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DEM models using direct and indirect shape
descriptions for Toyoura sand along monotonous

loading paths
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aINRAE, Aix Marseille Univ, RECOVER, Aix-en-Provence, France

Abstract

Two different DEM models are proposed for quantitatively simulating Toyoura

sand macroscopic response along various monotonous loading paths and for a

wide range of initial densities. The first model adopts spherical particles and

compensates for the irregular shapes of Toyoura sand grains by adding an ad-

ditional rolling resistance stiffness to the classical linear contact model. The

second model follows a different strategy whereby rolling stiffness is abandoned

in favor of more complex shapes in the form of a few different 3D polyhedrons

defined from a 2D micrograph of Toyoura particles. After a preliminary analysis

of the number of particles for optimal REV simulations, the two different mod-

eling approaches are calibrated using triaxial compression in so-called drained

conditions, adopting a common contact friction angle for the two models. Sim-

ilar predictive abilities are then obtained along so-called undrained (constant

volume) triaxial compression and extension paths. Although it leads to 9-times

longer simulations, the polyhedral approach is easier to calibrate regarding the

contact parameters. It also enables a more precise description of the microstruc-

ture in terms of particle shapes and initial fabric anisotropy, whose crucial role

is evidenced in a parametric analysis.

Keywords: Toyoura sand, DEM, Rolling resistance contact model, Polyhedral

particles, Anisotropy
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1. Introduction1

As a discrete material, sand exhibits a complex behavior when subjected to2

external loading, showing material anisotropy, non-linear stress-strain response,3

contraction or dilation depending on the void ratio, and additional plastic strain4

on a loading-unloading path. That mechanical behavior depends on interparticle5

friction and on possible loss or gain of contacts between grains when sand is ex-6

posed to an anisotropic or isotropic loading. While materials are most often sub-7

jected to anisotropic loadings in a realistic setting, this leads to an anisotropic8

evolution of the contact normal fabric tensor (Oda et al., 1985), whereby nor-9

mal vectors tend to align progressively in the direction of the loading applied10

until a constant direction is reached at the critical state (Li and Dafalias, 2012).11

Since the Discrete Element Method (DEM) (Cundall and Strack, 1979) tracks12

the dynamic motion of each individual particle defined in terms of mass, shape,13

and inertia, it reproduces directly these discrete phenomena and can be used14

as a powerful alternative technique to classical soil constitutive models (Nguyen15

et al., 2014). Indeed, relevant macro-scale solid behaviors have been obtained16

both qualitatively by e.g. Wang et al. (2016); Yimsiri and Soga (2010) and17

quantitatively by Hosn et al. (2017); Lee et al. (2012); Gu et al. (2020); Rorato18

et al. (2021) on different sands.19

For the sake of simplicity, classical 3D-DEM simulations use spherical shaped20

particles to represent the grains of granular materials, however, the real shapes21

of grains are irregular and far from being that simple. For example, Miura22

et al. (1998) presented the substantial influence of grain shape on the stress-23

strain response of sands. Furthermore, studies on angular stainless steel powder24

(Shinohara et al., 2000) highlighted the direct relation between particle an-25

gularity and particle interlocking. Numerically, attempts have been made to26

represent grain shapes inside DEM simulations starting with an additional ro-27

tational spring at the contact level (Iwashita and Oda, 1998; Jiang et al., 2015;28

Irazábal et al., 2017; Hosn et al., 2017; Ai et al., 2011; Sibille et al., 2019; Gu29
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et al., 2020; Rorato et al., 2021) so that it can resist relative rotation and in-30

directly introduce the effect of the particle shapes on the DEM simulations to31

some extent. On the other hand, clumping/overlapping a number of spheres32

enables one to directly approximate shapes of real particles e.g. (Garcia et al.,33

2009; Katagiri et al., 2010; Sibille et al., 2019), though with a possible negative34

effect of the excessive roundness value for clumps on the material response. A35

third strategy is to introduce convex polyhedral shapes inside the DEM simu-36

lation (Lee et al., 2012; Nassauer et al., 2013). This strategy may seem to be37

more realistic since the morphology of the grains can be reproduced correctly38

and computational time can be optimized with an adequate number of vertices.39

In the case where a higher number of vertices may be required, it seems inter-40

esting to eventually resort to a level set strategy (Jerves et al., 2016; Duriez and41

Bonelli, 2021) whereby a distance-to-surface function is considered, in a discrete42

fashion, for every grain and contact is detected through a simple interrogation43

of these distance data.44

In the particular case of Toyoura sand chosen as a quite standard material for45

geomechanics, previous DEM approaches have adopted both spherical particles46

in conjunction with rolling resistance (Gu et al., 2020) and clump strategies47

(Katagiri et al., 2010) for quantitative comparisons with experiments. While the48

inclusion of clumps was somewhat beneficial, there were still some difficulties49

in both studies for obtaining quantitative DEM results that could closely fit50

different experiments on Toyoura sand with very different initial void ratios.51

The present analysis aims to extend the knowledge corpus on Toyoura sand52

and these previous DEM studies, proposing efficient and versatile DEM ap-53

proaches for a discrete-based, quantitative simulation of that material. More54

specifically, two 3D-DEM models are developed to simulate the mechanical be-55

havior of Toyoura sand in porosity and loading conditions yet unexplored from a56

