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Abstract

We study whether fiscal policies, especially public debt, can help to curb the macroeco-

nomic and health consequences of epidemics. Our approach is based on three main features:

we introduce the dynamics of epidemics in an overlapping generations model to take into

account that old people are more vulnerable; people are more easily infected when pollution

is high; public spending in health care and public debt can be used to tackle the effects of

epidemics. We show that fiscal policies can promote the convergence to a stable disease-free

steady state. When public policies are not able to permanently eradicate the epidemic, public

debt and income transfers could reduce the number of infected people and increase capital

and GDP per capita. As a prerequisite, pollution intensity should not be too high. Fi-

nally, we define a household subsidy policy which eliminates income and welfare inequalities

between healthy and infected individuals.

JEL classification: E6, I18, Q59

Keywords: Epidemics, pollution, overlapping generations, public debt.

*We would like to thank an associate editor and two referees for their comments and suggestions which allowed

to improve the paper. We also thank the participants at the conferences LAGV 2021 and EAERE 2021 for their

helpful comments. This work was supported by the French National Research Agency Grant ANR-17-EURE-0020,

ANR-15-CE33-0001-01 and ANR-16-CE03-0005, and by the Excellence Initiative of Aix-Marseille University -

A*MIDEX.
�Corresponding author. CEE-M, Univ Montpellier, CNRS, INRAE, SupAgro, Montpellier, France. E-mail:

marion.davin@umontpellier.fr
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1 Introduction

The recent Covid-19 epidemic is one of the most serious threat to health in the last decades. It

has revealed how managing a pandemic to limit health and economic costs is challenging. In a

context in which environmental factors have been found to influence the transmissions of viral

pathogens and the disease emergence, there is a need to well understand the interplay between

the health and economic impacts of epidemics. This is the aim of this paper.

Without restricting our attention to a particular epidemic, we analyze the effects of public

interventions to control the disease, in particular health public spending and fiscal policy with

public debt. We consider fiscal policy and public debt in the discussion as the management of

sanitary crisis usually goes along with extraordinary public measures. The OECD points out

the sharp increase in public debt expected in OECD area because of the Covid-19 crisis.1 For

other diseases like HIV or malaria, debt relief are frequently mentioned as instrument to help

endemic countries to control epidemics (Snow et al., 2010; Abah, 2020). This illustrates that

debt management is expected to play a crucial role to try to control or eradicate this type of

disease.

Another important aspect to consider when examining the interplay between epidemics and

economics is the environmental issue. Growing evidence suggests that environmental factors has

an effect on the rate of spread of epidemics. Air pollution, such as CO2 and PM, is a factor in

accelerating virus transmission between humans. Pollution particles behave as vehicles for virus

transport, especially in epidemics where the mode of transmission is mainly via aerosols (Domingo

and Rovira, 2020; Rohrer et al., 2020; Bourdrel et al., 2021). Moreover, there is an indirect effect

of pollution on the rate of propagation, through the consequences of pollution on the health

of individuals, particularly the most fragile. Pollution makes individuals more vulnerable and

therefore less resistant because they are more immunocompromised.

In line with Augier and Yaly (2013), Chakraborty et al. (2010, 2014), Momota et al. (2005),

we develop an overlapping generations (OLG) model with epidemics, that we enriched with an

environmental dimension and the introduction of a government. This model offers the interest

to consider heterogeneity of agents according to their age and is relevant to analyze the role

of public debt. There are three-period lived households with young inactive agents, working

adults and old retirees. The dynamics of epidemics are formalized by introducing a SIS (suscep-

1According to OECD (2020b), “For the OECD area as a whole, outstanding central government debt is expected

to increase from USD 47 trillion in 2019 to USD 52.7 trillion at the end of 2020. This is USD 3.5 trillion higher

than the pre-Covid estimate. As a result of both the rapid increase in borrowing needs and the decline in GDP

across OECD economies, the central government marketable debt-to-GDP ratio for the OECD area is projected

to increase by 13.4 percentage points to around 86% in 2020, the largest increase in a single year since 2007.”
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tible–infected–susceptible) model, as in Bosi and Desmarchelier (2020), Goenka and Liu (2012,

2020) or Goenka et al. (2014).

In our model, we first consider that the impacts of the epidemic depend on the age of the

person affected: the older agent bears a premature risk of death while the adult agent will be

sick, without fatal consequences, but will have to take time off work. Indeed, empirical studies

show that the mortality of elderly patients is higher than that of young and middle-aged patients

during epidemics, because of their higher vulnerability. Taking the recent example of Covid-19,

elderly patients are more likely to progress to severe disease (see Liu et al., 2020; Williamson et al.,

2020) and hence, they are more affected by saturated health’s system capacities entailed by the

epidemics. Secondly, in line with arguments previously mentioned, we consider that degradation

of the environmental quality increases the rate of contagion of the epidemic. Finally, health

policy consisting in public spending to prevent, detect, control and treat quickly the epidemics,

contributes to push down the contagion rate. The government finances its expenditures through

taxation of income and production, but also through the issuance of public debt. In line with

Geoffard and Philipson (1997),2 we assume that health policy reduce the transmission of the virus

but does not allow to have full immunity.

The stable steady state is indeed characterized by the presence of the virus. However, the

government can increase health expenditures to slow down the spread of the virus. Such a

strategy can allow to rule out the endemic steady state and converge to a disease-free steady

state. These results are conditioned by the pollution intensity of production: the higher the

pollution intensity, the more difficult it is to fight the epidemic. If the public policy is not able

to remove entirely the epidemic, the economy converges towards an endemic steady state. It

could however be used to reduce the number of infected people and increase capital per capita in

the long run endemic equilibrium. The complexity of the interactions between fiscal policy and

the fight against epidemics is highlighted. In fact, on the one hand, any increase in public debt

leads to a crowding-out effect on productive capital. The latter implies a drop in production,

wages, savings and tax revenues, which curbs the expected effects of increased public spending,

and reduces the effectiveness of public policy. At the same time, it also slows down pollution and

plays a positive role in the fight against the virus. On the other hand, the increase in debt allows

an increase in public spending, and thus a slowing of the epidemic, which has a stimulus effect

on the economy through the increase in the number of workers, savings and capital (crowding-in

effect). The final outcome depends on the relative magnitude of these two channels. We show

that the crowding-in effect dominates if the rate of pollution emission is not too high.

2Even if public funds are directed towards the development of a vaccine, Geoffard and Philipson (1997) underline

the difficulties for policies to increase demand for vaccine and hence to achieve eradication with vaccine.
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At the endemic steady state, there are income inequalities between infected and healthy

people. We show that it is possible to design an appropriate redistribution income policy to

address welfare disparities. This policy consists of a differentiated transfer of income for workers

and the sick. It complements the public policy to combat the virus. We emphasize that such

intervention can be costly for healthy people when public budget for transfers is not sufficiently

important.

Our results underline the importance to maintain a high level of public health spending and

a high public budget for transfer to control an epidemic and address its economic consequences.

This implies a sufficient level of public debt. Our conclusions are thus in line with the proposal

of Douglas and Raudla (2020) for the U.S. economy, who argue that the States should suspend

their balanced budget rules and norms, and run deficits in their operating budgets to maintain

services and meet additional obligations due to the pandemic of Covid-19.

Our paper relates to the large literature interested in the analysis of the interactions between

economics and epidemics. On the one hand, there is an important literature characterized by age

specific effect of epidemics (Boucekkine et al., 2009; Boucekkine and Laffargue 2010; Fabbri et al.,

20213). On the other hand, some models are based on mathematical frameworks developed by

epidemiologists (see Hethcote, 2000, for an interesting survey); they expanded with the HIV epi-

demic (see for example Geoffard and Philipson, 1997). This literature has obviously been revived

and adapted to the specificities of the Covid-19 (see for example Acemoglu et al., 2021; Alvarez et

al., 2021; Goenka et al., 2021; Gori et al., 2021; Hritonenko et al., 2021). Nonetheless, no study

considers simultaneously the differentiated effects of the consequences of the virus according to

the age of the infected persons, and the role played by the environment in the spread and inci-

dence of the virus. Moreover, public actions examined in the literature dealing with epidemics

and economics, such as confinement, social distancing and the speed at which a vaccine develops,

greatly differ from those explored in this paper.

We highlight in this study the direct consequences of public finance on epidemics and vice-

versa. We show that in the absence of full immunity, health care spending can play a major role

in the fight against the epidemic and public debt can push up GDP per capita. Our paper thus

complement the literature taking into account the costs and benefits of public policies, and the

specific impacts of the epidemic by age groups. In this way, we provide new intuitions about the

effects of public debt and pollution on economic aggregates and epidemics propagation.

The rest of this paper is organized as follows. Section 2 presents the model with epidemics.

Section 3 defines the intertemporal equilibrium. Section 4 analyzes the existence of steady states

and Section 5 the convergence to the steady states. Section 6 focuses on the role of fiscal policy.

3This last paper is based on M’Kendrick (1925) setting.

4



Section 7 presents transfer schemes to address inequalities among agents. Finally, Section 8

concludes, while technical details are relegated to an Appendix.

