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1. Introduction 25 

There is a growing awareness that (agro)biodiversity is crucial to agricultural production and food 26 

security, with an urgent call for agroecological farming approaches that enhance ecosystem services 27 

provided by biodiversity, such as biological pest control, pollination and nutrient cycling (FAO, 2019; 28 

IPBES, 2019). Important components of biodiversity in agricultural landscapes are compositional 29 

heterogeneity (i.e. number and proportions of different land use/cover types) and configurational 30 

heterogeneity (i.e. spatial arrangement of those land use/cover types) (Fahrig et al., 2011). Whilst 31 

agricultural intensification on large farms in developed countries has led to simplified landscape 32 

structures dominated by annual crops, smallholder farmers in developing countries typically manage 33 
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a diversity of crops, animals, trees and natural resources, creating complex and diverse agricultural 34 

landscapes that often comprise natural and semi-natural lands (Ricciardi et al., 2021).  35 

However, fostering biodiversity within agricultural landscapes can enhance farm productivity 36 

through the provision of ecosystem services, but can also directly contribute to better food security 37 

and income (Bommarco et al., 2013; Frison et al., 2011; Pilling et al., 2020), especially in the context 38 

of smallholder farmers in the tropics who typically face multiple challenges with securing household 39 

food security and nutrition (e.g. Muthayya et al., 2013) . For example, it has been demonstrated that 40 

integrated tree-crop-livestock systems on smallholder farms provide a greater diversity of nutritious 41 

food products (Herrero et al., 2017). Whereas, conservation of wild vegetables in agricultural 42 

landscapes is seen as important as they are usually rich in micronutrients and can complement 43 

staple food crops (Bvenura and Afolayan, 2015; Mavengahama et al., 2013). Agricultural landscape 44 

diversity can also support household food security through income diversification by e.g. the sale of 45 

tree products (Alobo Loison, 2015; Sibhatu and Qaim, 2018; Waha et al., 2018). Fruits, fodder and 46 

fuelwood from trees or shrubs can be sold on markets and can represent a significant proportion of 47 

household income for smallholder farmers (Miller et al., 2017), particularly for poor households (Koffi 48 

et al., 2020). This income can then be used to purchase food items on markets, which is an adaptive 49 

strategy during food shortage periods (Koffi et al., 2017). Moreover, trees can improve food security 50 

through the provision of fuelwood (wood and charcoal) as it is the primary source of energy used by 51 

rural households for cooking (Adkins et al., 2012).  52 

Agroforestry systems (Nair, 1993) are a tangible example of a diverse agricultural landscape. A 53 

specific case of agroforestry systems are the “parklands” in the Sahel, where farmers have preserved 54 

indigenous trees over the past centuries, and introduced exotic trees in their fields in relation to the 55 

large spectrum of ecological, economic and cultural services they provide (Miller et al., 2017; Reed et 56 

al., 2017; Sinare and Gordon, 2015 ). This has resulted in diverse agricultural landscapes (Lykke et al., 57 

2004; Sambou et al., 2017), where trees have an important and direct role in nutrition as they 58 

produce fruits, nuts and leaves that can be consumed by humans. These food items, e.g. baobab 59 

(Adansonia digitata) leaves, or jujube (Ziziphus mauritania) fruit pulp are additional sources of 60 

carbohydrates and proteins in the diets of the local population (Chivandi et al., 2015). 61 

The underlying processes and effects of agricultural landscape diversity on food security are, 62 

however, complex. The spatial configuration of land use patches drives many processes occurring in 63 

agricultural systems, e.g., pest infestation (Kebede et al., 2019; Sow et al., 2020) and crop 64 

pollination through bee abundance (Otieno et al., 2015). For instance, it has been shown that a high 65 

proportion of semi-natural areas in the agricultural landscape of the Senegalese Peanut Basin can 66 



significantly contribute to the control of millet head miner moth (Heliocheilus albipunctell) by natural 67 

enemies (Soti et al., 2019). The spatial composition of landscape elements is determinant as well, 68 

but often implies trade-offs between ecosystem services. For example, at the tree scale, a density of 69 

10 trees/ha would be optimal to support crop productivity in F.albida parkland (Roupsard et al., 70 

2020). In agroforestry systems, trees can boost rural development (i.e.,. through increased incomes, 71 

Bado et al., 2021) while at the same time trade-offs occur between crop productivity and tree 72 

growth and products (Tschora and Cherubini, 2020). While trees can often increase crop yields, 73 

particularly in the case of nitrogen-fixing trees (e.g. Kho et al., 2001), they can also lead to yield 74 

penalties as a result of competition for light, water or nutrients. For instance, it has been observed 75 

that shading by fruit trees such as the African locust bean (Parkia biglobosa), decreases millet yield in 76 

parklands of Burkina Faso (Sanou et al., 2012). These trade-offs could be minimized by relying on a 77 

mix of tree species with contrasting functional diversity. In general, Sahelian parklands are made-up 78 

of a diversity of tree species, and their spatial arrangement can vary over short distances (Bayala et 79 

al., 2015). Hence, we can assume that in parklands, the direction and magnitude of the tree effects 80 

on food security is tightly linked to agricultural landscape composition and configuration resulting in 81 

trade-offs and or synergies among the existing ecosystem services.  82 

Previous studies addressing the contribution of agroforestry to food security often relied on a 83 

simplified conceptualization of agricultural landscape diversity. Studies addressing the effects of 84 

trees on crop productivity mainly dealt with one tree species at a time (Bado et al., 2021; Ndoli et al., 85 

2017; Roupsard et al., 2020; Sanou et al., 2012), and seldom considering tree diversity in the 86 

surrounding landscape of the field, and often only considering tree density or tree cover (Bado et al., 87 

2021; Duriaux Chavarría et al., 2018; Hadgu et al., 2009; Leroux et al., 2020; Yang et al., 2020). 88 

However, it can be assumed that combinations of tree species will lead to different effects on crop 89 

productivity and hence on food availability. Similarly, when dealing with the contribution of 90 

agricultural landscape diversity to household food security, most studies focused on tree cover 91 

configuration (i.e., tree cover, tree density and number of tree patches) and did not account for tree 92 

species richness or agricultural landscape diversity per se (i.e. in terms of land use types) (Baudron et 93 

al., 2019; Ickowitz et al., 2014; Nyberg et al., 2020; Rasmussen et al., 2020, 2019). In these previous 94 

studies, tree cover configuration was derived from (i) publicly available global datasets of tree cover 95 

(e.g. Rasmussen et al., 2019) or (ii) simple forest/non forest maps derived from satellite images with 96 

a moderate spatial resolution (e.g. Baudron et al., 2019b). Such products are, however, not reliable 97 

to account for the fine-grained landscape diversity of complex parklands, such as in the Sahel. The 98 

use of publicly available, high-spatial resolution satellite images such as the Sentinel-2 constellation 99 



has allowed improvement in land-use mapping in complex agricultural landscapes (Gbodjo et al., 100 

2020).  101 

The objective of this study is to assess the contribution of agricultural landscape diversity to food 102 

security of smallholder farmers in agroforestry parklands in Senegal. Specifically, we adopted an 103 

empirical approach to answer the following questions: (1) do diverse agricultural landscapes increase 104 

crop yields (in this case, millet), and (2) what are the direct and indirect links between agricultural 105 

landscape diversity and household food access? To answer these questions, we produced a fine-106 

grained characterization of the agricultural landscape using up-to-date satellite images in 107 

combination with field monitoring and household surveys, and applied Gradient Boosting Machine 108 

and Correlation Network Analysis, respectively.  109 

2. Material and Methods 110 

2.1. Study area 111 

The study was conducted in 2018 in the Groundnut Basin in Central Senegal (Figure 1) where 112 

groundnut has been the main cash crop since colonial times. The first study site, Niakhar (14°54N, 113 

16°44W) is in the Northern part of the Groundnut Basin, while the second site, Nioro (13°75N, 114 

15°80W) is in the Southern part at the border with Gambia (Figure 1a). Each site covers about 450-115 

km². The climate in Niakhar is sahelo-sudanian with annual rainfall ranging from 400 to 650 mm, 116 

whilst Nioro has a sudanian climate with annual rainfall between 600 and 800 mm. The rainy season 117 

in both sites lasts from July to October, with August and September being the wettest months, 118 

whilst the dry season occurs from November to June. Tree cover in the region is greatly determined 119 

by annual rainfall (Brandt et al., 2015), and by farmers’ selection and management (Sambou et al., 120 

2017). The sites host the two dominant types of parklands of the region. Niakhar is dominated by 121 

