

Une structure emboîtée universelle pour les interactions quantitatives entre les plantes et leurs parasites?

Benoît Moury, Jean-Marc Audergon, Sylvie Baudracco-Arnas, Safa Ben Krima, François Bertrand, Nathalie Boissot, Mireille Buisson, Valérie Caffier, Melissa Cantet, Sylvia Chanéac, et al.

▶ To cite this version:

Benoît Moury, Jean-Marc Audergon, Sylvie Baudracco-Arnas, Safa Ben Krima, François Bertrand, et al.. Une structure emboîtée universelle pour les interactions quantitatives entre les plantes et leurs parasites ?. Réunion annuelle du réseau E3GP3, Dec 2021, Visioconférence, France. hal-03553078

HAL Id: hal-03553078 https://hal.inrae.fr/hal-03553078

Submitted on 3 Feb 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Benoît Moury – Réseau e3gp3 – Paris (enfin presque) – 6-7/12/2021

Qualitative plant immunity: two main genetic and evolutionary models

Qualitative plant immunity: two main genetic and evolutionary models

Qualitative plant immunity: two main genetic and evolutionary models Host

Qualitative plant immunity: two main genetic and evolutionary models Host

Is there analogous structures (and genetic models) in the case of quantitative infection matrices?

Increasing infection

Is there analogous structures (and genetic models) in the case of quantitative infection matrices?

Increasing infection

What can these structures tell us about evolution and genetic bases of quantitative plant – parasite interactions?

Analysis of 32 quantitative matrices

Plant	Parasite	
Apricot	Pseudomonas syringae	Bacteria
Barley Apple tree Tomato Melon Wheat Pepper Tomato and other <i>Solanum</i> spp. Fabaceae Pea Grapevine	Puccinia hordei Venturia inaequalis Botrytis cinerea Podosphaera xanthii Zymoseptoria tritici Phytophthora capsici Phytophthora infestans Aphanomyces euteiches Aphanomyces euteiches Plasmopara viticola	Fungi/oomycetes
Melon	Aphis gossypii	Insects
Potato Potato and other <i>Solanum</i> spp.	Globodera pallida Globodera pallida	Nematodes
Pepper	Potato virus Y	Viruses

Analysis of 32 quantitative matrices

- Resulting from cross-inoculations under controlled conditions
- Dimensions: at least 6 × 6
- Without missing data
- Quantitative traits: parasite load, parasite-induced damages, latency period, dissemination capacity

Nestedness results

All matrices but two (n°21 and 32) are strongly and significantly nested

Biological interpretation of nestedness: genetics

Biological interpretation of nestedness: genetics

Susceptibility of plant genotype j:

 \rightarrow Suitability of an « additive » model: Inf_{ii} (infection level) = P_i × S_i

Biological interpretation of nestedness: genetics Suitability of the additive model

Model 1 (27 matrices) : Infection ~ parasite + plant + parasite * plant
→ Interaction not significant for 5 matrices

 \rightarrow Part of variance explained by interaction $\omega^2 = 0$ to 0.28 (mean 0.11)

Model 2 (all 32 matrices) : Infection ~ parasite + plant

 \rightarrow part of variance explained by model ω^2 = 0.40 to 0.98 (mean 0.69)

Biological interpretation of nestedness: trade-offs

One could have imagined **trade-offs** between:

- spectrum and efficiency of resistance among plant genotypes
- host range breadth and pathogenicity among parasite genotypes

... but nestedness suggests the opposite

Biological interpretation of nestedness: trade-offs

Host range breadth of parasites

Biological interpretation of nestedness: trade-offs

Host range breadth of parasites

is positively correlated to the mean pathogenicity (in hosts)

Biological interpretation of nestedness: trade-offs Plant

Spectrum of action of plant resistance

Biological interpretation of nestedness: trade-offs Plant

Spectrum of action of plant resistance

is positively correlated to the mean resistance efficiency

Occurrence of trade-offs in plant or parasite genotypes?

Among parasites

Host range breadth and pathogenicity

Threshold = 30% of maximal infection value

Occurrence of trade-offs in plant or parasite genotypes?

Modularity results

• Six matrices show weak but significant modularity (2 or 3 modules)

Apple tree -*Venturia inaequalis*

> Wheat-*Zymoseptoria tritici*

Modules linked to the presence of resistance genes / QTLs
(3 of 6 matrices)

14

Messages à rapporter à la maison

• Strong nestedness for almost all matrices (30/32) / weak and rare modularity (6/32)

 \rightarrow Reject the "matching allele" model

 \rightarrow Possible models: additive model; variations on the "gene for gene" model

Messages à rapporter à la maison

• Strong nestedness for almost all matrices (30/32) / weak and rare modularity (6/32)

 \rightarrow Reject the "matching allele"

 \rightarrow Possible models: additive model; variations on the "gene for gene" model

- Rare trade-off between the level of resistance and its spectrum of action (plant)
- Rare trade-off between the level of pathogenicity and host range breadth (parasite)

 \rightarrow Consequences in terms of management of quantitative resistance

Contributors

Audergon Jean-Marc², Baudracco-Arnas Sylvie³, Ben Krima Safa⁴, Bertrand François⁵, Boissot Nathalie², Buisson Mireille⁶, Caffier Valérie⁷, Cantet Mélissa², Chanéac Sylvia⁸, Constant Carole⁹, Delmotte François¹⁰, Dogimont Catherine², Doumayrou Juliette¹, Fabre Frédéric¹⁰, Fournet Sylvain¹¹, Grimault Valérie¹², Jaunet Thierry¹³, Justafré Isabelle¹⁴, Lefebvre Véronique², Losdat Denis¹⁵, Marcel Thierry⁴, Montarry Josselin¹¹, Morris Cindy E.¹, Omrani Mariem^{1,2}, Paineau Manon¹⁰, Perrot Sophie¹², Pilet-Nayel Marie-Laure¹¹, Ruellan Youna²

¹Pathologie Végétale, INRAE, 84140 Montfavet, France ²GAFL, INRAE, 84140, Montfavet, France ³Laboratoires ASL, 755 chemin de Meinajaries, 84140 Montfavet, France ⁴University of Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850 Thiverval-Grignon, France ⁵Bayer Seeds SAS, Chemin de Roquemartine Mas Lamy, 13670, Saint-Andiol, France ⁶GAUTIER SEMENCES, Route d'Avignon, 13630 Eyragues, France ⁷Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000 Angers, France ⁸TAKII FRANCE SAS, 660 Chemin de la Crau, 13630 EYRAGUES, France. ⁹Sakata Vegetables Europe, Domaine de Sablas, rue du moulin, 30620 Uchaud, France ¹⁰SAVE, INRAE, Bordeaux Sciences Agro, ISVV, 33140 Villenave d'Ornon, France ¹¹IGEPP, INRAE, Institut Agro, Univ. Rennes, 35653 Le Rheu, France ¹²GEVES, 25 rue Georges Morel, CS 900024, 49071 Beaucouzé, France ¹³HM.Clause, 1 chemin du Moulin des Ronzières, 49800 La Bohalle, France ¹⁴Vilmorin, Mas Pazac, 30210 Ledenon, France ¹⁵RIJK ZWAAN France, La Vernède, 30390 Aramon, France