2 An OLG model with pollution and epidemics

We consider a discrete time (t = 0, 1, ...) overlapping generations (OLG) model. The dynamics of

epidemics follow a SIS (Susceptible-Infected-Susceptible) model. There are three types of agents,

households, a government, and firms which generate pollution.

2.1 Environmental quality

Environmental quality decreases with pollution Pt, which is a flow that proportionally raises with

production Yt:

Pt = αYt

where α > 0 is the pollution rate.

This global pollution index encompasses the degradation imposed by human activity on the

quality of the environment. It reflects both the level of pollutant emissions and changes in

biodiversity. It can be represented by Ecological Footprint measurements or by Environmental

Performance Index (Wendling et al., 2020).

2.2 Population and epidemics

As in Bosi and Desmarchelier (2020), Goenka and Liu (2012, 2020) or Goenka et al. (2014),

the dynamics of epidemics are driven by a SIS model, with susceptible and infected people. It

differs from the SIR (Susceptible-Infectious-Recovered) model recently used in economics (see e.g.

Acemoglu et al., 2021; Eichenbaum et al., 2020) which also introduced the category of recovered

people. 4

We consider a model with three period-lived agents: childhood, adulthood, and old age. The

population size of a generation is constant and equal to N . When young, an agent has contact

with other generations what makes her susceptible or infected at the beginning of her adult life.

Thus, at the beginning of each period, there are also N adults and N old consumers, which

inherit their type from the previous period. Let Hi
t be healthy susceptible people and Iit be

infected people, with the superscript i = a for adult people and i = o for old people. At time t,

we have 2N = Ha
t + Ho

t + Iat + Iot . We assume that susceptibility to infection does not depend

4In our OLG framework, considering the SIS rather than the SIR model does not alter the results.
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on age. The number of adult and old agents being susceptible and infected are thus the same,

i.e. Ha
t = Ho

t = Ht and Iat = Iot = It.

Nevertheless, the health impacts of the infection are assumed to be heterogeneous, i.e. age-

dependent.5 This is consistent with the fact that older infected people really face a more important

probability to die and to develop severe illness, because of physiological changes that make them

more vulnerable. While the size of adult population is not affected by the proportion of infected

people, epidemics shorten the probability to enter the old age. The more infected old people

there are in the population, the higher the probability to die prematurely. We do not consider

the individual effect of infection on mortality, but we rather focus on the negative externality

associated with epidemics for all elderly population. The general intuition is that a high number

of infected people in the economy tends to reduce the efficiency of medical services or can be

source of congestion effects in the healthcare sector, and hence entails a negative externality

on the old vulnerable population. Several studies have underlined the negative indirect effects

associated with important epidemics as they tend to disrupt and suspend health services (Chang

et al., 2004; Rust et al., 2009; Kontis et al., 2020). As an example, this is also typically what we

observe since the beginning of the Covid-19 crisis. Elderly patients are more likely to progress

to severe disease (Liu et al., 2020; Williamson et al., 2020) and thus, they are more affected by

saturated health’s system capacities.

At the beginning of the period, we have 2N = 2Ht + 2It of adult and old people, which is

equivalent to 1 = ht + it, where ht = Ht/N represents the share of healthy people and it = It/N

represents the share of infected people. Note that it can also be interpreted as the likelihood of

being infected.

Let θt > 0 be the transmission rate of the epidemics among healthy agents and γ ∈ (0, 1)

the rate of recovery among infected people. The rate θt can also be interpreted as the average

number of contacts per unit time such that an infective transmits the disease. The dynamics of

healthy people are given by:

Ht+1 = Ht + γIt − θt
It
N
Ht

where γIt represents cured people and θt
It
NHt new people infected, which is given by healthy

people (Ht) times the risk of meeting infected individual ( ItN ) times the transmission rate (θt).

The dynamics of infected people are exactly the opposite:6

It+1 = It − γIt + θt
It
N
Ht

5We consider an OLG model precisely to take into account that adult and old people do not face the same

consequences of being infected.
6Note that we assume that the proportion of people which die prematurely during the old age is too negligible

in the society to affect the dynamics of epidemics.
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These last two equations rewrite:

ht+1 = γit + (1− θtit)ht (1)

it+1 = (1− γ) it + θtitht. (2)

On the one hand, to keep things as simple as possible, the rate of recovery γ is constant,

as in Goenka and Liu (2020). On the other hand, we assume that the transmission rate θt is

increasing with pollution Pt. Many evidences support that air pollution raises the transmission

of respiratory viral infections (see Domingo and Rovira, 2020 for a survey). The recent Covid

crisis confirm the relevance of the assumption. For example, Cole et al. (2020) highlight that

PM2.5 and NO2 concentrations have a positive link with Covid-19 cases, hospital admissions.

Climate variability has also lead to a proliferation of vector-borne diseases, like malaria,

resulting in an increase in transmission (Barreca and Shimshack, 2012; Rohr and Cohen, 2020).

The transmission rate θt is also decreasing with public expenditures in health care Gt. The higher

Gt, the higher public health response capacity and the lower the spread of epidemics. We assume

that health policy does not allow to build full immunity, in line with the arguments of Geoffard

and Philipson (1997). According to them, even when vaccines are available, it is difficult for

policies to increase demand for it and hence to achieve eradication. Moreover, many viruses,

such as malaria or HIV, have not found a cure and policies to control the spread are limited to

subsidies and protective spending. As a result, Gt could be masks, tests, emergency services,

controls, information campaign, or vaccine among the others.

Let gt ≡ Gt/N be public expenditures per adult and pt ≡ Pt/N pollution per adult. For

tractability, we assume:

Assumption 1 θt = θ(Gt/Pt) = θ(gt/pt) > 0 for all gt/pt, with θ′(gt/pt) < 0. In addition,

θtit < 1.

The inequality θtit < 1 means that the probability for a healthy people to be infected is less

than one. Using (1), it also implies that ht > 0 whatever the value of γ.

2.3 Households

The economy is populated by overlapping generations (OLG) of agents living for three periods.

As we aim at analyzing the role of public policies, the non-Ricardian properties of the OLG

model are convenient. Finally, it is a tractable way to consider the coexistence of heterogeneous

agents at each period of time. We will have adult savers which will live at the same time

that elderly who spend their remunerated savings. Considering such an OLG model where the
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dynamics of infected are driven by a SIS model means that the length of a period is quite

long with respect to the period of being infected for many diseases. Nonetheless, some papers

already consider infectious disease and overlapping generations model. For example, in the OLG

models considered by Augier and Yaly (2013), Chakraborty et al. (2010, 2014), Momota et al.

(2005), the dynamics of epidemics is also driven by a stock variable. Their results highlight

interesting mechanisms, confirming that this framework remains well adapted for the study of

population-epidemic dynamics interactions. As it is well-known, more complicated frameworks

could rationalize heterogeneous behaviors between workers and retirees, for instance models with

infinitely-lived agents facing some financial constraints.7 We could also note that the behavior of

agents will be summarized by their saving behavior which is closely related to what we get in a

standard Solow model.

When young, an agent does neither consume nor work but, as we already mentioned, has

contact with other generations such that she becomes susceptible or infected at the next period.

In contrast, an agent is active and consume at the adult age, and is retired and consumes at the

old age. The preferences of the household j ∈ {1, ..., N} born at period t− 1 are represented by

the following utility function over consumption when adult cjt and old djt+1:

ln cjt + β(ht+1) ln djt+1 (3)

where β(ht+1) ∈ (0, 1] measures the survival probability. It means that either the adult survives

at the old age or he dies at the beginning of the old age. This utility function means that, whereas

an infected adult has no chance to die at the adult age, the probability to die at the beginning

of the old age increases with the proportion of infected people among old agents or equivalently

the survival probability increases with the proportion of non-infected susceptible people ht+1

at old age, i.e. β′ (ht+1) > 0. We also assume that β(ht+1) is strictly concave, which implies

that β′ (ht+1) < β′ (0). This specification is similar to Momota et al. (2005), that consider the

negative effect of the prevalence of the disease on the probability to be alive in the second period

of life. The sensitivity of β to h can also be interpreted as the limited resilience of healthcare

institutes. The possible saturation of the health system when the proportion of infected becomes

high leads to a decrease of the survival probability of the elderly population.

The budget constraints faced by an individual j ∈ {1, ..., N} are given by:

σjt + cjt = Ωjt + τjt (4)

djt+1 =
rt+1

β(ht+1)
σjt (5)

where σjt represents savings of individual j. Since each household supplies one unit of labor if she

7See for instance Woodford (1986) and Kocherlakota (1992).

8



is healthy, Ωjt is the labor income, which is equal to the real wage paid by the firm to workers wt

if individual j is healthy and 0 if she is infected. This means that at periods of epidemics, a share

of adults will not work. We note that this is not specific to our framework since it also occurs

in OLG models with some labor market imperfections and unemployment (Coimbra et al., 2005;

Kaas and von Thadden, 2004; Ono, 2007). Moreover, this is not crucial for our results. What

is important is that, at the equilibrium, the income used for aggregate savings will increase with

the number of healthy people.