Faidherbia albida (38% of the trees), a leguminous nitrogen-fixing species that improves crop yields 122 

through improvements in water and nutrient availability (Sileshi, 2016) and in microclimate 123 

conditions (Sida et al., 2018). Pods and leaves of F. albida are also used as livestock feed. Parklands in 124 

Niakhar are diverse with more than 60 species in total, Adansonia digitata, Balanites aegyptiaca and 125 

Borassus aethiopum being the most important ones (Figure 1f). Nioro has less diverse parklands with 126 

about 50 species in total, largely dominated by Cordyla pinnata (71% of the trees) followed by 127 

Azadirachta indica. C. pinnata is an important species for the local population, because it provides 128 

construction woods, fodder for livestock, medicinal plant parts and seedpod pulp of high nutritional 129 

value (Lykke, 2000; Sinare and Gordon, 2015).,However, C. pinnata is overexploited (legal and illegal 130 

logging) and considered as a declining species in the region (Lykke, 2000).  131 



The population density of the Niakhar and Nioro sites was estimated at 122 hab/km² (standard 132 

deviation: 52 ha/km2) and 187 hab/km² (standard deviation: 82 ha/km²) respectively 133 

(https://www.worldpop.org/). In both sites, rural people practice small-scale agriculture to secure 134 

their livelihoods, with low use of external inputs. Pearl millet (Pennisetum glaucum (L.) R. Br.) 135 

(cultivated on 50% and 33% of the total area in 2018 in Niakhar and Nioro, respectively) and 136 

groundnut (Arachis hypogaea L.) (on 30% and 40% of the total area in 2018 in Niakhar and Nioro, 137 

respectively) are the main cultivated food crops (Figure 1b and Figure 1d). Pearl millet and 138 

groundnut are mainly cultivated in a biennial rotation. Pearl millet contributes to food security and 139 

livelihood as it provides both food and income. In both sites, more than 65% of rural households eat 140 

pearl millet twice a day, five days of the week. Millet is the cornerstone of food security for rural 141 

population in both sites during the lean period as its consumption increases by more than 50% 142 

during this period (IPAR, 2017). Other crops are sorghum (Sorghum bicolor (L.) Moench), cowpea 143 

(Vigna unguiculata L.), roselle (Hibiscus sabdariffa L.) and maize (Zea mays L.). Due to demographic 144 

pressure and the resulting expansion of the cultivated area, natural woodlands have strongly 145 

decreased over the past decades (Brandt et al., 2016; Herrmann et al., 2013). Hence, natural 146 

vegetation is mainly present in the form of scattered trees in cropped fields (i.e. parklands), which 147 

account for 6% of the total area in both sites (“Tree” category in Figure 1b and Figure 1d). 148 

2.2. General overview of the approach 149 

Figure 2 gives an overview of the approach of our study. We empirically investigated the different 150 

pathways connecting agricultural landscape diversity to household food security. A first analysis was 151 

conducted to investigate the impact of agricultural landscape diversity on millet yield (as part of 152 

food availability; Figure 2b) and unravel the contribution of biophysical and crop management 153 

variables (see Table 1) using a Gradient Boosting Machine algorithm (Leroux et al., 2020; see Section 154 

2.5.2) on a 40 fields sample. In a second analysis, using cross-sectional data on 412 households, we 155 

explored the direct and indirect relationships linking agricultural landscape diversity to household 156 

food access (i.e. HFIAS) using a conceptual model adapted from Gergel et al. (2020) based on 157 

correlation network analysis (see Figure 2c). Below we describe in more detail the methods used for 158 

data collection (geospatial data, field monitoring and household surveys) and for the statistical 159 

analyses and modelling.  160 

2.2.1. Indicators of food security: millet yield and Household Food Insecurity Access 161 

Scale (HFIAS) 162 

Food security at household level is complex and not easy to quantify since it encompasses food 163 

availability, food access, food utilization and food stability (FAO, 1983). Food availability means the 164 



physical availability of food, focusing on the supply side and therefore includes all crop, livestock and 165 

tree foodstuff produced and/or collected on the farm. Food access refers to physical, social and 166 

economic access to available food and thus indicates the ability of a household to be in possession of 167 

sufficient resources to obtain appropriate foods for a nutritious diet. Food utilization, on the other 168 

hand, includes a wide range of factors, particularly the contribution of food consumption to the 169 

health and nutritional status of the individuals of a household. Food stability is a cross-cutting 170 

dimension meaning that the availability and access to food at all times. In this study, we focused on 171 

(i) food availability, using millet yield as a proxy, and (ii) food access, assessed with the Household 172 

Food Insecurity Access Scale (HFIAS) indicator. The food utilization dimension was not evaluated in 173 

this study.  174 

It is acknowledged that the diversity of food crops produced and or bought contributes to food 175 

security. However, because our study integrates parkland diversity and a lot of variables related to 176 

this aspect, we had to rely on a limited number of variables to grasp the relationship between 177 

agricultural landscape diversity and food security. For crops, we decided to focus on millet. The 178 

choice of millet yield as a proxy for food availability was based on the fact that crop production 179 

accounts for a large part of food availability in the typical farming systems of the study sites 180 

(Ritzema et al., 2017), with millet being the main staple food crop (IPAR, 2017). A Household Food 181 

Insecurity Access Scale (HFIAS) categorical variable was used to measure household food access. 182 

HFIAS has been widely used as a monitoring indicator of food security at household level (Jones et 183 

al., 2013). It relies on nine questions to capture the occurrence of a specific condition associated with 184 

the experience of food insecurity in a household during the previous 30-days (Coastes et al., 2007). 185 

2.2.2. Indicators of landscape and tree diversity 186 

Landscape diversity was assessed using the landscape Shannon and Simpson diversity indices 187 

calculated from a land use and land cover (LULC) map (Table 1,Ndao et al., 2021). Both indices 188 

account for LULC richness (i.e. number of LULC classes) and LULC abundance (i.e. the number of 189 

pixels per LULC class), and hence are by definition sensitive to the level of detail of the land use 190 

classification system adopted. The Shannon index is sensitive to rare LULC classes while the 191 

Simpson index is sensitive to the dominant LULC classes (as it gives more weight to common LULC 192 

classes). However it has been shown that Simpson and Shannon indices tended to increase with the 193 

level of land use categorization (e.g. Liu et al., 2013; Peng et al., 2007). In this study we used a land 194 

cover-land use typology with a very limited number of classes (11 classes) and hence the landscape 195 

diversity information provided by the Shannon and Simpson indices can be considered as the “basis 196 

level” of landscape diversity we can expect for our study areas. Tree cover, number of tree patches 197 



(i.e. contiguous pixels classified as tree in the LULC map) and mean size of tree patches (Table 1) 198 

were also derived from the LULC map and used as indicators of the potential amount of tree 199 

resources available to households (e.g. Rasmussen et al., 2020, 2019). Lastly, we also surveyed fields 200 

to quantify tree density, tree species richness, and the tree Shannon and Simpson indices (see 201 

Section 2.4 for details). 202 

2.2.3. Co-variables  203 

Further, a range of co-variables were included in the analysis to explain millet yield and HFIAS. For 204 

millet yield, these were biophysical field-level variables (e.g. soil organic carbon, total nitrogen and 205 

phosphorous) and crop management variables (e.g. amount of mineral nitrogen applied) (see 206 

Table 1 for the full list). Total soil nitrogen and total soil phosphorous are extracted from the 207 

AfSoilGrids database (Hengl et al., 2017). For HFIAS, the co-variables were farming system variables 208 

(e.g. millet production per capita), farm income (e.g. the presence or absence of revenue from tree 209 

resources) and energy-related variables (e.g. the presence or absence of fuelwood use) (see Table 1). 210 

However, after visual screening of the variability of each variable, the tree income variable was 211 

removed from the analysis since most of households did not sell tree products suggesting that cash 212 

income coming from agricultural landscape diversity do not contribute to household food access for 213 

the two parklands considered. Indeed, tree species generally used as cash crops over the Sahel such 214 

as Parkia biglobosa and Vittelaria paradoxa accounted for less than 1% of the trees of our study areas 215 

(Ndao et al., 2021a). 216 

2.3. Household surveys and field monitoring 217 

2.3.1. Village and household selection 218 

A weighted stratified strategy was designed for the field monitoring and the household surveys, 219 

based on a remote sensing approach taking into account landscape diversity (Ndao et al., 2018, 220 

2021b). The Niakhar and Nioro sites were first segmented into landscape units (Figure 1). Each 221 

landscape unit is assumed to be homogeneous in terms of agro-environmental conditions, 222 

landscape composition and farming practices (Bellón et al., 2018). Landscape units were 223 

subsequently classified into four and five landscape classes in Niakhar and Nioro respectively (see 224 

