericales (in purple) are monophyletic (ii) for some pairs of orders,
like Laurales (red) and Magnoliales (orange), one order (here Laurales) is monophyletic
and in the descent of the Most Recent Common Ancestor of the second one (which is
paraphyletic) (iii) some others like Malpighiales (in light green) and Sapindales (in green)
are paraphyletic, with a break-up into several clades with several orders in between. Hence,
the adequacy between orders and clades in the tree is not excellent for the neighbor-joining
tree.

7 Supplementary figures
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Figure 3: Visualisation of the sequences of the whole data set, as a point cloud. One dot
is one sequence. Points of the twelve more numerous families are coloured while the others
are in grey. Dissimilarities are computed with the Smith-Waterman algorithm. Left: MDS,
projected on axis 1 and 2. Right, t-SNE.
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Figure 4: Visualisation of the sequences of the whole data set, as a point cloud. One dot is
one sequence. The points of the eight more numerous orders are coloured, while the others
are in grey. Dissimilarities are computed using 4-mers. Left: MDS, projected on axis 1
and 2. Right, t-SNE.
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Figure 5: Histograms of the Normalised Mutual Information between each molecular-based
clustering and the botanical classification, for the 30 replicates. Results obtained using the
Smith-Waterman dissimilarity.
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Figure 6: Values of the Normalised Mutual Information as a function of the entropy (left)
and the ratio rmean (right) computed of the botanical classification. Each point corresponds
to one of the four molecular-based clustering methods applied to one of the 30 replicates.
The x-axis is the value of the entropy or ratio rmean computed on the botanical classification,
the y-axis is the Normalised Mutual Information between the botanical classification and
the molecular-based one. Clustering is made using the tetramer-based distances.

9



0.5 1.0 1.5 2.0

0
.2

0
.4

0
.6

0
.8

1
.0

Entropy

N
M

I

Normalised Mutual Information as a function of the entropy

SBM 
Single Linkage
Ward
Complete Linkage

0.5 1.0 1.5 2.0

0
.2

0
.4

0
.6

0
.8

1
.0

r mean ratio

N
M

I

Normalised Mutual Information as a function of the r mean ratio

SBM 

Single Linkage

Ward

Complete Linkage

Figure 7: Values of the Normalised Mutual Information as a function of the entropy (left)
and the ratio rmean (right) computed of the botanical classification. Each point corresponds
to one of the four molecular-based clustering methods applied to one of the 30 replicates.
The x-axis is the value of the entropy or ratio rmean computed on the botanical classification,
the y-axis is the Normalised Mutual Information between the botanical classification and
the molecular-based one. Clustering is made using the hexomer-based distances.
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Figure 8: Unrooted phylogenetic tree built with neighbor-joining on the subset of sequences
belonging to orders with 15 or more sequences. For each order, the paths joining their
Most Recent Common Ancestor in the tree and each leaf labelled with this order has been
colored with a same color. Ericales (purple) is a monophyletic order. Laurales (red) is a
monophyletic order in the descent of Magnoliales (orange). Malphighiales (light green) and
Sapindales (green) are excessively paraphyletic.
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Histogram of SW−based distances.
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Figure 9: Histogram of Smith-Waterman dissimilarities.
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Histogram of tetramer−based distances.

Distance

F
re

q
u

e
n

c
y

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
5
0
0
0
0

1
0
0
0
0
0

2
0
0
0
0
0

3
0
0
0
0
0

Histogram of 6 mer−based distances.
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Figure 10: Histogram of 4mer-based (left) and 6mer-based (right) distances.
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Figure 11: Comparison between Smith-Waterman and kmer-based dissimilarities (length
k = 4). Density heatmap with logarithmic scale. x axis: kmer-based distance; y axis:
Smith-Waterman dissimilarity. The color at a given pixel represents the logarithm of the
number of pairs of sequences.
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