τjt T 0 is a lump-sum subsidy/tax which is specific to each individual and can be used by

the government to (partially) cover the loss of labor income. We therefore have in mind that for

infected people who will not work, τjt can be interpreted as a health insurance or a paid sick

leave. As it is empirically established, paid sick leave is implemented by governments in a large

number of countries (Scheil-Adlung and Sandner, 2010). Replacement rates vary up to 100 % of

wages. There is also evidence that paid sick leave has been used as a policy response to protect

income through the Covid-19 crisis (OECD, 2020a). Indeed, data suggest that paid sick leave

has grown significantly in most countries in the outbreak of the pandemic.

The return of savings is rt+1/β(ht+1), with rt+1 the marginal productivity of capital, because

there is perfect annuity on the asset markets.8

We deduce that the consumptions and savings of individual j are equal to:

cjt =
1

1 + β(ht+1)
(Ωjt + τjt) (6)

djt+1 =
rt+1

1 + β(ht+1)
(Ωjt + τjt) (7)

σjt =
β(ht+1)

1 + β(ht+1)
(Ωjt + τjt) (8)

In our model, pollution affects the consequences of the epidemic through two channels, a direct

and an indirect one. On the one hand, the direct effect is measured by the effect of pollution on

the transmission rate θ (g/p). The higher the pollution, the higher the rate of spread, and the

higher the number of infected individuals. On the other hand, it mechanically lowers the number

of healthy individuals h, which reduces the life expectancy of the oldest people β (h) and the

saving rate β (h) /(1 + β (h)).

2.4 Firms

Markets are perfectly competitive and production is performed by a representative firm. Output

Yt is produced with labor Lt and capital Kt according to a constant returns to scale technology.

Yt = A (ht)F (Kt, Lt)

8For simplification, we also assume complete depreciation of capital.
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The total factor productivity A (ht) experiences a large decrease if the proportion of infected

people becomes higher than a threshold: A (ht) = 1 if ht > h

A (ht) = A < 1 otherwise

A (ht) acts as an externality in production and the parameter h ∈ (0, 1) is a threshold for

epidemics which plays a crucial role on this externality. If the proportion of infected people is

positive but sufficiently low (ht > h), nothing happens on the productivity. On the contrary, if

the proportion of infected people is too high (ht 6 h), the number of working people is too low to

maintain efficient labor, because of costly work disorganization for instance. Moreover, this too

low working people can create an inefficient utilization of capital (some units should close or some

machines are no more used because not enough people are working). These different arguments

allow us to think that the total factor productivity becomes lower when prevalence of disease is

sufficiently high. This is in line with Cole and Neumayer (2006) that find a negative impact of

poor health, i.e health problems associated to great burden, on total factor productivity.

For tractability, we use a Cobb-Douglas technology:

Yt = A (ht)Ltf (at) = A (ht)Lta
s
t

with s ∈ (0, 1/2) the capital share in total income and at = Kt/Lt the capital-labor ratio.

Production, at the origin of pollution flow, is taxed by the government at a rate τft ≥ 0.

Hence, firms choose inputs by maximizing its profit
(

1− τft
)
Yt− rtKt−wtLt, such that we get:

rt =
(

1− τft
)
A (ht) sa

s−1
t ≡ r(at) (9)

wt =
(

1− τft
)
A (ht) (1− s)ast ≡ w(at). (10)

2.5 Public sector

To limit the adverse economic effects of an epidemic, public authorities generally implement a

policy mix aiming at improving the health situation and mitigating the effects on the economic

activity. In this perspective, we consider that the government can fight the disease and improve

health by financing public health expenditures Gt. These spending have a direct effect on epi-

demics, since they reduce the rate of transmission θt, without allowing to have full immunity. In

addition, the government can also limit the economic costs of epidemics by paying some lump-sum

subsidies τjt to adult households. We define τt =
∑N
j=1 τjt/N the average subsidy.

To finance these expenditures, the government levies a tax on production, at the rate τft ≥ 0,

or can issue debt Bt. Since capital and public debt are perfectly substitutable assets, they face
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the same return. Hence, debt reimbursement from the previous period is given by rtBt−1. The

intertemporal budget constraint for the government therefore satisfies for all t > 0:

Bt = rtBt−1 +Gt + τtN − τft Yt (11)

with B−1 ≥ 0 given.

3 Intertemporal equilibrium

On the labor market, we recall that each adult agent supplies inelastically one unit of labor, but

only healthy people are able to work. This means that at equilibrium, we have Lt = Ht. We

deduce that:
N∑
j=1

Ωjt = wtLt = wtHt (12)

We define debt and capital per adult as bt ≡ Bt/N and kt ≡ Kt/N . Production per adult is

given by Yt/N = A (ht) a
s
tht, with at = kt/ht. Then, using (9), the government budget constraint

(11) rewrites:

gt = bt − r(at)bt−1 − τt + τft A(ht)a
s
tht (13)

Equilibrium on the asset market is ensured by kt+1 + bt =
∑N
j=1 σjt/N . We use (8), (10),

(12), and kt+1 = at+1ht+1 to get:

at+1ht+1 + bt =
β(ht+1)

1 + β(ht+1)
(w(at)ht + τt) (14)

Since pt = αYt/N , equation (1), that describes the dynamics of healthy people, rewrites:

ht+1 = ht + (1− ht) [γ − θ[gt/(αA(ht)a
s
tht)]ht] (15)

with θ[gt/(αA(ht)a
s
tht)](1− ht) < 1 under Assumption 1.

By inspection of equation (13), we now define which policy parameters will be considered as

fixed and will be used to conduct comparative statics.

Assumption 2 bt = b > 0, τt = τ > 0, with b > τ , and τft = τf ∈ (0, 1) are constant for all

t > 0.

The subsidy to adult and the tax rate are considered as constant, as well as debt per capita.

This implicitly means that debt sustainability is not an issue or debt is always fixed at a level

which is sustainable. Moreover, Assumption 2 enforces that debt per capita is high enough with

respect to the average subsidy supporting adults income.
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Then, public spending will vary to satisfy the government budget constraint:

gt = b(1− r(at))− τ + τfA(ht)a
s
tht ≡ g(at, ht) (16)

which is an increasing function in at and ht. Public expenditures are thus pro-cyclical. In case

of strong epidemics, we could a priori observe a decrease in at and/or ht, and therefore of public

spending. Then, public debt could be used to maintain a sufficient level of public spending if

debt emission is higher than debt reimbursement.

Considering this last equation and Assumption 2, an intertemporal equilibrium is a sequence

(ht, at) satisfying equations (14) and (15) for all t > 0, i.e.

ht+1 = ht + (1− ht) [γ − θ[g(at, ht)/(αA(ht)a
s
tht)]ht] (17)

at+1ht+1 + b =
β(ht+1)

1 + β(ht+1)
[(1− τf )(1− s)A(ht)a

s
tht + τ ] (18)

with θ[g(at, ht)/(αA(ht)a
s
tht)](1− ht) < 1.

Note that both ht and at = kt/ht are predetermined variables, with initial conditions h0 =

H0/N > 0 and a0 = K0/H0 > 0.

Our model highlights multiple important interplays between the real side of the economy and

epidemics. On the one side, epidemic affects labor supply, and therefore labor income. On the

other side, economic activity affects the evolution of epidemic by determining the amount of

public health spending, but also the level of pollution. In addition, our model also emphasizes

relevant properties characterizing the consequences of epidemics: the productivity of workers

lowers in case of epidemic outbreak and we observe a damaging effect on longevity, what affects

negatively the saving rate.

4 Steady states with and without epidemic outbreak

A steady state corresponds to a long-term equilibrium in which the share of infected people 1−h

and the capital-labor ratio a are stationary. A steady state is a solution (h, a) satisfying:

(1− h) [γ − θ[g(a, h)/(αA(h)ash)]h] = 0 (19)

ah+ b =
β(h)

1 + β(h)
[(1− τf )(1− s)A(h)ash+ τ ] (20)

with

g(a, h) = b[1− (1− τf )A(h)sas−1]− τ + τfA(h)ash (21)

and

θ[g(a, h)/(αA(h)ash)](1− h) < 1 (22)

12



By direct inspection of equation (19), we distinguish two types of steady states. Some are

characterized as states with infected people, h < 1, and the others as states with only healthy

-susceptible- people, h = 1.

We focus first on states with infected people. From (19), a steady state with h < 1 satisfies:

γ = θ[g(a, h)/(αA(h)ash)]h (23)

Using (21), we easily get:

g

p
=

g(a, h)

αA(h)ash
=

b− τ
αAhas

− b(1− τf )s

αha
+
τf

α
≡ η(h, a) (24)

with A = 1 if h > h. Therefore, equation (23) rewrites:

γ = θ(η(h, a))h = θ

[
b− τ
αAhas

− b(1− τf )s

αha
+
τf

α

]
h ≡ Z(h, a) (25)

In the following, we assume that there is a primary deficit independently of the subsidy τ .

Whatever the public support to workers, we consider that the amount of public health spending

exceeds tax revenues at least when there is epidemic outbreak, g > τfAhas. Using the steady state

value for g given in equation (21), this corresponds to the inequality (b− τ)a1−s > b(1− τf )sA,

which also ensures η(h, a) > 0. We thus have:

Assumption 3 a >
[
b(1−τf )sA

b−τ

] 1
1−s ≡ a.