Table S1 for their description). The landscape classes were defined based on remote sensing and 225 

unsupervised hierarchical clustering using a set of biophysical variables (plant productivity and its 226 

inter-annual changes, evapotranspiration, woody cover and soil texture), assuming that changes in 227 

the plant productivity are due to changes in environmental conditions and farming practices (see 228 

Ndao et al. 2021). Based on this landscape classification, 19 and 18 villages were chosen in Niakhar 229 

and Nioro, respectively. The number of villages per landscape class was weighted by the proportion 230 



of the total area of the study site occupied by that landscape class (Figure 1). For the study, 12 231 

households per village were randomly selected within a households list provided by each village 232 

head, resulting in 228 and 216 households in Niakhar and Nioro for surveying, respectively. After 233 

cleaning of the database, 391 households were finally kept in the analysis. 234 

2.3.2. Household surveys 235 

The heads of the selected households were interviewed between July and August 2018, at the start 236 

of the cropping season when food stocks from the last rainy season started to run out. The 237 

standardized questionnaire addressed household composition and functioning, farm characteristics, 238 

parkland characteristics, tree use and included the nine generic occurrence questions used to 239 

construct the HFIAS indicator. The surveys were conducted with an Android Tablet and the Global 240 

Positioning System (GPS) coordinates of each household were recorded. The variables collected in 241 

the household surveys are presented in Table 1. Household heads were asked to make an inventory 242 

of all trees he/she had on his/her fields, and tree density and species richness were determined for 243 

the total cropped land area of the farm. Millet production per capita was computed based on 244 

reported total millet production and household size. Tree income (i.e. whether households have sold 245 

tree products over the last year) was reported as a binary variable. 246 

Based on the answer to the nine occurrence questions related to the HFIAS indicator, households 247 

were categorized into four classes: severely, moderately, mildly food insecure and food secure (the 248 

rules of categorization are provided in Table S2). 249 

2.3.3. Field monitoring 250 

The field monitoring was conducted in 2018 on millet fields of five households (i.e. one field per 251 

household) among the 12 initially selected households per village in a random subset of eight 252 

villages per site, resulting in 40 millet fields per study site. Field boundaries and individual locations 253 

of tree species were recorded with a Garmin GPS device (GSMAP®64). Tree locations were adjusted 254 

by photointerpretation via Google Earth images (https://www.google.com/earth/index.html). 255 

Aboveground biomass of millet was harvested at crop maturity in three quadrats of 6-m². Threshed 256 

grains were dried at 70° for 48-h, and weighed. Grain yield (kg/ha) was averaged across the three 257 

replicates per field (Table 1). Tree density, the proportion of Faidherbia albida, tree species richness 258 

(i.e. the number of different species) and Shannon and Simpson diversity indices (i.e. summary 259 

indices that also account for the number of individuals per species) considering the trees inside the 260 

monitored fields and in their adjacent fields were derived. The R package “vegan” was used to 261 

compute the Simpson and Shannon indices (Oksanen et al., 2019). Field age, distance from the 262 



homestead and cropping system information (e.g. previous crop, amount of nitrogen and 263 

phosphorus applied with chemical fertilizer, manure applied) were recorded (Table 1). To calculate 264 

the total nitrogen and phosphorus inputs from organic and inorganic sources, manure was assumed 265 

to contain 0.93% nitrogen and 0.28% phosphorus (Tounkara et al., 2020). A 1.5% mineralization rate 266 

over the growing season was considered to estimate mineralized nitrogen and phosphorus from 267 

manure. A range of yes/no binary variables that may drive soil fertility levels were also collected (e.g. 268 

presence of a cattle pen in the field, occurrence of cattle grazing during dry season, retention of crop 269 

residues on the plot, occurrence of regular fallowing, association with leguminous crop). 270 

2.4.  Analysis of geospatial data  271 

A land use and land cover (LULC) map was derived from Sentinel-2 (10-m spatial resolution) and 272 

PlanetScope (3-m spatial resolution) images using object-based image analysis (Blaschke et al., 273 

2014) combined with Random Forest (Breiman, 2001) and implemented with the MORINGA 274 

processing chain developed by the Theia Scientific Expertise Centre for land cover 275 

(https://www.theia-land.fr/en/ceslist/land-cover-sec/). Ground truth data was collected in each site 276 

at the end of the cropping season in 2018 (Ndao et al., 2021b). The land use and land cover dataset is 277 

available at https://doi.org/10.18167/DVN1/P7OLAP. Sahelian parklands are highly heterogenous 278 

with small trees and shrubs. For this reason, a natural vegetation class (hereafter referred to as tree 279 

class) was added to the LULC map using a simple thresholding value of Normalized Difference 280 

Vegetation Index derived from a Pléiades image (0.5-m spatial resolution) taken at the end of the 281 

cropping season to discriminate natural vegetation (i.e. woody vegetation) from other land cover 282 

classes. Niakhar was classified into ten LULC classes and Nioro into eight classes. The classification 283 

produced LULC maps with 85% and 84% overall accuracy for Niakhar and Nioro, respectively (Ndao 284 

et al., 2021b).  285 

Landscape variables were derived from the LULC data, i.e landscape Shannon and Simpson diversity 286 

indices, number and mean size of tree patches and tree cover (Table 1). For millet fields, landscape 287 

diversity variables (i.e. landscape Shannon and Simpson indices, number of tree patches, mean size 288 

of tree patches) were extracted from the landscape unit in which the field is located (Fig. 1c, Fig. 1e 289 

and Fig. 2a). On the other hand, at household-level, the landscape diversity variables (i.e. tree cover, 290 

landscape Shannon and Simpson indices, number of tree patches and mean size of tree patches) 291 

were computed for all the fields (regardless of landscape classes) inside a 5-km radius circle around 292 

the location of each household homestead (Fig. 2a). Farmers travel by foot or with carts and we 293 

assumed that a radius of 5-km is a realistic distance for people to travel to the field for work or to 294 

collect tree resources (e.g. wood, leaves, fruits).  295 



2.5. Statistical analysis 296 

2.5.1. Descriptive statistics 297 

Differences between the two parklands for the main field-level variables and household-level 298 

variables were assessed. A non-parametric unpaired two-sample Wilcoxon test was used to compare 299 

the medians of continuous variables. For categorical variables, counts were compared using a Chi-300 

square test. Differences were considered significant for p-value ≤ 0.05. 301 

2.5.2. Gradient Boosting Machine method to investigate the link between agricultural 302 

landscape diversity and food availability (millet yield) 303 

A Gradient Boosting Machine (GBM) algorithm (Friedman, 2001) was used to disentangle the 304 

contribution of the field-level crop management variables, biophysical variables and landscape 305 

variables (Table 1) in explaining millet yield variability (Leroux et al., 2020). GBM is a non-parametric 306 

machine learning approach that combines regression trees and boosting. It handles different types 307 

of independent variables and can fit complex non-linear relationships and interactions between 308 

independent variables (Elith et al., 2008). We assessed the relative contribution of each independent 309 

variable based on the GBM relative influence measure. Main parameters of the GBM model were set 310 

based on a grid search assessing the top-performing combination. Model performance was 311 

evaluated with a 5-fold cross validation. The partial dependence plot was used to analyze interaction 312 

between the predicted variable (millet yield in this study) and the independent variables. It allows 313 

visualizing the partial contribution of each independent variable, accounting for the average effect 314 

of the other variables (Friedman and Meulman, 2003). Partial dependence plots were built for the 315 

most contributive independent variables. To improve the visualization, a locally weighted 316 

smoothing was applied to the partial dependence with a smoothing parameter of 1.  317 

2.5.3. Correlation network analysis to investigate the links between agricultural 318 

landscape diversity and food access (HFIAS)  319 

Correlation-based network analysis (CNA) was used to investigate the links between HFIAS and 320 

agricultural landscape diversity, farming systems characteristics, income and energy variables. CNA 321 

is a data-mining tool for analyzing and visualizing functional relationships within large data sets. In 322 

these networks, associations are visualized by a graph of nodes and edges. The nodes represent 323 

variables and the edges between them the significant correlation coefficients (r). CNA is based on 324 

mathematically defined (dis)similarity measures that correlate different variables to each other, and 325 

the resulting correlation coefficients reflect the magnitude of the co-linear relationship of the 326 

variables. Here, the pairwise correlation coefficients between HFIAS and landscape diversity, 327 



farming system characteristics and energy variables were computed (Table 1 and Figure 2b). 328 

