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Abstract

In order to solve fractional variational problems, there exist two theorems of nec-
essary conditions: an Euler-Lagrange equation which involves Caputo and Riemann-
Liouville fractional derivatives, and other Euler-Lagrange equation that involves only
Caputo derivatives. In this article, we make a comparison solving a particular frac-
tional variational problem with both methods to obtain some conclusions about which
method gives the optimal solution.

Keywords Fractional Derivatives and Integrals; Fractional Ordinary Differential Equa-
tions; Variational Problems.
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1 Introduction

The fractional variational calculus is a recent field, started in 1997, where classical variational
problems are considered, but in the presence of fractional derivatives or integrals [1, 6, 30].

In the last years numerous works have been developed tending to extend the theory of
the variational calculus in order to be able to be applied to problems of fractional variational
calculus. This is fundamentally due, on the one hand, to an important development of the
fractional calculus both from the mathematical point of view and its applications in other
areas (electricity, magnetism, mechanics, dynamics of fluids, medicine, etc, [4, 12, 20, 21, 23,
25]), which has led to great growth in its study in recent decades. On the other hand, the
fractional differential equations establish models far superior to those that use differential
equations with integer derivatives because they incorporate into the model issues of memory
[19] or later effects that are neglected in the models with classical derivative.

There are several definitions of fractional derivatives [17, 25]. The most commonly used
are the Riemann-Liouville fractional derivative and the Caputo fractional derivative. It is im-
portant to remark that while the Riemann-Liouville fractional derivatives [32] are historically
the most studied approach to fractional calculus, the Caputo [15, 16] approach to fractional
derivatives is the most popular among physicists and scientists, because the differential equa-
tions defined in terms of Caputo derivatives require regular initial and boundary conditions.
Furthermore, differential equations with Riemann-Liouville derivatives require nonstandard
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fractional initial and boundary conditions that lead, in general, to singular solutions, thus
limiting their application in physics and science [22, 23].

In order to solve fractional variational problems, there exist two theorems of optimality
conditions: an Euler-Lagrange equation which involves Caputo and Riemann-Liouville frac-
tional derivatives [2, 3, 4, 5, 6, 9, 13, 28, 29, 30, 31], and other Euler-Lagrange equation that
involves only Caputo derivatives [7, 10, 11, 14, 24, 26].

In the present work we will make a comparison between the solutions of the two Euler-
Lagrange equations.

The paper is organized as follows: some basic definitions of fractional derivatives and
fractional variational problems are shown in section two. Section three presents a particular
fractional variational problem, solutions of it using both methods and the comparison between
them. We end this paper with our conclusions.

2 Mathematical tools

2.1 Introduction to fractional calculus

In this section, we present some definitions and properties of the Caputo and Riemann-
Liouville fractional calculus. For more details on the subject and applications, we refer the
reader to [17, 32, 33].

Definition 1. The Mittag Leffler function with parameters α, β, is defined by

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
(1)

for all z ∈ C.

Definition 2. The Gamma function, Γ : (0,∞)→ R, is defined by

Γ(x) =

∫ ∞
0

sx−1e−s ds. (2)

Definition 3. The Riemann-Liouville fractional integral operator of order α ∈ R+
0 is defined

in L1[a, b] by

aI
α
x [f ](x) =

1

Γ(α)

∫ x

a

(x− s)α−1f(s) ds. (3)

Definition 4. If f ∈ L1[a, b], the left and right Riemann-Liouville fractional derivatives of
order α ∈ R+

0 are defined, respectively, by

RL
a Dα

x [f ](x) =
1

Γ(n− α)

dn

dxn

∫ x

a

(x− s)n−1−αf(s)ds

and
RL
x Dα

b [f ](x) =
(−1)n

Γ(n− α)

dn

dxn

∫ b

x

(s− x)n−1−αf(s)ds,

with n = dαe.
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Definition 5. If dnf
dxn
∈ L1[a, b], the left and right Caputo fractional derivatives of order

α ∈ R+
0 are defined, respectively, by

C
aD

α
x [f ](x) =

1

Γ(n− α)

∫ x

a

(x− s)n−1−α d
n

dsn
f(s)ds

and
C
xD

α
b [f ](x) =

(−1)n

Γ(n− α)

∫ b

x

(s− x)n−1−α d
n

dsn
f(s)ds,

with n = dαe.