quantitative point of view. The first model is a spherical grain model that incor-57

porates rolling resistance. A second model aims to directly introduce realistic58

shapes of Toyoura sand grains by using convex polyhedral particles. Section 259

describes the DEM formulations and the setup of the polyhedral and sphere60
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models while using PFC 6 software (Itasca, 2018). Section 3 presents a para-61

metric study and calibration procedures for the two models including a brief62

study on a proper REV definition, for an optimal setup of the 3D-DEM models.63

Finally, Section 4 shows the validation of the two models along various stress64

paths (drained and undrained triaxial compression and extension) and different65

initial void ratio values.66

2. DEM formulations67

2.1. Contact detection and resolution68

Every DEM cycle, contact detection and resolution schemes are applied prior69

to the application of a constitutive contact relation. The contact detection70

process starts with a broad phase where an axis-aligned bounding box (extended71

cell) is generated for each particle. Contact is possible once two extended cells of72

two pieces overlap. The second step includes a narrow phase contact detection73

algorithm by which the pair of pieces identified as possibly colliding objects will74

be investigated in more detail. In the case of spheres interactions, the process75

is straightforward since it is sufficient to detect the contact by knowing the76

position of the spheres and their radii.77

However, in the case of polyhedrons, the process is much more complicated78

and the Gilbert-Johnson-Keerthi (GJK) algorithm (Gilbert et al., 1988) is ex-79

ecuted in PFC. The latter is an efficient iterative algorithm used to detect the80

overlapping state between two convex objects. It is based on the concept of81

the Minkowski difference of two convex polyhedrons, i.e. a convex polyhedron82

itself which includes the origin if the two bodies overlap, while working in an83

iterative simplex-algorithm manner to possibly avoid a full computation of that84

difference. In order to further save computational time, the GJK algorithm is85

applied in PFC while considering that a particle shape actually includes a core86

polyhedron which is extended by sweeping spheres, whose common diameter is87

given by a rounding coefficient also discussed in Section 3.2. Particles inter-88

action is then obtained as soon as the Minkowski difference of core polygons89

approaches the space origin within the margin of the rounding coefficient, see90
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Figure 1. The same approach can for instance be found in contact algorithms91

proposed by Zhao and Zhao (2021) for superellipsoids.

Figure 1: Contact detection and Minkowski difference for two convex particles A and B,
whose core polygons do not overlap (Left) but that are still in contact due to rounding (Right,
rounding artificially enlarged): 2D illustration for clarity.

92

Denoting ds ą 0 the separation length between the two core shapes as ob-93

tained from the Minkowski difference, dr1 ą 0 and dr2 ą 0 the rounding values94

of the two particles, a penetration depth dp ď 0 can be obtained for contacting95

particles as follows:96

dp “ ds ´ dr1 ´ dr2 (1)

Contact normal is also obtained from that construction of dp (Figure 1), while97

contact location is finally defined as the center of the overlapped area and de-98

termined based on other algorithms (Preparata and Muller, 1979; Shamos and99

Hoey, 1976).100

That GJK-based determination of contact normal and penetration depth101

may fail depending on relative positions and rounding coefficient. In this case,102

the Expanding Polytope Algorithm (EPA, Bergen, 1999) is applied by PFC,103

with a higher computational demand.104

In both cases, this contact resolution scheme logically affects computational105

times depending on the number of polyhedra vertices and those costs will be106
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estimated in Section 4.2.107

2.2. Inter-particle contact models108

Interacting particles first sustain contact forces following a classical linear109

contact model. An elastic normal contact force first evolves as follows:110

~fn “ Kn
~δn (2)

111

Kn “ Emod
πr2

R1 `R2
with r “ minpR1, R2q (3)

where ~δn is the relative normal-displacement along the contact normal ~nc and112

Kn is the normal stiffness function of the normalized parameter Emod and of113

R1 and R2 the radii of the two contacting spheres. The linear shear force is114

updated incrementally as follows:115

~fs “ ~f0s `Ks∆~δs (4)

where ~f0s is the linear shear force at the beginning of a time step and Ks the con-116

tact tangential stiffness. The source of the shear displacement ~δs is the relative117

tangential velocity at the contact point including the linear and angular relative118

velocities of the bodies. Finally, the Coulomb friction condition is imposed to119

limit the shear force of the contact as follows:120

||~fs|| ď ||~fn||µ (5)

where µ is the friction coefficient. This contact model applies to both proposed121

models (sphere and polyhedron).122

In addition, a rolling resistance stiffness is also incorporated at the contact123

level inside the sphere model in order to compensate for the non-sphericity of124

the real sand particles. The contact moment is incremented linearly with the125

accumulated relative rotation of the contacting pieces. At the contact level the126

rolling stiffness and moment incremental laws are characterized as follows:127

Kr “ KsR
2
m (6)
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1

Rm
“

1

R1
`

1

R2
(7)

∆ ~Mr “ Kr∆~θb || ~Mr|| ď µr||~fn||Rm (8)