Continuous variables were tested for normality using the Shapiro-Wilk test. Variables not normally 329 

distributed were transformed using the bestNormalize R package that selects the best normalizing 330 

transformations on the basis of Pearson P test statistics for normality (Peterson and Cavanaugh, 331 

2019). The Pearson correlation was applied for all paired variables, except for correlation involving 332 

HFIAS and tree species richness (ordinal variables), for which Spearman’s rank correlation was used. 333 

Only significant correlations (p-value ≤0.05) were kept in the correlation-based network. CNA was 334 

conducted for each site individually, resulting in two networks. 335 

Except for the LULC classification, all geospatial processing, statistical analyses and graphical 336 

outputs were carried out using the R software version 3.6.3 (R Core Team, 2020). The full list of the R 337 

packages and the main functions used are given in Table S3. 338 

3. Results 339 

3.1. Characteristics of the two study sites 340 

Average household size was significantly greater in Niakhar than in Nioro (13.9 and 12.5 persons, 341 

respectively). Average land per capita was smaller in Niakhar than in Nioro (0.22 and 0.36 ha/capita, 342 

respectively) (Table 2). There was no difference in millet yield on a per hectare basis between the 343 

two sites. However, millet production per capita was significantly smaller in Niakhar compared to 344 

Nioro (246 kg ±207 and 380 ±329 kg/capita respectively), despite great variations across households. 345 

The proportion of food secure households as assessed through the HFIAS was greater in Niakhar 346 

(the most diverse agricultural landscape, see below) compared to Nioro (Figure 3). However, Niakhar 347 

had the largest proportion of households that were experiencing severe food insecurity.  348 

The two sites contrasted in terms of landscape diversity for all reported variables, except for the 349 

landscape Shannon diversity index, the latter indicating that the diversity of LULC classes was 350 

similar between the two sites (Table 2). The Niakhar parklands were, however, more dense and 351 

diverse than the Nioro parklands, as indicated by the greater tree density, larger relative number of 352 

Faidherbia albida trees (assessed through field survey monitoring), greater tree cover and tree 353 

species richness (assessed through geospatial analysis and household survey). On average, soil total 354 

nitrogen content of the millet fields was greater in Niakhar compared to Nioro, while soil total 355 

phosphorus was lower in Niakhar compared to Nioro. Overall, fields in Niakhar received lower 356 

amounts of mineral fertilizer than in Nioro.  357 



3.2. Agricultural landscape diversity and food availability (millet yield) 358 

Using a set of field-level crop management, landscape diversity and biophysical variables, the GBM 359 

model for Niakhar (Figure 4a) and Nioro (Figure 4b) explained, respectively, 77% (relative Root Mean 360 

Square Error, rRMSE = 20%) and 84% (rRMSE = 21%) of millet yield variability (p-value≤0.05). The 361 

main explanatory variables were landscape diversity variables, accounting for 53% and 47% of 362 

relative influence in Niakhar and Nioro, respectively. The explanatory landscape diversity variables 363 

were related to parkland configuration (i.e. tree species richness for Niakhar and tree density for 364 

Nioro). Besides, selected biophysical variables (i.e., total soil nitrogen for Niakhar and total soil 365 

phosphorus for Nioro) had a relatively high influence on millet yield (30% and 24% in Niakhar and 366 

Nioro, respectively). On the other hand, crop management variables only marginally explained 367 

millet yield variability, accounting for 5% and 17% of relative influence in Niakhar and Nioro, 368 

respectively.  369 

Figure 5 displayed the partial dependence plot for tree density and tree species richness. Millet yield 370 

exhibited a linear positive relationship with tree density in Nioro when tree density was below 5 371 

trees/ha, while no relationship was observed in Niakhar (Figure 5a). Millet yield exhibited a linear 372 

positive relationship with tree species richness above two in Niakhar while the relationship seemed 373 

to start to stagnate above two tree species in Nioro (Figure 5b).  374 

3.3. Agricultural landscape diversity and food access (Household Food Insecurity Access 375 

Scale) 376 

Results of the CNA are presented in Figure 6a for the Niakhar site and Figure 6b for the Nioro site. 377 

Only significant correlation coefficients with p-value below 0.05 are displayed. The corresponding 378 

correlation matrixes are presented in Table S4.  379 

3.3.1. Niakhar 380 

Direct links between landscape diversity and food access 381 

HFIAS was significantly and positively correlated with the mean size of tree patches (r= 0.25), that 382 

was, in turn, positively correlated with tree cover (r= 0.34) (Figure 6a). This suggests that large tree 383 

patches and tree cover were associated with greater levels of food access. HFIAS was significantly 384 

and negatively correlated with tree density (r= -0.23). Tree density, in turn, was significantly and 385 

positively correlated with tree species richness (r= 0.36). These correlations, although relatively 386 

weak, suggest that a high parkland density and diversity is associated with lower levels of food 387 

access. Thus, household food security in Niakhar appears to be sustained by the Faidherbia albida 388 

parklands through large tree species but negatively linked to tree density.  389 



Indirect links between landscape diversity and food access 390 

HFIAS was significantly and positively correlated with millet production per capita (r=0.19), which 391 

indicates a higher food access with increasing millet production per capita. In line with the findings 392 

of the analysis conducted at field-level (see section 3.2), tree species richness was, in turn, 393 

significantly positively correlated with millet production per capita (r=0.38), thus indicating an 394 

indirect link between landscape diversity and household food access. This can be referred to as an 395 

“agroecological pathway” (Figure 2c). Further, fuelwood use was significantly and positively 396 

correlated with tree cover (r=0.21), but not with food access, indicating the absence of an indirect 397 

link between landscape diversity and food access through an “energy pathway” (Figure 2c) based on 398 

fuelwood supply. 399 

3.3.2. Nioro 400 

Direct links between landscape diversity and food access 401 

In Nioro, HFIAS was significantly and positively correlated to the mean size of tree patches, 402 

although the correlation was weak (r=0.17) (Figure 6b). The mean size of tree patches was 403 

significantly and positively correlated with tree cover (r=0.90), the number of tree patches (r=0.65), 404 

the landscape Shannon (r=0.65) and Simpson indices (r=0.73). This suggests that larger tree patches, 405 

greater tree cover and greater land use and land cover diversity were associated with higher levels of 406 

food access. Hence, as in Niakhar, household food security in Nioro seems to be supported by 407 

parklands.  408 

Indirect links between food access and landscape diversity 409 

HFIAS was significantly and positively correlated with millet production per capita (r=0.36) 410 

indicating an increase in food access as millet production increases. Tree species richness was 411 

strongly correlated with millet production per capita (r=0.49), suggesting an indirect link 412 

(“agroeological pathway”, Figure 2c) between landscape diversity and household food access, such 413 

as Niakhar. Further, fuelwood use was found to be significantly and positively correlated with 414 

variables of agricultural landscape diversity, i.e. tree cover (r=0.41), landscape Shannon index 415 

(r=0.47), landscape Simpson index (r=0.45), and with the mean size of tree patches (r=0.37). 416 

However, fuelwood use was not significantly correlated with food access (HFIAS), indicating the 417 

absence of an indirect “energy pathway” (Figure 2c) between landscape diversity and food access 418 

through fuelwood energy. 419 



4. Discussion 420 

4.1. Diverse parklands contribute to improved food availability 421 

4.1.1. Greater millet yield is associated with greater tree density and tree species 422 

richness 423 

We showed evidence that the configuration (i.e. tree density) and composition (i.e. tree species 424 

richness) of the parklands in the Groundnut Basin of Senegal is an important driver of the yield of the 425 

millet crop that is associated with the trees (Figure 4). Tree density up to a certain level is associated 426 

with a greater productivity of millet in the Nioro parkland while it has no relationships with millet 427 

yield in the Niakhar parkland. These results corroborate findings from earlier field based research, in 428 

which higher crop yields were observed in below-tree-crown compared to full-sun conditions (e.g. 429 

Bayala et al., 2015) through improvements in soil water and nutrient availability and supply (Sileshi, 430 

2016) and in microclimate conditions (Sida et al., 2018). We found, however, that tree cover was no 431 

longer positively associated with millet yield above a tree density of 5 trees/ha (Figure 5a). Similarly, 432 

using a geostatistical approach, Roupsard et al. (2020) showed in a small area in the Groundnut Basin 433 

that a tree density of 10 trees/ha would optimize the benefit of trees on millet yield. The observed 434 

thresholds of tree density for crop productivity in parkland systems can be interpreted in the context 435 

of the balance between facilitation and competition between the trees and the associated crops for 436 

growth resources, i.e. light, water and nutrients (Bazié et al., 2012; Luedeling et al., 2016). 437 