Now some different properties of the Riemann-Liouville and Caputo derivatives will be
seen.

Remark 1. (Relation between the Riemann-Liouville and the Caputo fractional derivatives)
Considering 0 < α < 1 and assuming that f is such that RL

a Dα
x [f ], RL

x Dα
b [f ], C

aD
α
x [f ] and

C
xD

α
b [f ] exist, then

C
aD

α
x [f ](x) = RL

a Dα
x [f ](x)− f(a)

1− α
(x− a)−α

and
C
xD

α
b [f ](x) = RL

x Dα
b [f ](x)− f(b)

1− α
(b− x)−α.

If f(a) = 0 then
C
aD

α
x [f ](x) = RL

a Dα
x [f ](x)

and if f(b) = 0 then
C
xD

α
b [f ](x) = RL

x Dα
b [f ](x).

Remark 2. An important difference between Riemann-Liouville derivatives and Caputo
derivatives is that, being K an arbitrary constant,

C
aD

α
xK = 0 , C

xD
α
bK = 0,

however

RL
a Dα

xK =
K

Γ(1− α)
(x− a)−α, RL

x Dα
bK =

K

Γ(1− α)
(b− x)−α,

RL
a Dα

x (x− a)α−1 = 0, RL
x Dα

b (b− x)α−1 = 0.

In this sense, the Caputo fractional derivatives are similar to the classical derivatives.

Theorem 1. (Integration by parts. See [25])
Let 0 < α < 1. Let f ∈ C1([a, b]) and g ∈ L1([a, b]). Then,∫ b

a

g(x) CaD
α
xf(x) dx =

∫ b

a

f(x) RLx Dα
b g(x) dx+

[
xI

1−α
b g(x)f(x)

] ∣∣b
a

and ∫ b

a

g(x) CxD
α
b f(x) dx =

∫ b

a

f(x) RLa Dα
xg(x) dx−

[
aI

1−α
x g(x)f(x)

] ∣∣b
a .
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Moreover, if f(a) = f(b) = 0, we have that∫ b

a

g(x) CaD
α
xf(x) dx =

∫ b

a

f(x) RLx Dα
b g(x) dx

and ∫ b

a

g(x) CxD
α
b f(x) dx =

∫ b

a

f(x) RLa Dα
xg(x) dx.

2.2 Fractional variational problems

Consider the following problem of the fractional calculus of variations which consists in finding
a function y ∈ α

aE that optimizes (minimizes or maximizes) the functional

J(y) =

∫ b

a

L(x, y, CaD
α
xy) dx (4)

with a Lagrangian L ∈ C1([a, b]× R2) and

α
aE = {y : [a, b]→ R : y ∈ C1([a, b]), C

aD
α
xy ∈ C([a, b])},

subject to the boundary conditions: y(a) = ya , y(b) = yb.
Now Euler-Lagrange equations for this problem will be stated. In the first one appears

both Caputo and Riemann-Liouville derivatives (Theorem 2), meanwhile the second one only
depends on Caputo derivatives (Theorem 4).

The proof of the following theorem is in [30].

Theorem 2. If y is a local optimizer to the above problem, then y satisfies the next Euler-
Lagrange equation:

∂L

∂y
+ RL

x Dα
b

∂L

∂ C
aD

α
xy

= 0. (5)

Remark 3. Equation (5) is said to involve Caputo and Riemann-Liouville derivatives. This
is a consequence of the Lagrange method to optimize functionals: the application of integration
by parts (Theorem 1) for Caputo derivatives in the Gateaux derivative of the functional relates
Caputo with Riemann-Liouville derivatives.

Remark 4. Equation (5) is only a necessary condition to existence of the solution. We are
now interested in finding sufficient conditions. Typically, some conditions of convexity over
the Lagrangian are needed.