∆~θb “ ∆~θ ´∆θt.~nc (9)

Where µr, Rm, ∆~θ and ∆~θb are defined as the rolling friction coefficient,128

effective radius, rotation increment and relative bend-rotation increment, re-129

spectively. Equation 9 shows that for the present contact law, the twisting130

rotational component ∆θt does not contribute to the rotational increment that131

is used in the rolling friction law.132

2.3. A 2D-image-based 3D polyhedral description of Toyoura sand grains133

When introducing the real grain shapes directly into DEM simulations, con-134

vex polyhedrons are used as 3D elements which consist of a number of vertices135

forming triangle facets. While the convexity of particles is an inherent limita-136

tion of the approach and PFC software, it will be checked it has no detrimental137

consequences on the results since Toyoura sand grains are measured to be close138

to convex by Liu and Yang (2018), with a 2D convexity = 0.937 in average while139

unit values would correspond to truly convex particles.140

The definition of the present 3D polyhedral elements for Toyoura sand relies141

on a very simple 2D image-based workflow where a microscopic photograph of142

Toyoura sand is used (Fig. 2) to build three representative shapes of Toyoura143

sand grains, instead of the spherical grains. According to Fig. 2, Toyoura144

sand particles have a wide variety of shapes and different aspect-ratio values145

that range at least from 1.5 to 2.3, consistent with computed tomography data146

presented by Katagiri et al. (2010). From these observations, we propose to147

create just three polyhedral shapes that may reflect these morphological traits.148

The preparation procedure is relatively simple starting from 3D PFC tem-149

plates of convex polyhedrons and then trying to manually adapt the vertices150
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positions to fit and mimic the form of the 2D-image of Toyoura sand. The151

aspect ratio is used to assess how close the proposed shapes are to the real152

grains. It is uniquely defined as the ratio between the largest and the middle153

principal dimensions: L1{L2 denoting L3 ď L2 ď L1 the three principal di-154

mensions of particles. In the case of the 2D image, the information about the155

third (smallest) principal direction L3 is logically missing and it is arbitrarily156

assumed as L3 “ 0.75L2 for the three convex polyhedrons. While there is no a157

prior justification for this assumption, the subsequent successful calibration and158

validation of the model will confirm its usefulness. In addition, the roundness159

of these three shapes is minimized since Toyoura sand is characterized by its160

sharp edges. The effect of roundness and aspect ratio on the DEM simulations161

will be investigated in more detail in section 3.2. Finally, the three convex162

polyhedrons created present different aspects and in the same time fit within163

the lower, middle, and upper ranges of the aspect-ratio values of Toyoura sand,164

as shown in Fig. 2. Indeed, Table 1 shows a high convergence between the165

aspect-ratio values for the proposed shapes (forming a default “Group 1”) and166

the real particles. An auxiliary ”Group 2” of 3 shapes is also proposed after167

reducing each aspect ratio i.e. the length of the larger principal dimension L1168

while keeping the length of the two other principal dimensions constant, for the169

purpose of a parametric analysis in Section 3.170

Figure 2: Original micrograph of the particle shape of Toyoura sand (Li, 2011) vs the three
proposed shapes (Group 1).

Finally, the true sphericity shape parameter (Wadell, 1932) is also used to171
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Table 1: 3D-DEM polyhedra aspect-ratio vs Toyoura sand aspect-ratio

Toyoura 2D-image 3D-DEM 3D-DEM
Particle from Fig. 2 Group 1 Group 2, see § 3.2
P1 2.3 2.3 1.6
P2 1.59 1.59 1.1
P3 1.86 1.85 1.3

assess the shape definition of the 3D convex polyhedrons. The true sphericity172

parameter is defined as follows:173

ψ “
SSphere

SPolyhedron
(10)

Where SSphere is the surface area of a sphere of the same volume as the particle174

and SPolyhedron is the actual surface area of the particle. Fig. 3 presents the175

values of the true sphericity of each particle. True sphericity values are consis-176

tent with those presented by Rorato et al. (2021) from computed tomography177

on Hostun sand, which shares a similar angularity with Toyoura sand (Altuhafi178

et al., 2013). Also, Fig. 3 shows that the true sphericity values of Group 1 are179

lower than the values of Group 2 which are aligned with the higher aspect ratio180

values of Group 1.181

Figure 3: Left: true sphericity values of the different particles in Group 1 and Group 2. Right:
Aspect ratio values vs true sphericity values for Group 1 and Group 2.