Further, our results demonstrated the positive effect of tree species richness of parklands on the 438 

yield of the associated millet for the two sites (Figure 5b). The processes governing these effects are, 439 

however, complex (Luedeling et al., 2016). It was found that natural pest control and regulation are 440 

enhanced by greater tree species diversity in parklands (Soti et al., 2019). For example, it was 441 

observed that in the northern part of the Groundnut Basin in Senegal the abundance of 442 

insectivorous birds, i.e. natural enemies of the millet head miller, increased with tree diversity. and 443 

effectively controlled pest damage on millet panicles, preventing grain losses (Sow et al., 2020). Tree 444 

species diversity can also boost litterfall productivity via increasing crown spatial complementary 445 

among trees (Zheng et al., 2019), possibly leading to soil fertility improvements. Finally, higher tree 446 

species diversity can also facilitate water availability for the associated crops in parkland systems 447 

through hydraulic redistribution (Bayala et al., 2008) or through partitioning of water use as a result 448 

of a different root stratification, whilst at the same time reducing soil water evaporation, drainage 449 

and run-off (Bayala and Wallace, 2015). In Niakhar, only tree species richness was associated with millet 450 

yield, while in the less dense and diversified parkland in Nioro, both tree density and tree species richness 451 



was positively associated with millet yield. Increase in millet yield could probably be achieved by 452 

optimizing tree species in Niakhar, and tree species and tree density in Nioro. 453 

However, in this study we did not take into account the effect of tree management, that also shapes 454 

the parklands diversity, on crop production, although it has a strong influence on resource use (e.g. 455 

light, water, nutrient) with trade-offs and or synergies occurring (Luedeling et al., 2016; van 456 

Noordwijk and Ong, 1999). For F.albida, tree influence on crops is also driven by tree size, crown 457 

development and management of trees. Mature trees having a stronger positive influence on crops 458 

than young trees (Sileshi, 2016), and tree pruning having a positive effect on crop yield since it 459 

affects the competition for light (Dilla et al., 2020). Whereas, other nitrogen-fixing species (e.g. 460 

Alnus acuminata) can decrease maize yields as the trees grow older (Ndoli et al., 2017). 461 

4.1.2. … but soil fertility remains a key driver  462 

Our analysis also revealed the significance of soil fertility (i.e. soil total nitrogen and phosphorus 463 

contents) to millet productivity in the parkland systems (Figure 4). It is widely known that low 464 

inherent soil fertility is a major constraint to crop production on the sandy soils of the Senegalese 465 

Groundnut Basin (Affholder et al., 2013). The fact that fertilizer use was not associated to crop yields 466 

in our study was probably due to the low variations in applied nitrogen (26 ±32 kgN/ha). Possibly, 467 

with this small level of variation, our regression-based analysis could not reveal a connection 468 

between N input use and crop yield .Integrated soil fertility management with appropriate use of 469 

mineral fertilizer (Vanlauwe et al., 2015) is critical to improve crop productivity in the parkland 470 

systems of the region. For instance, Sida et al. (2019) showed in Ethiopia and Rwanda that N and P 471 

use efficiencies varied according to the type of agroforestry systems. We anticipate that optimal 472 

configuration and composition of parklands can enhance fertilizer use efficiency, constituting a 473 

crucial aspect of integrated soil fertility management. However, additional experiments on tree-474 

crop-fertilizer interactions would be needed to verify this assumption for the agroforestry systems 475 

of this study. In general, nutrient recycling by the trees is largely influenced by tree densities and 476 

species composition (Buresh et al., 1996). Several studies have shown that deep-rooted trees are 477 

able to capture subsoil nutrients that would have been lost to annual crops. These nutrients 478 

are”pumped up” by the trees and afterwards made available to the associated crops by leaf litter 479 

decomposition (Luedeling et al., 2016). The amount of leached nutrients (and the potential benefits 480 

of trees) strongly depends on soil type, rainfall patterns and root structures (Cadisch et al., 1997) . 481 

For the sandy soils of the study region (Lericollais, 1999), and the intense rainfalls that are often 482 

observed during the growing season (Taylor et al., 2017), this leaching issue is likely to be non-483 

negligible, especially if farmers intensify their cropping systems in the future. 484 



4.2. Only large tree species have a direct positive association with household food access 485 

Our study demonstrated a direct, but weak, link between parkland diversity and food accessibility. 486 

These findings in these two Senegalese parklands are in line with a recent review by Koffi et al. 487 

(2020) concluding that there is very little evidence of an increased use of tree products during 488 

periods of food shortage across Sub-Saharan Africa, except during extreme situations such as 489 

famine, which was not the case in our study. However, we found that households having higher 490 

mean size of tree patches and higher tree cover in their surrounding agricultural landscape (i.e. in a 491 

5-km radius) tended to be more food secure (i.e. with greater food access). The observed large tree 492 

patches typically correspond to trees with large crowns, which often include fruit tree species such 493 

as Adansonia digitata (African baobab) or Cordyla.pinnata. The fruits of these trees are used for 494 

human consumption and can substantially contribute to the required micro and macro-nutrients in 495 

diets of rural populations (Chivandi et al., 2015; Félix et al., 2018; Ickowitz et al., 2014). A.digitata 496 

fruit pulp is widely consumed daily as juice called “bouye” in wolof. The fruits are particularly rich in 497 

minerals, vitamins (vitamin C) and carbohydrates (Chadare et al., 2008). The immature leaves of 498 

A.digitata are also often cooked and used as leafy vegetables (Asogwa et al., 2021). C. pinnata, a 499 

dominant tree in the parklands of Nioro, is also known as Cayor pear tree, and its fruit is cooked and 500 

consumed during the lean season.  501 

It should be noted that our survey was conducted during the lean season and household food 502 

accessibility was assessed by considering the preceding 30 days, which is probably not sufficient to 503 

capture the overall direct contribution of the dry season fruit trees to food accessibility, such as 504 

Ziziphus mauritiania and Balanites aegyptiaca (Koffi et al., 2020; Lykke et al., 2004). Edible tree 505 

products (nuts, leaves, and fruits) of these trees are eaten fresh or dried all along the year as part of 506 

the normal diet, as essential components of the sauces or condiments.  507 

4.3. Greater parkland diversity is indirectly associated with household food access 508 

Our results showed an indirect positive link between parkland diversity and food accessibility, which 509 

can be explained by the provision of ecosystem services regulating and supporting crop production. 510 

This link held true even in the less diverse parklands of Nioro (Figure 6). This indirect link can be 511 

coined as the “agroecological pathway” (Figure 2c) that connects landscape diversity to food 512 

(access) (Gergel et al., 2020). Thus, the “agroecological pathway” includes a wide variety of 513 

ecosystem services that support agricultural production, and that were described earlier (tree 514 

density and tree diversity support millet production, see section 3.2 and section 4.1.1). In line with 515 

results of other studies conducted in Africa (Rasmussen et al., 2020, 2019), we found that tree 516 

species richness is of similar importance as tree density to improving food accessibility. Households 517 



that are in more diverse agricultural landscapes, in terms of tree species composition, tend to be 518 

more food secure thanks to a greater agricultural production.  519 

Finally, we did not find evidence of a contribution of parkland diversity to household food security 520 

through increased energy use from fuelwood (the “energy pathway”, Figure 2c, Gergel et al., 2020), 521 

despite fuelwood consumption being significantly linked to several variables related to wood supply 522 

(i.e. tree cover), as it is the case in other parklands of West Africa (Koffi et al., 2018). This means that 523 

farmers with more trees in their surroundings tend to use more fuelwood, but this did not seem to 524 

translate into a positive association with household food security. This can be explained by the fact 525 

that households relied also on gas for cooking food, with July and August being the most important 526 

months for buying gas as evidenced by the households survey (see supplementary materials Figure 527 