Definition 6. We say that f(x, y, u) is convex in S ⊆ R3 if fy and fu exist and are contin-
uous, and the condition

f(x, y + y1, u+ u1)− f(x, y, u) ≥ fy(x, y, u)y1 + fu(x, y, u)u1,

holds for every (x, y, u), (x, y + y1, u+ u1) ∈ S.
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The following theorem is valid only for the solution of the Euler-Lagrange equation in-
volving Riemann-Liouville and Caputo derivatives (5). Its proof can be seen at [6].

Theorem 3. Suppose that the function L(x, y, u) is convex in [a, b]×R2. Then each solution y
of the fractional Euler–Lagrange equation (5) minimizes (4), when restricted to the boundary
conditions y(a) = ya and y(b) = yb.

Following [26], in the below theorem, we will see an Euler-Lagrange fractional differential
equation only depending on Caputo derivatives.

Theorem 4. Let y be an optimizer of (4) with L ∈ C2 ([a, b]× R2) subject to boundary
conditions y(a) = ya , y(b) = yb, then y satisfies the fractional Euler-Lagrange differential
equation

∂L

∂y
+ C

xD
α
b

∂L

∂ C
aD

α
xy

= 0. (6)

Remark 5. We can see that the equation (6) depends only on the Caputo derivatives. It is
worth noting the importance that L ∈ C2 ([a, b]× R2), without this the result would not be
valid. As we remarked before, the advantage of this new formulation is that Caputo deriva-
tives are more appropriate for modeling problems than the Riemann-Liouville derivatives and
makes the calculations easier to solve because, in some cases, its behavior is similar to the
behavior of classical derivatives.

From now on, when we work with the Euler-Lagrange equation that uses derivatives of
Caputo and Riemann-Liouville (5), we will abbreviate it with C-RL and when we use the
Euler-Lagrange equation that uses only derivatives of Caputo (6), we will abbreviate it with
C-C.

Remark 6. Unlike the equation (5), at the moment, there are not sufficient conditions for
the equation (6) which only involves Caputo derivatives.

Now we present an example that we are going to solve using these two different methods,
in order to make comparisons.

3 Example

The scope of this section is to present two different candidates to be a solution for a particular
problem that arise from solving the two Euler-Lagrange equations presented in the previous
section.

First, we are going to solve the classical case, where only appears an integer derivative,
and then we are going to deal with the fractional case.

3.1 Classical case

The classical problem consist in finding a function y ∈ aE
′ that optimizes (minimizes or

maximizes) the functional
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J(y) =

∫ 1

0

(
(y′(x))

2 − 24 y(x)
)
dx,

y(0) = 0 , y(1) = 0,

where aE
′ = {y : [a, b]→ R : y ∈ C1([a, b])}.

To solve this (refer to [34]), we consider the Lagrangian

L(x, y, y′) = (y′)
2 − 24 y. (7)

Its Euler-Lagrange equation is
∂L

∂y
− ∂

∂x

(
∂L

∂y′

)
= 0,

that is,
y′′(x) = −12.

Solving this equation and taking into account that y(0) = y(1) = 0, we obtain the solution

y(x) = −6x2 + 6x. (8)

3.2 Fractional case

The fractional problem consist in finding a function y ∈ α
aE that optimizes (minimizes or

maximizes) the functional

J(y) =

∫ 1

0

((
C
0 D

α
x [y] (x)

)2 − 24 y(x)
)
dx,

y(0) = 0 , y(1) = 0,

where α
aE = {y : [a, b]→ R : y ∈ C1([a, b]), C

aD
α
xy ∈ C([a, b])}.

To solve this we consider the Lagrangian

L(x, y, C0 D
α
x [y]) = C

0 D
α
x [y]2 − 24 y. (9)

Like we said before, we are going to solve it using two methods, one with the C-RL
Euler-Lagrange (5) and the other one with the C-C Euler-Lagrange equation (6).