Finally, Table 2 presents the number of facets and vertices for each parti-182

cle, as directly obtained after manually adapting the templates and retaining183

their convex hulls for the PFC computations. In addition to computational184
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time, the obtained mechanical behavior also depends on that resolution in the185

shape description. A systematic study on that aspect is nevertheless outside186

the present scope, while the model results will serve as the sole justification for187

these properties.188

Table 2: 3D-DEM polyhedra particles number of vertices and facets for Group 1

Particle Number of vertices Number of facets
P1 128 252
P2 78 152
P3 203 402

2.4. Numerical packing and generation procedure189

For spheres, the same particle size distribution as Toyoura sand is used in190

these simulations as shown in Fig. 4, modulo a scaling factor which is me-191

chanically transparent by virtue of the contact model, e.g. Eq. 3. Regarding192

the 3D-DEM polyhedral model, the ratio between the maximum and minimum193

convex polyhedron size is assigned for simplicity to be the same as the uni-194

formity coefficient CU of Toyoura sand and equal to 1.7, as shown in Fig. 4.195

Size is defined for the polyhedrons based on the sphere being equivalent in vol-196

ume. The three representative shapes inside the generated sample share the197

same number of particles. Note that the present 3D-DEM approaches do not198

consider the particle-crushing phenomenon which would exist at high pressures199

(Yokura et al., 2015), while the present simulations are performed for relatively200

low-pressure cases (maximum confining pressure is 400 kPa).201

Particles are enclosed within a rectangular parallelepiped with initial dimen-202

sions of LX=200 mm, LY =200 mm, LZ=300 mm and the sample is stressed203

using rigid walls. Unless otherwise specified, numerical samples contain around204

7500 particles as shown in Fig. 5 and justified in next Section 2.5.205

The DEM microstructure is assessed by examining both the evolution of206

the contact normal fabric tensor and the evolution of the coordination number207

during the different tests. The coordination number of an assembly of particles208
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Figure 4: Particle size distributions of Toyoura sand (after Dong et al., 2016) vs DEM models.

Figure 5: The two 3D-DEM models with different particle shapes: left spherical particles,
where colors correspond to diameters; right convex polyhedral, where different colors corre-
spond to different shapes (particles P1,P2,P3).
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can be expressed as follows:209

Z “
2Nc

Nb
(11)

where Nc is the number of contacts and Nb is the number of bodies. The contact210

normal fabric tensor Fij can be evaluated as follows:211

Fij “
1

Nc

ÿ

cont.

ni b nj (12)

where ni is the contact normal direction. The anisotropy A of the fabric tensor212

Fij is quantified and defined as the ratio between the deviatoric part of the213

fabric tensor and one-third of the first invariant of the fabric tensor. By taking214

into account the axisymmetric condition of the triaxial test around axis Z, the215

equation yields to:216

A “
3pFZZ ´ FXXq

FZZ ` 2FXX
“ 3pFZZ ´ FXXq ñ |A| “ 3pFI ´ FIIIq (13)

Where FI and FIII “ FII are the fabric eigenvalues.217

Inspired by laboratory tests where samples could be prepared by using dif-218

ferent methods such as air pluviation (Tatsuoka et al., 1986) or moist tamp-219

ing (Verdugo and Ishihara, 1996) with an influence on initial fabric, two different220

procedures are herein adopted for packing generation.221

As a first option, DEM samples are prepared starting from a cloud of parti-222

cles with no contacts. Afterwards, an isotropic compaction is applied by moving223

the walls towards the sample with maximum velocity and target compaction224

pressure. During the compaction phase, porosity can be controlled depending225

on the friction coefficient and rolling coefficient (for the spherical cases) values226

which are tuned, independently of the subsequent shear loading phase, to reach227

the same initial porosity values as the reference experiments considered below.228

In a second preparation method, the cloud of non-overlapping particles is229

first let to settle under vertical acceleration (enhanced gravity). A top wall then230

moves downwards to ensure good contact with the particles before applying an231

isotropic pressure by moving the six walls towards the sample, until forming the232

consolidated stage of the triaxial loading.233
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The spherical model is observed to be insensitive to the preparation proce-234

dure for what concerns its fabric, which can be explained by the isotropic nature235

of spherical shapes, presented simulations with spheres then apply indistinctly236

to either preparation method and start with a fairly isotropic fabric. On the237

other hand, the polyhedron model shows a strong sensitivity to the prepara-238

tion method, which will be discussed in connection with contact parameters in239

Section 3.3.240

Finally, the quasi-static condition is ensured for the different triaxial tests241

by satisfying the following condition for the inertial number Ir ď 10´4.242

2.5. Effect of the number of particles on 3D REV response243

Because the DEM results are here classically interpreted in average through244

the consideration of stresses, strains or fabric tensor defined at the sample scale,245

it is important to check whether a Representative Elementary Volume (REV)246

is reached in the sense that the mechanical response is fully defined from the247

average initial properties (e.g. porosity) with no other influences coming e.g.248

from the placements of individual particles in each case. For given average initial249

properties, a previous study (Chareyre, 2003) illustrated how results dispersion250

(e.g. on peak values or volumetric response) possibly exists but decreases when251

the number of particles increases towards forming a REV. Previous 3D-DEM252

studies at the REV scale can be found with various numbers of particles, possibly253

as different as 1000 (Cheng et al., 2018) and about 44000 (Gu et al., 2020). A254

REV determination is then proposed in this study for the spherical model,255

investigating the effect of the number of particles on the homogeneity of the256

REV and its impact on the computational time, while keeping all the other257

parameters of the DEM simulation constant (Table 3). The number N of spheres258

in the sample is changed gradually from 400 to 14500 spheres, using smaller259

spheres and a constant total size of the sample since the present DEM results260

are particle size-independent.261

To obtain a view inside the different samples, the porosity was monitored in262

two different ways. A first measure calculated the overall porosity nb based on263
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Table 3: Spherical DEM parameters