S1), when food stocks from the last rainy season started to run out and when the availability of 528 

natural resources is still limited. 529 

4.4. Perspective for additional studies 530 

Here, we assessed the production of the staple food crop, millet, and its contribution to food 531 

accessibility, but on the other hand disregarded livestock production, despite it being an integrated 532 

part of the farming systems in the study area. For instance, in Senegal, livestock income was found 533 

to be important for purchasing foods, engaging in non-farm activities, and hence acting as a real 534 

safety net in case of crop failure (Alobo Loison and Bignebat, 2017). Several studies have shown that 535 

agricultural landscape diversity can also contribute to improved livestock production (e.g. Baudron 536 

et al., 2017; Duriaux Chavarría et al., 2018). For instance, leguminous fodder trees (such as Faidherbia 537 

albida) provide a rich feed supplement for cattle, thereby increasing milk and meat production, and, 538 

hence, contribute indirectly to household food security (Rosenstock et al., 2019). Secondary, 539 

leguminous fodder trees can also augment the quantity and quality of manure, that is for most 540 

smallholder farmers in the study region the main source of nutrients for crop production (Baudron et 541 

al., 2017; Berre et al., 2021). The provision of shades by trees can also improve the livestock 542 

productivity. 543 

In other sahelian parklands, the sale of tree products plays an important role in the total income of 544 

food insecure households (Koffi et al., 2017; Mortimore and Adams, 2001). In this study, we could 545 

not investigate this “income pathway” (Figure 2c) due to the lack of variability in our tree income 546 

variable. All households reported the sales of tree products, but this cash flow could not be 547 

quantified due to limited data reliability of the one-time survey. More detailed surveys, e.g. on a 5-548 

days basis to coincide with the local market cycle (Koffi et al., 2017), would be needed to investigate 549 

the “income pathway” in more detail. 550 



More broadly, we could have expected a positive relationship between tree diversity, food 551 

production and agricultural cash income with a domino effect on food access. Indeed, food 552 

production can be sold to generate cash income (Frelat et al., 2016), allowing households to buy 553 

food items not produced on-farm. Such strategy depends on market connection to sell and buy food 554 

products (Jones, 2017; Sibhatu and Qaim, 2018). Accurately capturing agricultural cash income is not 555 

easy with the type of on-time short survey carried-out in this study. While the optimal option to 556 

accurately assess this “income pathway” is to rely on more detailed and frequent surveys, other 557 

studies have relied on wealth-proxy derived from asset ownerships and or housing characteristics to 558 

overcome this limitation, assuming that wealthier households might be able to purchase more 559 

diverse food (Rasmussen et al., 2019).   560 

The rights for access to land and use of tree resources can considerably shape the agricultural 561 

landscape diversity-food security relationships at field and household level and should be considered 562 

in future studies as well. Rights for access to land and use of tree resources may limit the direct 563 

contribution of certain tree species on food access. In the Groundnut Basin of Senegal, tree species 564 

diversity depends on land type (e.g. natural vs cultivated) (Sambou et al., 2017). The rules of access 565 

to tree resources also can depend on the nature of the land and tree species: the collection of wood, 566 

fruits, leaves or nuts is generally less restrictive in natural areas or fallow lands compared to 567 

cultivated fields. For example, A.digitata is mainly planted in home fields in both sites to guarantee 568 

tenure by farmers (Koffi et al., 2020). In contrast, F.albida is found mainly in bush fields, but due to 569 

high pressure on the resource, the Forest Department has strictly limited its access, particularly in 570 

the Niakhar site. Selection of useful species is also closely linked to ethnic groups and their 571 

relationships to trees. The main ethnic group in the Niakhar site is Serer who consider certain trees 572 

as totem, and hence deliberately preserve them from being cut down (Ba et al., 2018). 573 

5. Conclusion 574 

While a growing numbers of studies have shown the close link between tree resources and food 575 

security, these studies relied on a simplified description of the agricultural landscapes. Our study 576 

sheds more light on the agricultural landscape diversity- food security nexus in three ways: (1) we 577 

provided a detailed overview of landscape diversity that includes land use, parkland configuration 578 

and composition, (2) our analysis incorporated two levels of analysis, i.e. the field and the 579 

household, and (3) we investigated two dimensions of food security (food availability and access).  580 

We find evidence that agricultural landscape diversity, and particularly parkland diversity (i.e. tree 581 

species richness and tree density), is a key driver of food availability, explaining more than half of 582 



crop yield variability in both study sites. This positive impact of diverse and dense parkland on food 583 

availability contributes indirectly to a greater household food access through what can be called 584 

“agroecological pathway”.  585 

Our results also suggested that the understanding of the trade-off occurring between tree density-586 

tree species richness and food security deserves more attention: that positive association between 587 

field-level tree density and food availability is lost above a threshold of field-level tree density, and a 588 

greater tree density and tree species richness (assessed at household level) will not necessarily 589 

directly translate into a greater household food access. 590 

Adopting an integrated landscape approach is required to better understand, assess, and optimize 591 

the contribution of agroforestry parklands to different dimensions of food security. Moreover, tree 592 

species diversity matters as much as tree density for food availability and food access. The general 593 

agreement that trees positively contribute to food security should be nuanced since there may be a 594 

density threshold above which the contribution of trees is limited. Optimal landscape management 595 

that accounts for tree density and tree functional diversity (fruit trees, leguminous trees, etc.) could 596 

help optimize co-benefits of trees for different food security dimensions.     597 
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recherche pour le développement (IRD). 746 



Leroux, L., Falconnier, G.N., Diouf, A.A., Ndao, B., Gbodjo, J.E., Tall, L., Balde, A.A., Clermont-Dauphin, C., 747 

Affholder, F., Bégué, A., Roupsard, O., 2020. Using remote sensing to assess the effect of trees on millet 748 

yield in complex parklands of Central Senegal. Agric. Syst. 184, 1–13. 749 

doi:https://doi.org/10.1016/j.agsy.2020.102918 750 

Liu, D., Hao, S., Liu, X., Li, B., He, S., Warrington, D.N., 2013. Effects of land use classification on landscape 751 

metrics based on remote sensing and GIS. Environ. Earth Sci. 68, 2229–2237. doi:10.1007/s12665-012-752 

1905-7 753 

Luedeling, E., Smethurst, P.J., Baudron, F., Bayala, J., Huth, N.I., van Noordwijk, M., Ong, C.K., Mulia, R., 754 

Lusiana, B., Muthuri, C., Sinclair, F.L., 2016. Field-scale modeling of tree–crop interactions: Challenges 755 

and development needs. Agric. Syst. 142, 51–69. doi:10.1016/J.AGSY.2015.11.005 756 

Lykke, A.M., 2000. Local perceptions of vegetation change and priorities for conservation of woody-savanna 757 

vegetation in Senegal. J. Environ. Manage. 59, 107–120. doi:10.1006/jema.2000.0336 758 

Lykke, A.M., Kristensen, M.K., Ganaba, S., 2004. Valuation of local use and dynamics of 56 woody species in 759 

the Sahel. Biodivers. Conserv. 13, 1961–1990. doi:10.1023/B:BIOC.0000035876.39587.1a 760 

Mavengahama, S., McLachlan, M., de Clercq, W., 2013. The role of wild vegetable species in household food 761 

security in maize based subsistence cropping systems. Food Secur. 5, 227–233. doi:10.1007/s12571-013-762 

0243-2 763 

Miller, D.C., Muñoz-Mora, J.C., Christiaensen, L., 2017. Prevalence, economic contribution, and determinants 764 

of trees on farms across Sub-Saharan Africa. For. Policy Econ. 84, 47–61. 765 

doi:10.1016/J.FORPOL.2016.12.005 766 

Mortimore, M.J., Adams, W.M., 2001. Farmer adaptation, change and ‘crisis’ in the Sahel. Glob. Environ. 767 

Chang. 11, 49–57. doi:https://doi.org/10.1016/S0959-3780(00)00044-3 768 

Muthayya, S., Rah, J.H., Sugimoto, J.D., Roos, F.F., Kraemer, K., Black, R.E., 2013. The Global Hidden Hunger 769 

Indices and Maps: An Advocacy Tool for Action. PLoS One 8, e67860. 770 

Nair, P., 1993. An introduction to agroforestry, Springer S. ed. Dordrecht, The Netherlands. 771 

Ndao, B., Leroux, L., Diouf, A.A., 2021a. Tree species inventory in the Faidherbia albida parkland of Senegal. 772 

doi:doi:10.18167/DVN1/OAYDV3 773 

Ndao, B., Leroux, L., Diouf, A.A., Soti, V., Sambou, B., 2018. A remote sensing based approach for optimizing 774 

sampling strategies in crop monitoring and crop yield estimation studies, in: Wade, S. (Ed.), Earth 775 

Observations and Geospatial Science in Service of Sustainable Development Goals : 12th International 776 

Conference of the African Association of Remote Sensing and the Environment. Springer, Muinzenburg, 777 

South Africa, pp. 25–36. doi:https://doi.org/10.1007/978-3-030-16016-6_3 778 

Ndao, B., Leroux, L., Gaetano, R., Diouf, A.A., Soti, V., Mbow, C., Bégué, A., Sambou, B., 2021b. Landscape 779 

heterogeneity analysis using geospatial techniques and a priori knowledge in Sahelian agroforestry 780 

systems of Senegal. Ecol. Indic. 125, 107481. doi:https://doi.org/10.1016/j.ecolind.2021.107481 781 