A steady state with h < 1 also satisfies equation (20):

F (h, a) ≡ ah+ b− β(h)

1 + β(h)
[(1− τf )(1− s)A(h)ash+ τ ] = 0 (26)

with A(h) = 1 if h > h and A(h) = A if h < h.

Lemma 1 Equation (25) implicitly defines a function h = H1(a) which is increasing for a < a <

â and decreasing for a > â, with

â ≡
[
b(1− τf )A

b− τ

] 1
1−s

> a

The maximum value taken by this function is given by ĥ = H1(â). We also have that H1(a) =

H1(+∞) = γ/θ(τf/α) and H1(a) > γ/θ(τf/α).

Equation (26) implicitly defines a function h = H2(a) which is strictly increasing for all a > a.

Moreover, we have H ′2(a) = −∂F∂a /
∂F
∂h which is increasing in A meaning that when h crosses h,

A becomes equal to 1 and the slope increases.

13



Proof. See Appendix A.

Before examining in details existence and uniqueness of a steady state with h < 1, we focus on

disease-free steady states. A solution h = 1 satisfies equation (19). It also implies that A(h) = 1.

Therefore, equation (20) rewrites:

F (1, a) = a− β(1)

1 + β(1)
(1− τf )(1− s)as + b− β(1)

1 + β(1)
τ = 0 (27)

and allows to identify directly the existence of steady states with h = 1.

Proposition 1 Under Assumptions 1-3 and

A
b

b− τ
<

β(1)

1 + β(1)

1− s
s

(28)

there exists b1 > 0 such that for all b < b1, there is a unique disease-free steady state, (a1, 1),

which always satisfies inequality (22).

Proof. See Appendix B.

Assuming that b is not too large, the crowding-out effect of public debt is not too high.

Moreover, inequality (28) ensures that savings allowing to finance public debt and to invest in

productive capital is sufficiently high. Under these conditions, there exists a steady state in which

all the population is healthy and the level of capital is high.

We now analyze endemic steady states, characterized by infected people h < 1. Based on

Lemma 1, steady states with h < 1 are solution satisfying h = H1(a) = H2(a). As previously

mentioned, when the number of infected people is too high (h < h), the economy observes an

epidemic outbreak that reduces the productivity of factor A(h). We thus examine the existence

of steady states with such properties (h < h < 1) which will coexist with the steady state without

infected, (a1, 1).

Since H1(a) is single peaked, a steady state with h < 1 is characterized by h < h̄ if the

sufficient condition ĥ < h holds. From (25), ĥ is a solution of:

h =
γ

θ(η(h, â))
(29)

Substituting â =
[
b(1−τf )A
b−τ

] 1
1−s

in (24), we get:

η(h, â) =
(1− s)

αh(1− τf )
s

1−sA
1

1−s

(
b− τ
b

) 1
1−s

b+
τf

α
(30)

which is a decreasing function of h.

14



The left-hand side of (29) is of course increasing in h from 0 to 1, while the right-hand side is

decreasing in h from a positive value when h = 0. Therefore, if h > γ
θ(η(h,â)) , the value ĥ which

solves (29) belongs to (0, h) and a steady state with infected people is always marked by epidemic

outbreak. Let us assume:

Assumption 4 hθ(η(h, â)) > γ.

We show the following result (see also Figure 1):

Proposition 2 Under Assumptions 1-4,

b

b− τ
<

β(γ/θ(τf/α))

1 + β(γ/θ(τf/α))

1− s
s

and θ(τf/α) < 1 + γ (31)

there exist b2 > 0 and α such that if b < b2 and α > α, there is a unique steady state (a2, h2),

with a < a2 < â and h2 < h < 1, characterized by a positive share of infected people and with

epidemic outbreak.

This steady state coexists with the one with no infected people, (a1, 1), and is characterized by

a lower capital-labor ratio. We have the following ranking: a < a2 < a1 < â.

Proof. See Appendix C.

We notice that conditions (31) and b < b2 both ensure the existence of a steady state with

epidemic outbreak that coexists with the one with no infected people.9 A level of debt not too

high associated to a high enough saving rate maintains a sufficient level of saving. The inequality

α > α, which means a sufficiently high pollution rate, ensures that θ(η(h, a)) does not strongly

depend on the capital-labor ratio. This ensures the uniqueness of the steady state because H1(a)

is not too steep (see Figure 1).

We note that the existence of both steady states requires a level of debt not too significant.

This is due to the fact that one channel through which debt intervenes on the equilibrium goes

through savings. Part of savings is devoted to finance public debt. Therefore, if debt is too large,

the level of savings is no more sufficient to sustain a positive level of capital, which may rule out

the existence of any steady state.

We pay a particular attention to the effect of a variation in the productivity parameter A on

the endemic steady state. A decrease or a sufficiently low level of A can be seen as the economic

impacts of a virulent pandemic, which induce a strong disorganization of labor. In such a period,

there is not only a lower productivity or efficiency of labor, but also of capital, because some

machines have to be stopped for instance. Therefore, we analyze now in more details the effect of

a variation of A on h2 and a2, i.e. what happens if the loss of productivity is even more severe:

9Note that this inequality (31) is more stringent than inequality (28).
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Figure 1: Steady states with epidemics outbreak (a2, h2) and no infected people (a1, 1)

Proposition 3 Under Assumptions 1-4, inequality (31), θ(τf/α) < 1 + γ, α > α and b < b2,

following a slight increase of the productivity A, the sign of the variation of h2 is indeterminate.

Moreover, there exist αA and αA(6 αA) such that a slight increase of A implies an increase

of a2 for α > max{α, αA} and a decrease of a2 for αA > α > α and A low enough.

Proof. See Appendix D.

The fall in the productivity parameter A implies opposite effects on the transmission rate θ.

Through this direct effect of A, pollution decreases more than public spending, which means that

the transmission rate θ goes down.

A lower productivity also implies a fall in income that reduces savings and hence capital-labor

ratio if α is high enough. Indeed, in this case, the positive effect of a fall in A on savings, that goes

through the reduction of θ, is not sufficient to compensate for the negative income effect. Since a

lower capital-labor ratio also means lower public spending relative to pollution, the transmission

rate θ goes up through this channel. These two competing effects on θ explain that the effect of

A on the proportion of healthy people h2 is not so clear-cut.

The endemic steady state depends also on pollution intensity of production, captured by

α, as it modifies the transmission rate of epidemics. When α goes up, so does θ: epidemic

spreads more easily. Examining Figure 1, the curve H1(a) shifts downward, whereas H2(a) is not

affected: both a2 and h2 fall. A higher pollution intensity is thus damaging for the economy as

it increases the transmission rate of epidemics and therefore the number of infected people. This

negatively affects both the labor income and the saving rate (β(h)/(1 + β(h))), which reduces

16



capital investment along the steady state with epidemic outbreak. Therefore, any environmental

policy or technological progress that aims to reduce the pollution rate is useful. It decreases

the proportion of infected people, through a lower transmission rate. But interestingly, it will

also raise capital and production. We are not able to quantify the precise impact of such policy

measures on economic variables, but this type of environmental improvement can at least been

considered as a tool accompanying an appropriate fiscal policy.

5 Convergence to endemic or disease-free steady state

We analyze the issue of convergence by studying the local stability properties of the two steady

states (a1, 1) and (a2, h2). Using Assumption 1, equations (17) and (18) rewrite:

ht+1 = ht + (1− ht) [γ − θ(η(ht, at))ht] (32)

at+1ht+1 + b =
β(ht+1)

1 + β(ht+1)
[(1− τf )(1− s)Aastht + τ ] (33)

where A = 1 if ht > h and η(ht, at) is given by equation (24). We also keep in mind that

this two-dimensional dynamic system involves two predetermined variables, ht and at = kt/ht.

Differentiating these two equations in the neighborhood of a steady state, we get:

dht+1 = Jhhdht + Jhadat (34)

dat+1 = Jahdht + Jaadat (35)

where the terms Jii are the elements of the associated Jacobian matrix given by:

Jhh = 1 − γ + θ(η)h− (1 − h)

[
θ(η) + hθ′(η)

∂η

∂h

]
(36)

Jha = −(1 − h)hθ′(η)
∂η

∂a
(37)

Jah =
β(h)

1 + β(h)
(1 − τf )(1 − s)A

as

h
−
[
a

h
−

β′(h)

h(1 + β(h))2
((1 − τf )(1 − s)Aash+ τ)

]
[
1 − γ + θ(η)h− (1 − h)

[
θ(η) + hθ′(η)

∂η

∂h

]]
(38)

Jaa =
β(h)

1 + β(h)
(1 − τf )(1 − s)sAas−1 +

[
a

h
−

β′(h)

h(1 + β(h))2
((1 − τf )(1 − s)Aash+ τ)

]
(1 − h)hθ′(η)

∂η

∂a
(39)

with η = η(h, a). Substituting h = 1 in these equations, we easily obtain:

Proposition 4 Under Assumptions 1-4, inequality (28) and b < b1, the steady state with no

infected people, (a1, 1), is a saddle because θ(η1) > γ, where η1 ≡ η(1, a1).