Remark Contact Packing (see also Fig. 4 for psd)
Emod Kn{Ks µ µr Nb Initial nb Initial A
(MPa) (-) (-) (-) (-) (-) (-)

REV analysis 450 3 0.6 0.38 from 400 0.402 0
of Section 2.5 to 14500

Rolling resistance 450 3 0.6 0 7530 0.400 0
analysis of Section 3.1 or 0.38

Proposed model 450 3 0.6 0.38 7530 from 0.40 0
for Toyoura sand to 0.453

(Sections 3.4 and 4)

Eq. 14, representing the average porosity for the whole sample.264

nb “ 1´
1

LxLyLz

ÿ

Nb

Vb (14)

where Nb is the total number of (spherical) particles inside the sample and Vb265

is the volume of one ball. A second value of the porosity nc is more local, being266

defined within a measurement region, as described in Eq. 15.267

nc “ 1´

ř

Nb

Vb `
ř

Ni

Vi ´
ř

bc

Vc

Vreg
(15)

where Vi is the intersected volume between balls and the measurement region,268

Ni is the number of balls that intersect the measurement region and Vc is the269

overlapped volume between the balls that lie inside the measurement region.270

Here, the measurement region is a ball positioned at the center of the sample271

and has a diameter equal to 90 % of the shortest length of the sample. Thus, the272

homogeneity of the sample in terms of porosity can be evaluated by comparing273

the two calculated porosities mentioned previously.274

Doing so, global porosity nb is controlled to be equal to 0.402 for 9 samples275

with different numbers of particles, while the second value of the porosity nc is276

locally evaluated for each sample. The results illustrated in Fig. 6 show that277

by increasing the number of particles, the sample becomes more homogeneous278

thanks to a smaller proportion of particles along boundaries and the values of279

the two calculated porosities become closer. On the other hand, for the samples280
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that use lower numbers of particles, voids are concentrated at the volume that281

is adjacent to the peripheral walls. Fig. 6 also shows how computational time282

increases by increasing the number of particles used in the simulation. Com-283

putational times refer to a parallel execution of PFC on a workstation with 8284

cores, 3.0 GHz CPU with 64 GB RAM. Finally, Fig. 7 shows that the effect285

of the number of particles on the deviatoric and volumetric responses becomes286

negligible starting from a number of particles N equal to 7500, defining the REV287

scale consistently with e.g. Duverger et al. (2021) on another granular material.288

Figure 6: Number of spheres N vs computational time and nc,nb.

Figure 7: Effect of the number of particles on the deviatoric and volumetric responses for the
same initial porosity nb=0.402 and confining pressure = 400kPa.
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3. Parametric analysis and calibration of the spheres and polyhedron289

models290

An extended parametric study was performed on the sphere and polyhedron291

models. Concerning the sphere model, the study contained the effect of the292

presence or absence of the rolling resistance stiffness, see Table 3. For the293

polyhedron model, the study involved the effect of the shape parameters: aspect294

ratio or true sphericity, roundness, as well as the effect of the initial anisotropy295

value in conjunction with contact parameters. Table 4 presents a summary of296

the proposed simulations for the polyhedron model.297

Table 4: Summary of simulations with the 3D-DEM polyhedron model

Object Set number Polyhedrons Group Variable condition(s)
(from Table 5) (from Table 1)

Influence of shape Set 1 Group 1 Particles relative rounding
parameters in Section 3.2 [0.0001,0.01,0,5]

Influence of shape Set 1 Group 1 vs Group 2 Particles aspect ratio
parameters in Section 3.2 (i.e. true sphericity)

Interplay of initial Set 1 vs Set 2 Group 1 Sample preparation
fabric with contact (i.e. initial fabric A) and

parameters in Section 3.3 contact parameters
Proposed model for Set 2 Group 1 Void ratios,

Toyoura sand in confining pressures
Sections 3.4 and 4.1 and loading paths

3.1. Influence of rolling resistance on the sphere model298

The effect of the rolling resistance coefficient µr is investigated herein. Fig. 8299

shows the results of DEM simulations with and without µr together with the300

corresponding experimental data for a drained triaxial test for Toyoura sand301

obtained by Fukushima and Tatsuoka (1984). Fig. 8 shows the advantage that302

can be added by the rolling resistance friction law to the strength and volumetric303

strain behaviors for the sphere model. In addition, the simulations confirm304

the crucial role played by the rolling stiffness to represent the irregular-shaped305

particles of Toyoura sand indirectly.306
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Figure 8: Effect of the rolling resistance friction on the DEM results in comparison to ex-
perimental data by Fukushima and Tatsuoka (1984). Initial void ratio=0.668 and confining
pressure=400kPa