Ndoli, A., Baudron, F., Schut, A.G.T., Mukuralinda, A., Giller, K.E., 2017. Disentangling the positive and 782 

negative effects of trees on maize performance in smallholdings of Northern Rwanda. F. Crop. Res. 213, 783 

1–11. doi:10.1016/J.FCR.2017.07.020 784 

Nyberg, Y., Wetterlind, J., Jonsson, M., Öborn, I., 2020. The role of trees and livestock in ecosystem service 785 

provision and farm priorities on smallholder farms in the Rift Valley, Kenya. Agric. Syst. 181, 102815. 786 

doi:https://doi.org/10.1016/j.agsy.2020.102815 787 

Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., 788 

Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., 2019. vegan: Community Ecology 789 

Package. 790 



Otieno, M., Sidhu, C.S., Woodcock, B.A., Wilby, A., Vogiatzakis, I.N., Mauchline, A.L., Gikungu, M.W., Potts, 791 

S.G., 2015. Local and landscape effects on bee functional guilds in pigeon pea crops in Kenya. J. Insect 792 

Conserv. 19, 647–658. doi:10.1007/s10841-015-9788-z 793 

Peng, J., Wang, Y., Ye, M., Wu, J., Zhang, Y., 2007. Effects of land-use categorization on landscape metrics: A 794 

case study in urban landscape of Shenzhen, China. Int. J. Remote Sens. 28, 4877–4895. 795 

doi:10.1080/01431160601075590 796 

Peterson, R.A., Cavanaugh, J.E., 2019. Ordered quantile normalization: a semiparametric transformation built 797 

for the cross-validation era. J. Appl. Stat. 1–16. doi:10.1080/02664763.2019.1630372 798 

Pilling, D., Bélanger, J., Hoffmann, I., 2020. Declining biodiversity for food and agriculture needs urgent global 799 

action. Nat. Food 1–4. doi:10.1038/s43016-020-0040-y 800 

R Core Team, 2020. R: A language and environment for statistical computing. R Foundation for Statistical 801 

Computing, Vienna, Austria. 802 

Rasmussen, L.V., Fagan, M.E., Ickowitz, A., Wood, S.L.R., Kennedy, G., Powell, B., Baudron, F., Gergel, S., 803 

Jung, S., Smithwick, E.A.H., Sunderland, T., Wood, S., Rhemtulla, J.M., 2019. Forest pattern, not just 804 

amount, influences dietary quality in five African countries. Glob. Food Sec. 805 

doi:10.1016/j.gfs.2019.100331 806 

Rasmussen, L.V., Wood, S.L.R., Rhemtulla, J.M., 2020. Deconstructing Diets: The Role of Wealth, Farming 807 

System, and Landscape Context in Shaping Rural Diets in Ethiopia. Front. Sustain. Food Syst. 4, 45. 808 

doi:10.3389/fsufs.2020.00045 809 

Reed, J., Vianen van, J., Foli, S., Clendenning, J., Yang, K., MacDonald, M., Petrokofsky, G., Padoch, C., 810 

Sunderland, T., 2017. Trees for life: The ecosystem service contribution of trees to food production and 811 

livelihoods in the tropics. For. Policy Econ. 84, 62–71. 812 

Ricciardi, V., Mehrabi, Z., Wittman, H., James, D., Ramankutty, N., 2021. Higher yields and more biodiversity 813 

on smaller farms. Nat. Sustain. doi:10.1038/s41893-021-00699-2 814 

Ritzema, R.S., Frelat, R., Douxchamps, S., Silvestri, S., Rufino, M.C., Herrero, M., Giller, K.E., Lopez-Ridaura, 815 

S., Teufel, N., Paul, B.K., Wijk, M.T. Van, Security, F., Ritzema, Randall S, 2017. Is production 816 

intensification likely to make farm households food-adequate? A simple food availability analysis across 817 

smallholder farming systems from East and West Africa. Food Secur. 1–17. doi:10.1007/s12571-016-0638-818 

y 819 

Rosenstock, T.S., Dawson, I.K., Aynekulu, E., Chomba, S., Degrande, A., Fornace, K., Jamnadass, R., Kimaro, 820 

A., Kindt, R., Lamanna, C., Malesu, M., Mausch, K., McMullin, S., Murage, P., Namoi, N., Njenga, M., 821 

Nyoka, I., Paez Valencia, A.M., Sola, P., Shepherd, K., Steward, P., 2019. A Planetary Health Perspective 822 

on Agroforestry in Sub-Saharan Africa. One Earth 1, 330–344. doi:10.1016/j.oneear.2019.10.017 823 

Roupsard, O., Audebert, A., Ndour, A., Clermont-Dauphin, C., Agbohessou, Y., Sanou, J., Koala, J., Faye, E., 824 

Sambakhe, D., Jourdan, C., le Maire, G., Tall, L., Sanogp, D., Seghieri, J., Cournac, L., Leroux, L., 2020. 825 

How far does the tree affect the crop in agroforestry? New spatial analysis methods in a Faidherbia 826 

parkland. Agric. Ecosyst. Environ. 296, 106928. doi:10.1016/j.agee.2020.106928 827 

Sambou, A., Sambou, B., Ræbild, A., 2017. Farmers’ contributions to the conservation of tree diversity in the 828 

Groundnut Basin, Senegal. J. For. Res. 28, 1083–1096. doi:10.1007/s11676-017-0374-y 829 

Sanou, J., Bayala, J., Teklehaimanot, Z., Bazié, P., 2012. Effect of shading by baobab (Adansonia digitata) and 830 

néré (Parkia biglobosa) on yields of millet (Pennisetum glaucum) and taro (Colocasia esculenta) in 831 

parkland systems in Burkina Faso, West Africa. Agrofor. Syst. 85, 431–441. doi:10.1007/s10457-011-9405-832 

4 833 

Sibhatu, K.T., Qaim, M., 2018. Review: Meta-analysis of the association between production diversity, diets, 834 

and nutrition in smallholder farm households. Food Policy 77, 1–18. doi:10.1016/J.FOODPOL.2018.04.013 835 



Sida, T.S., Baudron, F., Kim, H., Giller, K.E., 2018. Climate-smart agroforestry: Faidherbia albida trees buffer 836 

wheat against climatic extremes in the Central Rift Valley of Ethiopia. Agric. For. Meteorol. 248, 339–837 

347. doi:10.1016/J.AGRFORMET.2017.10.013 838 

Sida, T.S., Baudron, F., Ndoli, A., Tirfessa, D., Giller, K.E., 2019. Should fertilizer recommendations be adapted 839 

to parkland agroforestry systems? Case studies from Ethiopia and Rwanda. Plant Soil 1–16. 840 

doi:10.1007/s11104-019-04271-y 841 

Sileshi, G.W., 2016. The magnitude and spatial extent of influence of Faidherbia albida trees on soil properties 842 

and primary productivity in drylands. J. Arid Environ. 132, 1–14. doi:10.1016/J.JARIDENV.2016.03.002 843 

Sinare, H., Gordon, L.J., 2015. Ecosystem services from woody vegetation on agricultural lands in Sudano-844 

Sahelian West Africa. Agric. Ecosyst. Environ. 200, 186–199. doi:10.1016/j.agee.2014.11.009 845 

Soti, V., Thiaw, I., Debaly, M.Z., Sow, A., Diaw, M., Fofana, S., Diakhate, M., Thiaw, C., Brévault, T., 2019. 846 

Effect of landscape diversity and crop management on the control of the millet head miner, Heliocheilus 847 

albipunctella (Lepidoptera: Noctuidae) by natural enemies. Biol. Control 129, 115–122. 848 

doi:10.1016/j.biocontrol.2018.10.006 849 

Sow, A., Seye, D., Faye, E., Benoit, L., Galan, M., Haran, J., Brévault, T., 2020. Birds and bats contribute to 850 

natural regulation of the millet head miner in tree-crop agroforestry systems. Crop Prot. 132, 105127. 851 

doi:10.1016/j.cropro.2020.105127 852 

Taylor, C.M., Belušić, D., Guichard, F., Parker, D.J., Vischel, T., Bock, O., Harris, P.P., Janicot, S., Klein, C., 853 

Panthou, G., 2017. Frequency of extreme Sahelian storms tripled since 1982 in satellite observations. 854 