Proof. See Appendix E.
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Under Assumption 4, the steady state with no epidemics is a saddle. Hence, since the two

dynamic variables are predetermined, the economy cannot converge toward a steady state with-

out infected people. Indeed, the dynamics of the capital-labor ratio, which is governed by the

equilibrium between capital investment and savings, is stable. However, under Assumption 4, the

transmission rate exceeds the recovery rate at the disease-free steady states. Then, the evolution

of healthy people is unstable, which explains that one cannot converge to this steady state with

no epidemics.

We focus now on the dynamics around the steady state (a2, h2) characterized by h2 < 1:

Proposition 5 Under Assumptions 1-4, inequality (31), α > α and b < b2, there exits β̃′(1) > 0

such that the steady state (a2, h2) is stable for β′(1) > β̃′(1).

Proof. See Appendix F.

The endemic steady state is the only one which is stable. This means that the economy should

converge to this steady state rather than toward the steady state with no infected people. As

a direct implication, under our current assumptions, epidemics will persist and will not collapse

even in the long run.

We notice that the condition α > α is the one that ensures the uniqueness of the steady

state with epidemic outbreak (see Proposition 2).10 Of course, it promotes the stability of the

steady state. Convergence toward the steady state with epidemic outbreak requires β′(1) high

enough, i.e. the longevity is sufficiently sensitive to the share of healthy people.11 Taking into

account the dynamic equations (32) and (33), consider an increase in ht and at. This induces an

important increase in labor income, savings and hence future capital. At the same time, these

raises may favor a higher transmission rate θt, which dampens the positive dynamics for ht. When

agent’s longevity is highly sensitive to an improvement of the health condition in the economy,

the increase in savings is dampened which prevents capital accumulation to be explosive. Rather,

the economy converges to a stationary long-run equilibrium with epidemic outbreak.

6 The role of fiscal policy

The fiscal instruments seem to play a crucial role on the existence of both steady states and

their stability properties, through their impacts on the transmission rate which depends on public

10It excludes any bifurcation (pitchfork) associated to an eigenvalue which would cross the value one.
11This is a sufficient condition which excludes the occurrence of a flip bifurcation whatever the value of θ′(η). It

does not mean that a flip bifurcation could occur otherwise. For instance, if θ′(η) is sufficiently weak in absolute

value, such a bifurcation is always excluded. In any case, we are not interesting in the existence of endogenous

cycles in this paper.
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spending. The question is therefore to know if a modification of the fiscal policy could improve the

health and macroeconomic situation described until now. We investigate first whether following

an appropriate choice of the level of debt b and transfer τ , the existence of the steady state with

epidemic outbreak (a2, h2) can be ruled out and the economy may rather converge to the steady

state without epidemics.

Considering that Assumption 4 is not satisfied, i.e. hθ(η(h, â)) < γ, we show in the following

proposition that the steady state with epidemic outbreak may be ruled out while the steady state

with no infected people becomes stable.

Proposition 6 Under Assumptions 1-3, hθ(η(h, â)) < γ, α > α and

b

b− τ
< min

{
β(γ/θ(τf/α))

1 + β(γ/θ(τf/α))

1− s
s

;
β(1)

1 + β(1)

1− s
A

}
(40)

there exits bb > 0 such that for b < bb, the steady state (a2, h2) does no more exist while the steady

state (a1, 1) is stable.

Proof. See Appendix G.

This proposition shows that for an appropriate choice of debt b and transfer τ , the economy can

enter in a configuration where there is only one existing steady state, the one without epidemics

and infected people. Figure 2 illustrates the proposition.
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Figure 2: Steady state with no infected people (a1, 1)

In addition, this unique steady state is stable because the transmission rate is now lower than

the rate of recovery, which implies that the share of infected people converges to zero. This means

that the economy might converge toward the long-run disease-free equilibrium.
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For an agent who was already healthy, converging to such a steady state instead of being at

an endemic one is a source of higher welfare because his income raises. This can be dampened

by the decrease of interest rate which reduces the return of debt used to consume when old and

by the decrease of the share of income consumed 1/(1 + β(h)) (see equations (6) and (7)). For

an infected people, which becomes healthy at a disease-free steady state, the increase of income

is even larger because her labor supply increases. As a result, moving from the endemic to the

disease free steady state improves welfare as long as the income gains are sufficiently important.

The results of Proposition 6 requires that the transmission rate is sufficiency low, hθ(η(h, â)) <

γ, i.e. η(h, â) not too low. By direct inspection of (30), we observe that it is possible if either

b or (b − τ)/b are not too close to 0, taking into account that the pollution rate α is not too

high. Debt has to be positive but not too important to remove the unfavorable situation in

which the economy converges to a steady state with epidemics. Of course, as already mentioned

after Proposition 2, if the level of debt is too high, the two steady states are ruled out and the

economy surely collapses because it is not possible to sustain investment in capital that does not

converge to zero. Another unfavorable policy corresponds to the situation where, in contrast to

Proposition 6, Assumption 4 holds but the level of debt rules out the existence of the endemic

steady state. In such a configuration, the disease-free steady state still exists but is unstable,

which means that the public policy is not able to improve the health and economic situations.

Focusing on the results of Proposition 6, public debt has a crowding-out effect on capital

because part of savings is used to finance it. At the steady state with epidemic outbreak, h is

of course lower than at the disease-free steady state. This means that both the labor income

and the saving rate β(h)/(1 + β(h)) are lower. As a result, for a given level of debt, the share

of savings devoted to finance public assets is larger at the steady state with epidemic outbreak.

This explains that there are levels of debt such that savings can no more sustain a positive level

of capital with epidemic outbreak, whereas it is still possible at the disease-free steady state.

If the government has not the degree of freedom to set its fiscal instruments such that As-

sumption 4 will be violated, public policy cannot be managed to achieve a transition toward the

disease-free steady state. In such a context, the question is rather to know what can improve the

features of the stable endemic steady state. Accordingly, we examine now how, under Assumption

4, the government can manage its policy instruments, in particular its public debt b and tax τf ,

to increase the steady state values with epidemic outbreak, namely a2 and h2. Let us focus first

on a variation of debt b:

Proposition 7 Under Assumptions 1-4, inequality (31), θ(τf/α) < 1 + γ, α > α, β′(1) > β̃′(1)

and b < b2, there exists b3 > 0 such that following a slight increase of debt, h2 increases if b < b3.
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Moreover, there exists α̃ > 0, α > 0 and b4 > 0 such that a slight increase of debt implies a

decrease of a2 for α > max{α, α̃} and an increase of a2 for α < α < α(6 α̃) and b < b4.

Proof. See Appendix H.

Debt increase affects positively h as it allows to increase public spending. This tends to reduce

the transmission rate of epidemics. However, at the same time, it might reduce the capital-labor

ratio and, hence, increases the cost of debt, which affects negatively the amount of public spending

devoted to health. This last effect on the transmission rate is dampened by a negative effect of

the capital-labor ratio reduction on pollution. When debt is not too important, the possible

negative effect is not too high and the net effect of the debt variation on h is positive.

The debt increase entails competing effects on the capital-labor ratio. On the one hand, it has

a negative effect on capital accumulation through a standard crowding-out effect. On the other

hand, a higher level of debt allows to increase public health spending, to reduce the transmission

rate of epidemics and hence to increase the share of healthy people. This tends to favor capital

accumulation in the economy as it increases the labor income and the saving rate, which depends

positively on the share of healthy people through the longevity β. Hence, we highlight a new

mechanism through which debt can finally have a crowding-in effect on capital.

As regards the crowding-in effect, it is dampened if the pollution rate is sufficiently high. In

such a case, the increase of the share of healthy people through the reduction of the transmission

rate is too low. To summarize, the crowding-out effect dominates when α is high, but there is a

positive effect of debt on the capital-labor ratio if b is not too high and α has an intermediate

value. Of course, when longevity is highly sensitive to the health condition, the critical value of

α under which the crowding-in effect of the debt dominates is larger.

Note that the existence of b4 > 0 requires τ > 0. A positive average transfer allows to define a

policy favorable to capital accumulation. The increase in h entailed by an increase in government

debt leads to a higher positive effect on savings when households’ incomes are subsidized. The

increase in savings generated by a higher longevity is more important when the government makes

high income transfers.

When a debt increase affects positively the share of healthy people and the capital stock, the

positive effect on production is clear cut, and we can conjecture a positive effect on welfare. Using

(25) and (26), we can also easily conjecture that a decrease of the average lump-sum subsidy τ

will have the same effect than an increase of public debt.

We now address the effect of a variation of the product tax rate on the endemic steady state:

Proposition 8 Under Assumptions 1-4, inequality (31), θ(τf/α) < 1 + γ, α > α, β′(1) > β̃′(1)
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and b < b2, there exists b5 > 0 such that following a slight increase of the tax rate on production

τf , h2 increases for b < b5.

Moreover, there exist α̃τ > 0 and ατ > 0 such that a slight increase of τf implies a decrease

of a2 for α > max{α, α̃τ} and an increase of a2 for α < α < ατ (6 α̃τ ) and τ close to b.

Proof. See Appendix I.

The effects of a variation of τf and b on the steady state with epidemics are very similar. On

the one hand, an increase of the tax rate increases the amount of public health funds available, g,

which reduces the transmission rate of epidemics, even if the capital-labor ratio becomes lower.