3.2. Influence of shape parameters for the polyhedral grain model307

The roundness of the particle plays an important role on the mechanical308

response (Cho et al., 2006) so that a parametric study is carried out on the effect309

of the particles’ roundness when using polyhedrons, through the consideration310

of the sweeping spheres and their rounding coefficient primarily used for the311

contact algorithm discussed in Section 2.1. A relative rounding coefficient for312

sweeping spheres of radius r1 is defined in PFC as the ratio between r1 and313

the radius r2 of another sphere that has the same volume as the polyhedron.314

Fig. 9 presents three final shapes for the same initial polyhedrons P1, P2 and P3315

after rounding their core shapes using different relative rounding values. The316

simulations were performed by using the contact parameters of Set 1 (Table 5)317

and by using the polyhedral shapes from Group 1 (Table 1).318

Table 5: 3D-DEM polyhedron model parameters

Set Contact Packing (see also Fig. 4 for psd)
Number Emod Kn{Ks µ Nb Initial A Relative rounding

(MPa) (-) (-) (-) (-) (-)
Set 1 300 2 0.8 7490 -0.20 0.0001
Set 2 200 3 0.6 7490 0.26 0.0001

Fig. 10 and 11 illustrate the effect of the rounding of the particles on the319

macroscopic and microscopic behaviors. The initial coordination number in-320

creases by decreasing the rounding of the particles. Accordingly, the sample321
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Figure 9: Different relative rounding values for particles P1 (top row), P2 (middle row) and
P3 (bottom row). The particles have relative rounding values from left to right 0.0001, 0.01
and 0.5.
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with a lower rounding value has a higher resistance and a larger volumetric322

dilation. Fig. 11 shows the evolution of the anisotropy of the contact normal323

fabric tensor, as per Eq. 13, during the shearing phase for various roundness324

values. Note that the initial anisotropy observed in the case of the polyhedron325

model is due to the non-spherical shapes of the polyhedron (Azéma and Radjai,326

2010). The results show that the sample with a higher relative rounding value327

has less tendency to present an initially anisotropic fabric tensor. Finally, since328

Toyoura sand is observed to be the less rounded among various sands from 2D329

images (Liu and Yang, 2018), therefore the relative rounding value of 0.0001 is330

used for the calibration of the polyhedron model in Section 3.4.331

Figure 10: Evolution of deviatoric stress vs axial strain (left) and volumetric strain vs axial
strain (right) for different relative rounding values. Cross points are experimental data by
Fukushima and Tatsuoka (1984).

Figure 11: Evolution of the fabric tensor and coordination number vs axial strain during the
drained triaxial test for different relative rounding values with a mean effective stress = 200
kPa and initial void ratio = 0.671.
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Next, the effect of the particle aspect ratio is investigated by considering the332

Group 2 shapes with a reduced aspect ratio (Table 1) together with those of333

Group 1 while keeping all the other parameters constant (set 1 of Table 5). The334

results in Fig. 12 show the crucial role played by the particle aspect-ratio on the335

strength of granular material. The sample with higher aspect-ratio values, or336

lower values for true sphericity, has a higher resistance and a larger volumetric337

dilation. In addition, Fig. 13 presents the evolution of the fabric tensor and338

coordination number for the two groups during the triaxial compression test.339

The results show that the sample with particles of Group 2 (lower aspect-ratio340

value) has less tendency to induce an initially anisotropic fabric and lower initial341

coordination number.342

The above results about the dependency of the initial anisotropy values on343

the aspect ratio and rounding values are consistent with the results of the spheres344

model (isotropic well-rounded particles) presented in Fig. 14 which show that345

the anisotropy value is almost equal to zero after the confining phase of the346

triaxial test.347

3.3. Interplay of initial fabric with contact parameters for the polyhedron model348

Unlike spheres, polyhedron packings show different initial fabric anisotropy349

depending on the generation procedure. Using the first method exposed in Sec-350

tion 2.4 (isotropic compaction), an initial anisotropy is obtained because of the351

irregular shapes which make the fabric more sensitive to be initially anisotropic,352

with A “ ´0.2 here. In the second method involving vertical settlement, pack-353

ing shows an anisotropy value A “ 0.26 which means that the contacts were354

more aligned vertically. It is worth mentioning that X-ray tomography of labo-355

ratory sand samples prepared by air pluviation method (Wiebicke et al., 2020)356

confirm the present DEM observations in two aspects. First, Wiebicke et al.357

(2020) observed a rounded Caicos sand to show an isotropic fabric even after358

pluviation, consistent with our previous observations on spheres. Second, they359

also measured after preparation an initially anisotropic fabric, with virtually360

the same A, on Hostun sand which shares similar shape features with Toyoura361
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Figure 12: Evolution of deviatoric strain vs axial strain and volumetric strain vs axial strain
for different aspect-ratio values. Cross points are experimental data (Fukushima and Tatsuoka,
1984).

Figure 13: Evolution of the fabric tensor and coordination number vs axial strain during the
drained triaxial test for different aspect-ratio values with a mean effective stress = 200 kPa
and initial void ratio = 0.671.