Nature 544, 475–478. doi:10.1038/nature22069 855 

Tounkara, A., Clermont-Dauphin, C., Affholder, F., Ndiaye, S., Masse, D., Cournac, L., 2020. Inorganic fertilizer 856 

use efficiency of millet crop varies with organic fertilizer application in rainfed agriculture on 857 

smallholdings in central Senegal. Agric. Ecosyst. Environ. 294, 106878. 858 

Tschora, H., Cherubini, F., 2020. Co-benefits and trade-offs of agroforestry for climate change mitigation and 859 

other sustainability goals in West Africa. Glob. Ecol. Conserv. 22, e00919. 860 

doi:10.1016/j.gecco.2020.e00919 861 

van Noordwijk, M., Ong, C.K., 1999. Can the ecosystem mimic hypotheses be applied to farms in African 862 

savannahs? Agrofor. Syst. 45, 131–158. doi:10.1023/A:1006245605705 863 

Vanlauwe, B., Descheemaeker, K., Giller, K.E., Huising, J., Merckx, R., Nziguheba, G., Wendt, J., Zingore, S., 864 

2015. Integrated soil fertility management in sub-Saharan Africa: Unravelling local adaptation. SOIL 1, 865 

491–508. doi:10.5194/soil-1-491-2015 866 

Waha, K., van Wijk, M.T., Fritz, S., See, L., Thornton, P.K., Wichern, J., Herrero, M., 2018. Agricultural 867 

diversification as an important strategy for achieving food security in Africa. Glob. Chang. Biol. 24, 3390–868 

3400. doi:10.1111/gcb.14158 869 

Yang, K., Gergel, S., Duriaux-Chavarría, J.-Y., Baudron, F., 2020. Forest Edges Near Farms Enhance Wheat 870 

Productivity Measures: A Test Using High Spatial Resolution Remote Sensing of Smallholder Farms in 871 

Southern Ethiopia. Front. Sustain. Food Syst. 4, 130. doi:10.3389/fsufs.2020.00130 872 

Zheng, L.-T., Chen, H.Y.H., Yan, E.-R., 2019. Tree species diversity promotes litterfall productivity through 873 

crown complementarity in subtropical forests. J. Ecol. 107, 1852–1861. doi:https://doi.org/10.1111/1365-874 

2745.13142 875 

 876 



 

Figure 1. Main characteristics of the two study sites. a) location of the Niakhar site (green square) 

and Nioro site (yellow square), b) and d) main land use in 2018 for Niakhar and Nioro respectively, c) 

and e) landscape classes for Niakhar and Nioro respectively (from Ndao et al., 2021)  and f) tree 

species composition for each study site. A description of the landscape classes are provided in 

supplementary materials (Table S2). 



 

Figure 2. a) Articulation of the field scale (food availability) and household scale (food access), and 

their corresponding spatial units considered for agricultural landscape diversity variables calculation, 

b) Conceptual model used to explore the different relationships between agricultural landscape 

diversity and food availability (millet yield) using GBM analysis and c) Conceptual model used to 

explore the different relationships between agricultural landscape diversity and household food 

insecurity access (HFIAS) using correlation network analysis.  

 



 

Figure 3. Comparison of food security (HFIAS) between sites (Niakhar and Nioro). Chi-squared and 

the associated p-values are provided. 

 



 

Figure 4. Relative contributions of cropping system, biophysical and agricultural landscape diversity 

factors on the pearl millet yields at farmer’s field scale for (a) the Niakhar site and (b) the Nioro site. 

Only the top-10 most important factors are displayed. For each site, the waffle plot show the 

contribution of each type of factors to the relative influence, where one square represents 1%. 



 

Figure 5. Interaction between tree density a) and tree species richness b) using a partial dependence 

plot. The partial dependence plot depicts the marginal effect of tree density and tree species richness 

on predicted millet yield. A locally weighted smoothing was applied to the partial dependence 

smooth regressions and standard deviation (ribbon) was added. 

 

Figure 6. Correlation-based network to analyze the different pathways linking agricultural landscape 

diversity to household food access (HFIAS indicator) (a) in Niakhar and (b) Nioro. HFIAS is displayed in 

red (HFIAS = Household Food Insecurity Access), agricultural landscape diversity variables in blue, 

farming system variables in green and energy variable (fuelwood use) in yellow. HFIAS is classified as 

severely, moderately, mildly food insecure and food secure. For the links, the color scale depicts the 

value of the coefficient of correlation between the two connected variables. Only highly statistically 

significant correlation coefficients (p-value < 0.05) are displayed. 



Table 1: List of variables collected to explain millet yield and household HFIAS 

Food security variable to explain  Unit of observation  Explanatory variable  Unit Number of observations** method for data aquisition 

Millet yield  Millet field Landscape diversity  Landscape Shannon index 70 analysis of geospatial data 

Landscape Simpson index 70 analysis of geospatial data 

Share of Faidherbia albida  % 70 field monitoring  

Tree density Trees/ha 70 field monitoring  

Tree species richness Count 70 field monitoring  

Tree Shannon index 70 field monitoring  

Tree Simpson index 70 field monitoring  

Tree cover % 70 analysis of geospatial data*** 

Number of tree patches Count 70 analysis of geospatial data*** 

Mean size of tree patches ha 70 analysis of geospatial data*** 

 

Biophysical 

variables  Soil type  
70 

field monitoring  

Soil Organic Carbon***** g/kg 70 analysis of geospatial data*** 

Soil Total Nitrogen***** ppm 70 analysis of geospatial data*** 

Soil Total Phosphorus***** ppm 70 analysis of geospatial data*** 

Crop management  Previous crop Categorical 70 field monitoring  

Cattle penning  Binary: yes = 1 ; no = 0 70 field monitoring  

Cattle grazing Binary: yes = 1 ; no = 0 70 field monitoring  

Residues kept on the plot  Binary: yes = 1 ; no = 0 70 field monitoring  

Is the field regularly fallowed  Binary: yes = 1 ; no = 0 70 field monitoring  

Association with leguminous crop Binary: yes = 1 ; no = 0 70 field monitoring  

Field age Year 70 field monitoring  

Distance from homestead Minutes 70 field monitoring  

Amount of mineral nitrogen applied kgN/ha 70 field monitoring  

      Amount of mineral phosphorus applied kgP/ha 70 field monitoring  

HFIAS* Household  Landscape diversity  Landscape Shannon index 391 analysis of geospatial data**** 

Landscape Simpson index 391 analysis of geospatial data**** 

Tree density Trees/ha 391 household survey  

Tree species richness Count 391 household survey  

Number of tree patches Count 391 analysis of geospatial data**** 

Mean size of tree patches ha 391 analysis of geospatial data**** 

Tree cover % 391 analysis of geospatial data**** 

Farming system  Farm size Per Capita ha/capita 391 household survey 

  
 Millet production Per Capita kg/capita 391 household survey  

Income Tree income  Binary: yes=1 ; no = 0 391 household survey  

Energy Fuelwood use Binary: yes = 1 ; no = 0 391 household survey  

  
Socio-demographic Size of household Capita 391 household survey  

  
 Proportion of men % 391 household survey 

 



*HFIAS : 1 =severely food insecure, 2=moderately food insecure, 3=mildly food insecure, 4=food secure 

**Final sample size after data curation 

*** extracted at landscape unit level.  

****extracted within a 5-km radius of household location. 

***** AfSoilGrids database (Hengl et al., 2017) 

 

Table 2. Main characteristics (mean and standard deviation) in the two study sites. Variables which significantly differ between sites (p-value < 0.05) are 

displayed in bold. 

Unit of 

observation 

Type of variable  Variables Niakhar  Nioro  

   Mean Std.dev Mean Std.dev 
Field Food availability indicator Millet yield (kg/ha) 1088 474 1253 607 
 Landscape diversity Landscape Shannon index 1.15 0.17 1.06 0.24 

  Tree density (tree/ha) 12.2 13.57 1.27 1.37 

  Proportion of Faidherbia albida (%) 51.3 37 2.84 11 

 Biophysical variables SOC (‰) 6.64 1 6.41 1.36 

  Total Nitrogen (ppm) 603 228 496 33.9 

  Total Phosphorus (ppm) 272 34 188 21 

 Crop management Amount of mineral Nitrogen applied 

(kg/ha) 
20.2 26.7 34.0 37.7 

  Amount of mineral Phosphorus applied 

(kg/ha)  

10.4 11.8 19.5 11.6 

Household Landscape diversity Tree cover (%) 7.3 0.8 5.6 0.4 
  Tree species richness (count) 6.3 3.16 3 2.23 
 Farming system Farm size Per Capita (ha/capita) 0.22 0.23 0.36 0.23 

  Millet production Per Capita (kg/capita) 246 207 380 329 

 Socio-demographic Size of household (capita) 13.9 6.4 12.57 5.99 

  Proportion of men/boy (%) 51 25.3 48.4 27.6 

 