This raises the share of healthy people, and therefore labor. It improves aggregate savings and

hence capital accumulation, through higher labor income and saving rate. On the other hand, a

higher tax reduces available income, which has a negative effect on the amount of savings. The

first effect of the tax rate, which is positive, is the dominant one if the pollution rate α takes

intermediate values and the average subsidy τ is sufficiently high and close to the level of debt b

to ensure a high enough income.

On the contrary, the second effect, which is negative, dominates when the pollution rate α

is high enough. In this case, pollution is important, the transmission rate higher and the labor

force h smaller. The fall in savings entailed by the tax τf is highly costly since the variation of

healthy worker is quite weak and this policy instrument will not be efficient to increase a2.

Although the effect of a variation of τf and b are similar, it is important to note that both

instruments are not perfect substitute. While public debt decreases the share of saving allocated

to private assets without affecting directly the amount of saving, production tax has a direct effect

on saving. The negative effect of τf thus depends on the saving rate. The condition to have a

policy favorable for a2 requires τ close to b. This implies a low level of government spending g

and hence a high transmission rate θ. In such a case, saving rate is sufficiently low, so does the

negative effect of τf .

7 Transfers to address inequalities between healthy and

infected agents

In our model, epidemics create inequality. Indeed, at the endemic steady state, we can distinguish

two groups of individuals that have heterogeneous income profile. People are either healthy at

adult age, able to work and hence earn a wage, or are infected at adult age and receive only the

lump sum subsidy. Government can put in place a transfer program for redistribution motives.

We address this question in the section.
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Substituting the two expressions of consumptions (6) and (7) in the utility function (3), we

get the agents j welfare:

Wjt ≡ β(ht+1) ln rt+1 + (1 + β(ht+1))[ln(Ωjt + τjt)− ln(1 + β(ht+1))] (41)

As Ωjt is equal to the labor income for healthy and zero for infected, the subsidies τjt can be

used to correct inequality and ensure the same welfare for both kind of agents.

Using (41), at the endemic steady state (a2, h2), the difference between the welfare of a healthy

(j = H) and an infected (j = I) individual is given by:

WH −WI = (1 + β(h2)) [ln(w(a2) + τH)− ln τI ]

where τH is the subsidy distributed to each healthy individual and τI the one distributed to each

infected people. Then, the welfare is the same for all people if WH = WI , which is equivalent to:

τI − τH = w(a2) = (1− τf )A(1− s)as2 (42)

Given the values of the average subsidy τ and the share of healthy agents h2, the transfer system,

τH and τI , is constrained and should satisfy:

τ = h2τH + (1− h2)τI (43)

Note that using (42), we have τI = τH + w(a2). Substituting τI in equation (43), we obtain

τ = τH + (1− h2)w(a2) < τH +w(a2). Since τ > 0, this means that the income received by each

agent is identical and positive.

This result is summarized in the following proposition:

Proposition 9 Under Assumptions 1-4, inequality (31), θ(τf/α) < 1 + γ, α > α, β′(1) > β̃′(1)

and b < b2, all individuals have the same welfare at the endemic steady state (a2, h2) if τH and

τI satisfy equations (42) and (43).

This proposition shows that once the policy parameters b, τf and τ are fixed to determine the

levels of a2 and h2, the two levels of subsidy τH and τI can be used to equalize the levels of income

and welfare of healthy and infected people. Two subsidies different from zero are required to be

able to fix the redistribution policy independently of the level of the average subsidy τ and of the

stationary levels a2 and h2. An income redistribute policy in favor of infected τI > τH is a way to

avoid inequality generated by epidemics. Note that such policy could come at an additional cost

for healthy people. When public budget for transfer τ is low enough, healthy individuals becomes

a taxpayer (τH < 0). To tackle inequality due to epidemics without reducing income profile of

healthy people, government should devote a large amount of fund to transfer policy. This has to

come with an increase in debt.
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To sum up, we show that in case of epidemics, the fiscal policy can be used first to rule out

any endemic steady state and promote the convergence to a stable long-run equilibrium with no

epidemics. If the implementation of such a policy is not possible, we argue that a government

should try to improve the situation at the stable endemic steady state. We show that this is

possible by raising debt or increasing the fiscal pressure if associated public spending are used to

improve health care. Another novelty of this paper is to underline that the effectiveness of these

policies strongly depends on the level of pollution, which is linked to the production technology.

Finally, if the economy converges to the steady state where healthy and infected individuals

coexist, it is possible to redistribute income between individuals with an appropriate choice of

subsidies to rule out welfare inequalities.

8 Conclusion

In this paper, we examine the interplay between epidemics, pollution and fiscal policies in a

macroeconomic framework. The health impacts of the infection depend on the pollution in-

tensity and on the age profile of the agent. To take into account these features, we study the

dynamics of epidemics in an OLG model where fiscal instruments are used to fight the health

and macroeconomic consequences of the disease. We emphasize situations in which the trans-

mission rate of epidemics exceeds the recovery rate, implying that the economy cannot achieve

a disease-free state. Public debt and income transfers may address such unfavorable situations.

We determine some fiscal policies that allow the economy to converge to a state without infected

people and with a higher level of capital. In a context in which public policy is not able to

eradicate the epidemic, it could however be used to reduce the number of infected people and

increase capital per capita in the long run. In an economy where a public health policy is not

sufficient to eradicate the epidemics, fiscal policy with public debt is an appropriate tool for living

with the epidemic, keeping the number of infected people at a stationary, and potentially low,

level. It requires, however, a not too high pollution intensity. This result thus highlights the po-

tential role of environmental policies to prevent and fight efficiently infectious diseases. Finally,

a redistribution using subsidies to households is recommended to reduce or even rule out welfare

inequalities.
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Appendix

A Proof of Lemma 1

A steady state with h < 1 satisfies equations (25) and (26). Using (24), we obtain the following

derivatives:

∂η

∂h
=

b(1− τf )sA− (b− τ)a1−s

αAh2a
(A. 1)

∂η

∂a
= s

b(1− τf )A− (b− τ)a1−s

αAha2
(A. 2)

Under Assumption 3, we have ∂η/∂h < 0 and there exists â ≡
[
b(1−τf )A
b−τ

] 1
1−s

> a such that

∂η/∂a > 0 for a < â and ∂η/∂a < 0 for a > â. Therefore, equation (24) implicitly defines a

function h = H1(a) which is increasing for a < a < â and decreasing for a > â. The maximum

value taken by this function is given by ĥ = H1(â). We also have η(h, a) = η(h,+∞) = τf/α.

We deduce that H1(a) = H1(+∞) = γ/θ(τf/α) and H1(a) > γ/θ(τf/α).

Then, differentiating Equation (26), we obtain:

∂F

∂h
= a− β′(h)

(1 + β(h))2
[(1− τf )(1− s)Aash+ τ ]− β(h)

1 + β(h)
(1− τf )(1− s)Aas (A. 3)

∂F

∂a
= h

[
1− β(h)

1 + β(h)
(1− τf )(1− s)sAas−1

]
(A. 4)

Using (26) and (A. 3), we have:

∂F

∂h
h =

β(h)

1 + β(h)
τ − b− β′(h)h

(1 + β(h))2
[(1− τf )(1− s)Aash+ τ ] < 0

Using the last equation, we note that:

∂F

∂a
> h

[
1− β(h)

1 + β(h)
(1− τf )(1− s)sAas−1

]
= h

[
1− β(h)

1 + β(h)
(1− s)

(
1− τ

b

)]
> 0

meaning that ∂F
∂a > 0 for all a > a. Therefore, equation (26) implicitly defines a function

h = H2(a) which is strictly increasing for all a > a. We note that H ′2(a) = −∂F∂a /
∂F
∂h is increasing

in A, which means that when h crosses h, A becomes equal to 1 and the slope increases.

B Proof of Proposition 1

Under Assumption 3, we have β(1)
1+β(1)τ − b < 0. Using (27), we can easily deduce the following:

1. If β(1)
1+β(1)τ − b is not too negative, there are two steady states with a > 0 and h = 1;

2. If β(1)
1+β(1)τ − b is sufficiently negative, there is no steady state with a > 0 and h = 1.
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Note that in the last case, the crowding-out effect of public debt is too high. Even if all the

population is healthy, the transfer τ is too low to maintain a sufficient level of saving allowing to

finance public debt and to invest in productive capital.

Assuming that b is not too large, we are in the configuration with two steady states. To show

the existence of the steady state with the highest level of capital, we note that ∂2F (1, a)/∂a2 > 0

and F (1,+∞) > 0. Therefore, if:

A
s

1− s
b

b− τ
<

β(1)

1 + β(1)
(B. 5)

there exist b1 > 0 such that F (1, a) < 0 for all τ < b < b1.

C Proof of Proposition 2

We examine the conditions for the existence of steady states with infected people and epidemic

outbreak, i.e h < h < 1. From (26), we have:

F (h, â) = hâ

(
1− β(h)

1 + β(h)

A(h)

A

(b− τ)(1− s)
b

)
+ b− τ β(h)

1 + β(h)
(C. 6)

Under Assumption 4, we have F (ĥ, â) > 0, which is equivalent to H2(â) > H1(â) = ĥ.