3.2.1 Resolution by C-RL equation

Applying the equation (5), we obtain

∂L

∂y
+ RL

x Dα
1

(
∂L

∂ C
0 D

α
x [y]

)
= 0

−24 + RL
x Dα

1

(
2 C

0 D
α
x [y]

)
= 0

RL
x Dα

1

(
C
0 D

α
x [y]

)
= 12.
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By definition,

RL
x Dα

1

[
(1− x)β

]
=

Γ(1 + β)

Γ(1 + β − α)
(1− x)β−α

and the property
RL
x Dα

1

[
(1− x)α−1

]
= 0,

which we have seen on remark 2, considering β = α we can conclude

C
0 D

α
x [y] (x) =

12

Γ(1 + α)
(1− x)α + c1 (1− x)α−1 (10)

where c1 ∈ R.
Taking into account the following equalities

(−1)n
n−1∏
j=0

(α− j) =
Γ(n− α)

Γ(−α)
,

(−1)n
n−1∏
j=0

(α− 1− j) =
Γ(n− α + 1)

Γ(−α + 1)
,

we can write

(1− x)α =
∞∑
n=0

(−1)n
∏n−1

j=0 (α− j)
n!

xn

=
∞∑
n=0

Γ(n− α)

Γ(−α)

xn

n!
,

(1− x)α−1 =
∞∑
n=0

(−1)n
∏n−1

j=0 (α− 1− j)
n!

xn

=
∞∑
n=0

Γ(n− α + 1)

Γ(−α + 1)

xn

n!
,

replacing this in (10),

C
0 D

α
x [y] (x) =

12

Γ(1 + α)

∞∑
n=0

Γ(n− α)

Γ(−α)

xn

n!
+ c1

∞∑
n=0

Γ(n− α + 1)

Γ(−α + 1)

xn

n!
.

Considering C
0 D

α
x

[
xβ
]

= Γ(1+β)
Γ(1+β−α)

xβ−α and the linearity of the Caputo derivative, we
obtain

y(x) =
12

Γ(1 + α)2
xα

∞∑
n=0

Γ(n+ 1)Γ(n− α)Γ(1 + α)

Γ(1)Γ(−α)Γ(1 + n+ α)

xn

n!
+

+
c1

Γ(1 + α)
xα

∞∑
n=0

Γ(n+ 1)Γ(n− α + 1)Γ(1 + α)

Γ(1)Γ(1− α)Γ(1 + n+ α)

xn

n!
+ c2,

where c2 ∈ R.
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Using the definition of the Hypergeometric function of parameters a, b, c [18]:

2F1(a, b, c, x) =
∞∑
n=0

Γ(a+ n)Γ(b+ n)Γ(c)

Γ(a)Γ(b)Γ(c+ n)

xn

n!
, (11)

we can rewrite the solution as

y(x) =
12

Γ(1 + α)2
xα 2F1(1,−α, 1 + α, x)+

+
c1

Γ(1 + α)
xα 2F1(1, 1− α, 1 + α, x) + c2.

Taking into account that y(0) = y(1) = 0, we obtain

yRL(x) =
12

Γ(1 + α)2
xα 2F1(1,−α, 1 + α, x)−

− 6

Γ(1 + α)2

xα

2F1(1, 1− α, 1 + α, 1)
2F1(1, 1− α, 1 + α, x).

(12)

Remark 7. This solution is valid only for α > 0.5 since otherwise the solution tends to
infinity and does not satisfy the terminal condition.

Finally, since L(x, y, u) = u2 − 24y is a convex function, indeed

L(x, y + y1, u+ u1)− L(x, y, u) = (u+ u1)2 − 24(y − y1)− u2 + 24y =
= u2 + 2uu1 + u2

1 − 24y − 24y1 − u2 + 24y =
= u2

1 + 2uu1 − 24y1

≥ −24y1 + 2uu1 = ∂2L(x, y, u, v)y1 + ∂3L(x, y, u, v)u1,

it is verified for every (x, y, u), (x, y + y1, u + u1) ∈ [0, 1] × R2, applying the theorem 3,
yRL minimizes the problem for 0.5 < α ≤ 1.

Remark 8. We can notice that Theorem 3 only works for functions y that satisfy the C-RL
Euler-Lagrange equation, but furthermore they must satisfy the boundary conditions. In the
case of not satisfying the boundary conditions (as in the case of 0 < α < 0.5), the theorem
does not work.