Figure 14: Evolution of the fabric anisotropy A of the sphere model during two drained triaxial
tests with confining pressures = 200,400 kPa and initial void ratios = 0.671,0.668.
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sand according to Altuhafi et al. (2013).362

Aiming for an equivalent calibration exercise in spite of the different fabrics,363

both samples can still reproduce a given drained triaxial compression (Fig. 15),364

by using two different sets of parameters (Set 1 or 2 in Table 5). Because the365

Set 1 sample with initial A “ ´0.2 shows more contact normal vectors aligned366

to the horizontal (X,Y ) plane than to the vertical direction Z which is the367

major principal direction for the test, it is necessary to adopt higher contact368

parameters in Set 1: pEmod;µq “ p300 MPa; 0.8q instead of p200 MPa; 0.6q for369

Set 2.370

Figure 15: Two possible calibrations of the polyhedron model on a drained triaxial test
by (Fukushima and Tatsuoka, 1984) by using two different sets of contact parameters in
connection with two different preparation methods, i.e. fabric: Set 1 (e.g. µ=0.8 while A “

´0.2) and Set 2 (e.g. µ=0.6 while A “ 0.26)

The predictive performances of these two polyhedron models are then com-371

pared on different stress paths such as undrained triaxial compression and ex-372

tension. Fig. 16 shows simulations of Set 1 and Set 2 for triaxial compression373

and extension tests at the same initial mean effective stress (400 kPa) along374

with experimental data of dry-deposited Toyoura sand from Yoshimine (2013).375

When performing such blind predictions, the model with Set 1 parameters can376

successfully fit the undrained triaxial compression but its behavior is much too377

stiff when sheared in extension. However, the model with Set 2 parameters gives378

a very good prediction for both the compression and extension paths in terms379

of deviatoric and effective mean pressure responses, as shown in Fig. 16.380

These simulations highlight how DEM models may appear to show non-381
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Figure 16: Predictions of two polyhedron models along undrained compression and extension
stress paths against experimental data by Yoshimine (2013): interplay of packing anisotropy
and contact parameters. Left: Set 1 model with A=-0.2 and e.g. µ=0.8; right: Set 2 model
with A= 0.26 and e.g. µ=0.6
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unique contact parameters or fail in their predictions, if one considers a limited382

set of loading paths or neglects fabric considerations. Here, the second prepa-383

ration procedure (vertical deposition under gravity) associated with Set 2 is384

more similar to laboratory preparation methods (the air pluviation method)385

and gives a more physical fabric, with contact normal vectors that tend to align386

along the direction of deposition. It then enables the DEM model to be more387

performant along various loading paths, as it will be further evidenced in the388

coming sections.389

3.4. Calibrated parameters390

Final calibration of both spherical (with four contact parameters, Table 3)391

and polyhedron (with three contact parameters, Table 5) models is finally pro-392

posed, based on a drained triaxial compression test for Toyoura sand obtained393

by Fukushima and Tatsuoka (1984) and presented in Woo and Salgado (2015).394

The sphere model is calibrated for an initial void ratio and a confining pressure395

equal to 0.668 and 400kPa respectively, while the polyhedron model considers396

an initial void ratio and confining pressure equal to 0.671 and 200 kPa respec-397

tively. Other tests will be considered for validation in Section 4.1, such that398

both models will eventually address the same experimental data set, either in a399

calibration or in a validation stage. It is also recalled that the DEM models have400

initial void ratio values equal to the experimental void ratios for the different401

triaxial tests, see Section 2.4.402

Following Sections 3.2 3.3, the polyhedron model adopts particles with Group403

1 shapes and the Set 2 configuration in Table 5 because laboratory samples were404

prepared using the air pluviation method.405

The calibration results of both models can closely fit the experimental data406

as shown in Fig. 17. It is remarkable that the friction coefficient is the same in407

both DEM approaches, highlighting the role of the rolling resistance model to408

take into account complex particle shapes in an indirect way.409
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Figure 17: Calibration of the sphere and polyhedron models by using one drained triaxial test
in each case. The cross points are experimental data (Fukushima and Tatsuoka, 1984).

4. Validation of the sphere and polyhedron models and discussion410

4.1. Validation411

The two models were finally validated checking their prediction abilities for412

other drained triaxial tests and for undrained conditions.413

Fig. 18 and 19 represent the predictions of sphere and polyhedron models414

together with the experimental results for the drained triaxial tests for various415

initial void ratios and confining pressures. The results of the two models present416

a good fit with the corresponding experimental results for the deviatoric stress417

and volumetric strain responses. A slight difference is just to note for the418

volumetric strain behavior in the case of the two relatively loose (less dilatant)419

samples. We observed in other simulations with spheres, not presented here,420

that introducing a flexible membrane boundary condition instead of rigid walls421

would slightly improve the agreement for these two tests.422

As for the undrained compression tests, a fully strain-controlled model with423

constant volume is used to simulate such a loading condition. Simulations are424

reported for extension and compression conditions and for six samples with dif-425

ferent initial void ratio values which ranged between 0.794 and 0.88 and could426

be obtained systematically in the simulations. The simulated responses agree427

closely with the experimental data, revealing the good capability of the pro-428

posed models to capture the complex behavior of the granular material during429

the undrained conditions, as shown in Fig. 20 and 21. Firstly, the behavior430
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Figure 18: Behavior of the sphere model for Toyoura sand under various drained triaxial
compressions serving as calibration (e0 “ 0.668;σ3 “ 400 kPa) and validation paths. Experi-
mental data from (Fukushima and Tatsuoka, 1984)

Figure 19: Behavior of the polyhedron model for Toyoura sand along various drained tri-
axial compressions serving as calibration (e0 “ 0.671;σ3 “ 200 kPa) and validation paths.
Experimental data from (Fukushima and Tatsuoka, 1984)
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is sensitive to different initial void ratios. Secondly, the model captures the431

difference between the extension and compression triaxial behaviors naturally,432

confirming the fact that the sand response is much more contractive in triaxial433

extension than when loaded in triaxial compression.434

Figure 20: Validation of sphere model for Toyoura sand sheared under undrained triaxial
extension and compression for various void ratios and an initial mean effective pressure = 400
kPa. Experimental data by (Yoshimine, 2013).