Therefore, there exists a steady state with h < 1 if H2(a) < H1(a). From (26), we have:

F (γ/θ(τf/α), a) =
γ

θ(τf/α)

(
a− β(γ/θ(τf/α))

1 + β(γ/θ(τf/α))
(1− τf )(1− s)Aas

)
+b− τ β(γ/θ(τf/α))

1 + β(γ/θ(τf/α))
(C. 7)

Thus, when the following inequality:

a <
β(γ/θ(τf/α))

1 + β(γ/θ(τf/α))
(1− τf )(1− s)Aas ⇔ b

b− τ
s

1− s
<

β(γ/θ(τf/α))

1 + β(γ/θ(τf/α))

is satisfied, there exists b2 > 0 such that for b < b2, we have F (γ/θ(τf/α), a) < 0. As

F (γ/θ(τf/α), a) < 0 is equivalent to H2(a) < H1(a) = γ/θ(τf/α), we have sufficient condi-

tions for the existence of a steady state with h < 1. Note that F (γ/θ(τf/α), a) < 0 implies

F (1, a) < 0 because ∂F (a, h)/∂h < 0, which ensures also the existence of the steady state (a1, 1).

Furthermore, we note that the steady state (a1, 1) solves H2(a1) = 1, which is equivalent to

F (1, a1) = 0. Since H2(a) is an increasing function whatever the value of A, it is clear that a

steady state with h < 1 is always characterized by a lower level of capital-labor ratio a than a

steady state with h = 1. Using (C. 6), we further have F (1, â) > 0. Since ∂F (h, a)/∂a > 0, this

implies that a1 < â.
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Finally, we note that there is a unique steady state with h < 1 if we have H ′2(a) > H ′1(a) at

each equilibrium satisfying H2(a) = H1(a). Using (26) and (A. 4), we have:

H ′2(a) =
h2
[
1− β(h)

1+β(h) (1− τ
f )(1− s)sAas−1

]
b− β(h)

1+β(h)τ + β′(h)h
(1+β(h))2 [(1− τf )(1− s)Aash+ τ ]

(C. 8)

Using now (25) and (A. 2), we obtain:

H ′1(a) =
−θ′(η)s b(1−τ

f )A−(b−τ)a1−s

αAa2

θ(η)− θ′(η) (b−τ)a1−s−b(1−τf )sA
αAha

(C. 9)

The inequality H ′2(a) > H ′1(a) is thus equivalent to:

αAaγ > θ′(η)[(b− τ)a1−s − b(1− τf )sA]

−θ′(η)s
b(1− τf )A− (b− τ)a1−s

ah∂F∂a

[
b− β(h)

1 + β(h)
τ +

β′(h)h

(1 + β(h))β(h)
(ah+ b)

]
(C. 10)

Note that h and a have finite and strictly positive values. We deduce that H ′2(a) > H ′1(a) for

α high enough. It means that there exists α such that for α > α, there is a unique steady state

(a2, h2) such that h < 1.

Finally, inequality (22) is satisfied at the steady state (a2, h2) if θ(η(h2, a2))(1 − h2) < 1.

Using (23), this is equivalent to θ(η(h2, a2)) < 1 + γ. Using Lemma 1, this is always satisfied

because θ(τf/α) < 1 + γ.

D Proof of Proposition 3

Focusing on equations (25) and (26) with h < 1, the effect of a variation of A on the endemic

steady state outbreak (a2, h2) is given by:

I

da
dh

+

∂Z/∂A
∂F/∂A

 dA =

0

0


with

I =

∂Z/∂a ∂Z/∂h

∂F/∂a ∂F/∂h


which implies that:

da

dA
= − 1

DetI

(
∂F

∂h

∂Z

∂A
− ∂Z

∂h

∂F

∂A

)
dh

dA
= − 1

DetI

(
−∂F
∂a

∂Z

∂A
+
∂Z

∂a

∂F

∂A

)
with −1/DetI > 0.

27



We first examine the effect of A on h2, examining the sign of dh/dI, which is given by the

sign of:

−∂F
∂a

∂Z

∂A
+
∂Z

∂a

∂F

∂A
= hθ′(η)

b

αA2a2−s

[
b− τ
b

a1−s − β(h)

1 + β(h)
(1− τf )2(1− s)sA2

]
This is strictly positive for all a < â if b−τ

b â1−s < β(h)
1+β(h) (1 − τf )2(1 − s)sA2. This is

equivalent to b
b−τ < β(h)

1+β(h)s(1 − s), which is never satisfied. This is negative for all a > a

if b−τ
b a1−s > β(h)

1+β(h) (1 − τf )2(1 − s)sA2. This is equivalent to b
b−τ s >

β(h)
1+β(h) (1 − s), but is

incompatible with inequality (31). As a result, we have no clear-cut conclusion concerning the

effect of A on h.

We then examine the effect of a variation of the productivity on the stationary capital-labor

ratio, da/dA. It is given by the sign of the following expression:

∂F

∂h

∂Z

∂A
− ∂Z

∂h

∂F

∂A
= θ′(η)

b− τ
αA2ash

[
b− β(h)

1 + β(h)
τ +

β′(h)h

(1 + β(h))β(h)
(ah+ b)

]
+

[
γ + θ′(η)

b(1− τf )sA− (b− τ)a1−s

αAa

]
(1− τf )(1− s)as β(h)

1 + β(h)

This is positive if and only if:

αAaγ > θ′(η)[(b− τ)a1−s − b(1− τf )sA]

−θ′(η)
b− τ

(1− τf )(1− s)Aa2s−1h

[
1 + β(h)

β(h)
b− τ +

β′(h)h

β(h)2
(ah+ b)

]
(D. 11)

There exist αA > 0 and αA(6 αA) such that this inequality is satisfied for α > αA and is not

satisfied for α < αA.

Using (C. 10) and (D. 11), αA > α is equivalent to:

b− τ
b

[
ah+

β(h)

1 + β(h)
(1− τf )(1− s)sAas(1− h)

]
>

β(h)

1 + β(h)
s(1− s)(1− τf )2A2 (D. 12)

Using a > a, this requires:[
b(1− τf )s

b− τ

] s
1−s
[
h+

β(h)

1 + β(h)
(1− s)(1− h)

b− τ
b

]
>

β(h)

1 + β(h)
(1− τf )(1− s)A

1−2s
1−s (D. 13)

which is satisfied if A is low enough.

E Proof of Proposition 4

Substituting a = a1 and h = 1 in equations (36)-(39), we note that Jha = 0, which means that

the two eigenvalues are given by:

Jhh = 1− γ + θ(η1) (E. 14)

Jaa =
β(1)

1 + β(1)
(1− τf )(1− s)sAas−11 (E. 15)
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where η1 ≡ η(1, a1). Using (A. 4) and the result that ∂F/∂a > 0 for all h > 0, we easily deduce

that Jaa ∈ (0, 1).

Using Assumption 4, we have 1 > h > ĥ = γ/θ(η(ĥ, â)). This implies that θ(η(ĥ, â)) > γ.

Since ĥ < 1 and â > a1, we deduce that θ(η1) = θ(η(1, a1)) > θ(η(ĥ, â)) > γ. This means that

Jhh > 1.

F Proof of Proposition 5

The stability of the steady state (a2, h2) is given by the roots of the characteristic polynomial

P (λ) = λ2 − Tλ+D = 0, where T = Jhh + Jaa and D = JhhJaa − JhaJah are the trace and the

determinant of the Jacobian matrix obtained from the linearized system (34)-(35).

Using (36)-(39) and (25), we get:

T = 1 + γ − θ(η) +
β(h)

1 + β(h)
(1− τf )(1− s)sAas−1 (F. 16)

−(1− h)hθ′(η)

[
∂η

∂h
− a

h

∂η

∂a
+
∂η

∂a

β′(h)

h(1 + β(h))2
((1− τf )(1− s)Aash+ τ)

]
D =

β(h)

1 + β(h)
(1− τf )(1− s)sAas−1[

1 + γ − θ(η)− (1− h)hθ′(η)

(
∂η

∂h
− a

sh

∂η

∂a

)]
(F. 17)

We note that equation (25) with h < 1 implies that θ(η) > γ. Using (A. 4), ∂F/∂a > 0,

θ′(η) < 0, ∂η/∂h < 0 and ∂η/∂a > 0 at the steady state (a2, h2), we deduce that D < 1.

Using (F. 16) and (F. 17), and also (25) and (26), we have:

P (1) = 1− T +D

= (1− h)

[
1− β(h)

1 + β(h)
(1− τf )(1− s)sAas−1

] [
θ(η) + hθ′(η)

∂η

∂h

]
+ (1− h)

θ′(η)

h

∂η

∂a

[
b− β(h)

1 + β(h)
τ +

β′(h)h

β(h)(1 + β(h))
(ah+ b)

]
(F. 18)

Substituting (A. 1) and (A. 2), 1 − T + D > 0 is equivalent to H ′2(a) > H ′1(a), where H ′2(a)

and H ′1(a) are given by (C. 8) and (C. 9) respectively. This is satisfied for α > α.