Remark 9. We can observed that the solution (12) tends to (8) when α tends to 1. This
means that when α = 1, we recover the solution of the classical problem.

3.2.2 Resolution by C-C equation

As the Lagrangian (9) L ∈ C2 ([0, 1]× R2), we can apply the Theorem 4. Then using the
equation (6), we obtain

∂L

∂y
+ C

xD
α
1

(
∂L

∂ C
0 D

α
x [y]

)
= 0

−24 + C
xD

α
1

(
2 C

0 D
α
x [y]

)
= 0

C
xD

α
1

(
C
0 D

α
x [y]

)
= 12.
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By definition,

C
xD

α
1

[
(1− x)β

]
=

Γ(1 + β)

Γ(1 + β − α)
(1− x)β−α

and the property in remark 2 that, unlike the Riemann-Liouville derivative,

C
xD

α
1 [d1] = 0,

for every d1 ∈ R, considering β = α we can conclude

C
0 D

α
x [y] (x) =

12

Γ(1 + α)
(1− x)α + d1. (13)

Note that in this step this equation is different from (10), and that is why we are going
to obtain two different solutions.

Now we can write

12

Γ(1 + α)
(1− x)α =

12

Γ(1 + α)

∞∑
n=0

(−1)n
∏n−1

j=0 (α− j)
n!

xn.

Taking into account the following equality

(−1)n
n−1∏
j=0

(α− j) =
Γ(n− α)

Γ(−α)
,

we obtain
12

Γ(1 + α)
(1− x)α =

12

Γ(1 + α)

∞∑
n=0

Γ(n− α)

Γ(−α)

xn

n!
.

Replacing this in (13),

C
0 D

α
x [y] (x) =

12

Γ(1 + α)

∞∑
n=0

Γ(n− α)

Γ(−α)

xn

n!
+ d1.

Considering C
0 D

α
x

[
xβ
]

= Γ(1+β)
Γ(1+β−α)

xβ−α and the linearity of the Caputo derivative, we
obtain

y(x) =
12

Γ(1 + α)

∞∑
n=0

Γ(n− α)

Γ(−α)

Γ(1 + n)

Γ(1 + n+ α)

xn+α

n!
+ d1x

α + d2,

where d2 ∈ R.
Using the definition (11) of the Hypergeometric function of parameters a, b, c, we can

rewrite the solution as

y(x) =
12

Γ(1 + α)2
xα 2F1(1,−α, 1 + α, x) + d1x

α + d2.

Taking into account that y(0) = y(1) = 0, we obtain

yC(x) =
12

Γ(1 + α)2
xα 2F1(1,−α, 1 + α, x)− 6

Γ(1 + α)2
xα. (14)
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Remark 10. Unlike yRL in (12), yC is valid for every 0 < α ≤ 1. However, we can not
ensure that it is a minimum of the problem because there are no sufficient conditions theorem
for the C-C Euler-Lagrange equation.

Remark 11. We can observe that the solution (14) tends to (8) when α tends to 1. This
means that both solutions of each Euler-Lagrange equations, yRL and yC tend to the solution
of the classical Euler-Lagrange equation when α = 1.

3.3 Comparison between methods

In this section we are going to show some graphics in order to compare the solutions obtained
from the different methods.

Figure 1 presents the convergence of both solutions yRL (12) in the left and yC (14) in
the right, when we take limit as α approaches one. We can see that both converge to the
classical solution y (8).

0.2 0.4 0.6 0.8 1

2

4

6

8

x

y(
x)

0.2 0.4 0.6 0.8 1

2

4

6

8

x

y(
x)

α = 1
α = 0.95
α = 0.9
α = 0.7
α = 0.55

Figure 1: Convergence of yRL and yC solutions

Remark 12. This figure shows us the difference between the shapes of the solutions obtained
from the different methods. We can clearly see how the shapes of the solutions yC are more
similar to the classical solution in contrast to the shapes of the solutions yRL.