Figure 21: Validation of the polyhedral grain model for Toyoura sand under undrained triaxial
extension and compression for various void ratios and an initial mean effective pressure = 400
kPa. Experimental data by (Yoshimine, 2013).

4.2. Discussion435

While the two models give very good predictions for the macroscopic me-436

chanical behavior of Toyoura sand, the polyhedron model showed a somewhat437

higher capability of fitting the volumetric strain behavior and especially the438

initial contraction regime and substantial differences remain from a microscopic439
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point of view. For example, for the same initial void ratios, the 3D-DEM polyhe-440

dron model has an initial coordination number higher than the 3D-DEM model441

with the rolling resistance model, as shown in Fig. 22.442

Furthermore, since the polyhedral model contained flat and angular-shaped443

particles, the sample showed an inherent anisotropy, which is a function of444

the generation procedure. This feature was reported in previous studies of445

Toyoura sand (Yoshimine et al., 1998; Tatsuoka et al., 1986) and could not be446

captured by using spherical particles. While this has not been detrimental to447

the performances of the spherical model in the present study on monotonous448

paths, some unrealistic fabric for spheres model has been reported by Zhao et al.449

(2018), which may relate with lower predictions abilities of these approaches in450

some cases, such as cyclic undrained triaxial test (Gu et al., 2020; Sibille et al.,451

2021).452

On practical aspects, the simulations using the polyhedral particles are still453

a time-consuming task, with the calculation time depending on the number of454

vertices of each piece utilized inside the contact detection scheme. Fig. 22 shows455

that the computational time of the present 3D-DEM polyhedron model was al-456

most 9 times higher than the 3D-DEM model with a rolling resistance model457

and for the same numerical conditions. However, the rolling resistance contact458

model includes four contact mechanical parameters which are somewhat tedious459

to calibrate, while only three such parameters are required for the polyhedron460

model. While some complexity hides in the latter model behind the character-461

ization of the representative shapes, experimental techniques are getting more462

and more available for a direct measurement of those shapes (e.g. Katagiri et al.,463

2010; Rorato et al., 2021).464

5. Conclusions465

This paper has established two discrete element models with different kinds466

of rigid particles for describing the microscopic and macroscopic behaviors of467

Toyoura sand, as well as a thorough study on important model features from468

the particle- to the packing-scale.469
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Figure 22: Left: evolution of the coordination number for the sphere model and convex polyhe-
dron model during drained triaxial test with an initial porosity n=0.402. Right: computation
time for two drained triaxial tests for the two models with a target axial strain = 0.2.

At the particle scale, the crucial role of shapes, roughnesses and angularity470

of Toyoura sand grains on its mechanical response was taken into account within471

the 3D-DEM simulations, either artificially by adding rolling resistance stiffness472

between spherical particles or by introducing the realistic particles via convex473

polyhedron shapes. The convex polyhedron model was an image-based model474

in which the 2D shape and the aspect-ratio of three different real particles of475

Toyoura sand were used to create three representative particles for Toyoura476

sand that shared the same number of particles inside the 3D-DEM model. For477

a better control over the shapes proposed, a parametric study was carried out478

on the effect of the particles’ roundness and aspect ratio on the mechanical479

response. The results first showed that samples with a lower aspect ratio and480

a higher roundness value have less tendency to be initially anisotropic after an481

isotropic packing preparation. Second, the strength of the sample increased482

with an increasing particle aspect ratio and a decreasing roundness, along with483

a more dilatant volumetric response.484

At the packing-scale, the REV configuration in terms of the number of par-485

ticles is the first important issue. As for the optimization of a 3D-DEM simu-486

lation, 7500 particles were chosen to construct a homogeneous sample in terms487

of porosity, showing a unique stress-strain behavior. Moreover, a study on the488

effect of the initial fabric on triaxial compression and extension tests empha-489

29



sized once more the crucial role played by the initial contact normal orientation490

on the mechanical response. This parameter corresponded to different sample491

preparation methods for the laboratory triaxial tests. Having a sample that492

was prepared in the same way as the experimental laboratory sample, allowed493

us to select one set of parameters capable of calibrating and validating different494

stress paths. The numerical simulations of the two models of Toyoura sand495

proposed showed remarkable quantitative and qualitative agreement with the496

experimental results for various stress paths and a wide range of initial void497

ratios.498

Finally, the computational time for the convex polyhedron model was found499

to be nine times higher than that of the sphere model using the same numerical500

conditions such as the number of particles, strain rate and final axial strain501

value.502
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