Figure 2 presents a comparison between both solutions yRL (12) and yC (14), for different
values of α.

Remark 13. In this figure we can see how the difference between the shapes of both solutions
becomes more remarkable when α approaches 0.5, where the solutions yRL diverge as we saw
in Remark 7.

Figure 3 presents the solution yC (14) for α = 0.4.
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Figure 2: Comparison of the C-RL and C-C solutions

0.2 0.4 0.6 0.8 1
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C-C

Figure 3: Solution C-C for α = 0.4

Remark 14. While the C-RL Euler-Lagrage equation does not provide us solutions for the
cases 0 < α ≤ 0.5, the C-C equation does.
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Table 1 presents the values obtained in each case. To calculate the integrand we approx-
imate the Caputo fractional derivatives of both yC and yRL. For this we use a method of
L1 type that can be seen in [8, 27]. This method consists of making a regular partition of
the interval [0, 1] as 0 = x0 ≤ x1 ≤ ... ≤ xm = 1, of size h > 0 sufficiently small, and then
approximating the Caputo derivative as follows:

C
0 D

α
x [y] (xm) =

m−1∑
k=0

bm−k−1(y(xk+1)− y(xk)),

where

bk =
h−α

Γ(2− α)

[
(k + 1)1−α − k1−α] .

Then, to calculate the integrals, we use the Riemann sums approximation.

α C-RL C-C
1 -12.1752 -12.1752

0.95 -16.4431 -14.3133
0.9 -17.3685 -16.7006
0.8 -36.6555 -22.2567
0.7 -60.2608 -28.9016
0.55 -127.9983 -40.9804
0.4 the solution does not exist -55.5863

Table 1: Values obtained with C-RL and C-C

Remark 15. In Table 1 we can see that as we get closer to α = 0.5, the difference between
the values is very large, being the minimum the solution of the C-RL equation, while for
values 0 < α ≤ 0.5 obviously we only have the solution of the C-C equation, since it is the
only one that verifies the border conditions.

4 Conclusions

In this article, two theorems of necessary conditions to solve fractional variational problems
were studied: an Euler-Lagrange equation which involves Caputo and Riemann-Liouville
fractional derivatives (C-RL), and other Euler-Lagrange equation that involves only Caputo
derivatives (C-C). A particular example was presented in order to make a comparison between
both conditions.

We were able to get several conclusions. The first thing is that we were able to verify that
for 0.5 < α ≤ 1, the minimum was obtained from the solution of the C-RL Euler-Lagrange
equation, as suggested by the Theorem 3. Now, for 0 < α ≤ 0.5, the C-RL Euler-Lagrange
equation did not provide us with a solution, while C-C equation did. However, we wonder,
can we ensure that the solution of the C-C equation (yC) is the optimal solution for the
problem at least for these values of α? The answer to this question is NO. Although in [26] it
was shown that the solution yC is a critical solution of the problem, and we also saw that its
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shape is graphically more similar to the shape of the classical solution, we cannot ensure that
yC is an optimal solution or even for the cases in which 0 < α ≤ 0.5. If there was a Theorem
of Sufficient Conditions for the C-C equations, our example would not verify it, because if
it did, this Theorem would be in contradiction with the Theorem of Sufficient Conditions
for the C-RL equations (Theorem 3). This means that the convexity conditions over the
Lagrangian does not reach to obtain sufficient conditions for the C-C equations. Then, if
there were other conditions and such a Theorem existed, in order not to contradict Theorem
3, it should depends on the value of α.

In other hand, we can observe that when α = 1, yC was the classical solution and it was
the minimum of the problem, but when α decreased, when 0.5 < α < 1, these solutions were
not minimums, because the yRL solutions were. There is a discontinuity in the yC solution
when α goes to 1. Then, why yC would be the minimum solutions when 0 < α < 0.5? If they
were minimums, it would exist another discontinuity of these solutions with respect to α.

In conclusion, while working with C-C equations make the work easier when it comes to
calculations, many times we have to be careful with the implementation of this method since
C-RL Euler-Lagrange equations are the ones that truly provide us with the optimal solution.
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