Using (25), (26), (A. 1),(A. 2), (F. 16) and (F. 17), we obtain:

P (−1) = 1 + T +D

= [2− θ(η)(1− h)]

[
1 +

β(h)

1 + β(h)
(1− τf )(1− s)sAas−1

]
+(1− h)θ′(η)

[
(1− s) b− τ

αAhas
+

β(h)

1 + β(h)
(1− τf )(1− s)sAas−1 (1− s)b(1− τf )

αha

−sb(1− τ
f )A− (b− τ)a1−s

αAha2
β′(h)

β(h)(1 + β(h))
(ah+ b)

]
(F. 19)
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Note that on the one hand, the second term (third line) on the right-hand side of this equation

is negative because θ′(η) < 0. On the other hand, the third term (fourth line) on the right-hand

side of equation (F. 19) is positive because θ′(η) < 0 and ∂η/∂a > 0. Moreover, using inequality

(22), we note that θ(η)(1−h) < 1. Since a2 and h2 have finite values, we easily deduce that there

is β̃′(1) > 0 such that 1 + T +D > 0 and (a2, h2) is a sink for (β′(h) >)β′(1) > β̃′(1).

G Proof of Proposition 6

Under α > α, inequality (40) and b < b2, we have F (γ/θ(τf/α), a) < 0 or equivalently H2(a) <

H1(a) (see the proof of Proposition 2).

Since hθ(η(h, â)) < γ, the peak of H1(a) is above h. We show now that it can be higher than

h = 1. Indeed, ĥ = H1(â) > H2(â)(> 1) is equivalent to:

F (ĥ, â) = âĥ

[
1− β(ĥ)

1 + β(ĥ)

1− s
A

b− τ
b

]
+ b− τ β(ĥ)

1 + β(ĥ)
< 0 (G. 20)

Under inequality (40), this is satisfied if b(> τ) is lower than an upper bound b′2 > 0. We note

bb > 0 as being bb ≡ min{b2; b′2}. Under α > α, H ′2(a) > H ′1(a) if H2(a) = H1(a), which implies

that H2(a) and H1(a) do not cross for all a ∈ (a, â). Therefore, there are no steady state with

h < 1.

This also means that H1(a1) > H2(a1) = 1. This implies that θ(η(a1, 1)) < γ. Using the

proof of Proposition 4, we deduce that the steady state (a1, 1), which still exists, is stable.

H Proof of Proposition 7

Focusing on equations (25) and (26) with h < 1, we have:

I

da
dh

+

∂Z/∂b
∂F/∂b

 db =

0

0


with

I =

∂Z/∂a ∂Z/∂h

∂F/∂a ∂F/∂h


Thus, da

dh

 = −I−1
∂Z/∂b
∂F/∂b

 db

with

I−1 =
1

DetI

 ∂F/∂h −∂Z/∂h

−∂F/∂a ∂Z/∂a
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The endemic steady state outbreak (a2, h2) is characterized by a2 < â and H ′2 = − ∂F/∂a
∂F/∂h >

H ′1 = − ∂Z/∂a
∂Z/∂h . Using Lemma 1, at the point (a2, h2), we have ∂Z/∂a < 0, ∂Z/∂h > 0, ∂F/∂a > 0

and ∂F/∂h < 0. We thus deduce that DetI < 0.

The effect of a variation in debt on the endemic steady state outbreak (a2, h2) is given by:

da

db
= − 1

DetI

(
∂F

∂h

∂Z

∂b
− ∂Z

∂h

)
dh

db
= − 1

DetI

(
−∂F
∂a

∂Z

∂b
+
∂Z

∂a

)
with −1/DetI > 0.

We first examine the effect of a debt variation on h, examining the sign of dh/db. We have:

−∂F
∂a

∂Z

∂b
+
∂Z

∂a
= −h

[
1− β(h)

1 + β(h)
(1− τf )(1− s)sAas−1

]
θ′(η)

a1−s − (1− τf )sA

αAa

+ θ′(η)s
b(1− τf )A− (b− τ)a1−s

αAa2

Thus, we have dh/db > 0 if and only if:

ah

[
1− β(h)

1 + β(h)
(1− τf )(1− s)sAas−1

]
(a1−s − (1− τf )sA) > sb(1− τf )A− s(b− τ)a1−s

Since the left-hand side of this inequality is positive, there is b3 > 0 such that it is satisfied if

b < b3.

We then examine the effect of a debt variation on the stationary capital-labor ratio, i.e. da/db.

Using the proof of Lemma 1, we have:

∂F

∂h

∂Z

∂b
− ∂Z

∂h
= −θ′(η)

∂η

∂h
h− θ(η(h, a))

+ θ′(η)
∂η

∂b

[
β(h)

1 + β(h)
τ − b− β′(h)h

(1 + β(h))2
[(1− τf )(1− s)Aash+ τ ]

]
with, under Assumption 3:

∂η

∂b
=
a1−s − (1− τf )sA

αhAa
> 0 ;

∂η

∂h
h =

b(1− τf )sA− (b− τ)a1−s

αhAa
< 0

We thus have − ∂η
∂hh = ∂η

∂b b−
τa1−s

αhAa

∂F

∂h

∂Z

∂b
− ∂Z

∂h
= θ′(η)

(
∂η

∂b

[
β(h)

1 + β(h)
τ − β′(h)h

(1 + β(h))2
[(1− τf )(1− s)Aash+ τ ]

]
− τa1−s

αhAa

)
− θ(η(h, a))

∂F

∂h

∂Z

∂b
− ∂Z

∂h
= −θ(η(h, a))− θ′(η)

τa1−s + (1− τf )sAτβ(h)

αAha(1 + β(h))

− θ′(η)
a1−s − (1− τf )sA

αAha

β′(h)h

(1 + β(h))2
[(1− τf )(1− s)Aash+ τ ] (H. 21)

31



We have da/db > 0 if this last expression is strictly positive. ∂F
∂h

∂Z
∂b −

∂Z
∂h > 0 is equivalent to:

αAaγ < −θ′(η)
τa1−s + (1− τf )sAτβ(h)

1 + β(h)
− θ′(η)[a1−s − (1− τf )sA]

β′(h)h(ah+ b)

β(h)(1 + β(h))
(H. 22)

Therefore, there exist α > 0 and α̃(> α) such that this inequality is satisfied for α < α and is

not satisfied for α > α̃.12

H ′2(a) > H ′1(a) is equivalent to α > α, or (C. 10). Inequalities (H. 22) and (C. 10) are both

satisfied for α < α < α. This interval is non empty if:

β′(h)h

β(h)(1 + β(h))
(ah+ b)B1 > B2 (H. 23)

with

B1 ≡ a1−s − (1− τf )sA− sb(1− τ
f )A− (b− τ)a1−s

ah∂F/∂a
(H. 24)

B2 ≡ s
b(1− τf )A− (b− τ)a1−s

ah∂F/∂a

(
b− β(h)

1 + β(h)
τ

)
− τa1−s + (1− τf )sAτβ(h)

1 + β(h)

−[(b− τ)a1−s − b(1− τf )sA] (H. 25)

Using a > a, B1 > 0 and B2 < 0 if:

[
(1− τf )sA

] 1
1−s h2

τ

b

(
b

b− τ

) 2−s
1−s
[
1− β(h)

1 + β(h)
(1− s)b− τ

b

]
> b(1− s)

There exists b4 > 0 such that this is satisfied if b < b4.

I Proof of Proposition 8

The effect of a variation in τf on the endemic steady state outbreak (a2, h2) is given by:

I

da
dh

+

∂Z/∂τf
∂F/∂τf

 dτf =

0

0


which implies that:

da

dτf
= − 1

DetI

(
∂F

∂h

∂Z

∂τf
− ∂Z

∂h

∂F

∂τf

)
dh

dτf
= − 1

DetI

(
−∂F
∂a

∂Z

∂τf
+
∂Z

∂a

∂F

∂τf

)
with −1/DetI > 0.

We first examine the effect of τf on h, examining the sign of dh/dτf , which is given by the

sign of:

−∂F
∂a

∂Z

∂τf
+
∂Z

∂a

∂F

∂τf
= −h2

[
1− β(h)

1 + β(h)
(1− τf )(1− s)sAas−1

]
θ′(η)

(
bs

αha
+

1

α

)
+ θ′(η)s

b(1− τf )A− (b− τ)a1−s

αAa2
Aash(1− s) β(h)

1 + β(h)

12α and α̃ may not be equal because a, h and η depend on α.
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Therefore, we have dh/dτf > 0 if and only if:[
1− β(h)

1 + β(h)
(1− τf )(1− s)sAas−1

](
bs

a
+ h

)
> s

b(1− τf )Aas−1 − (b− τ)

a
(1− s) β(h)

1 + β(h)

There exists an upper bound b5 > 0 such that this inequality is satisfied for b < b5.

We then examine the effect of a tax variation on the stationary capital stock, da/dτf . It is

given by the sign of the following expression:

∂F

∂h

∂Z

∂τf
− ∂Z

∂h

∂F

∂τf
= hθ′(η)

(
bs

αha
+

1

α

)[
β(h)

1 + β(h)
τ − b− β′(h)h

(1 + β(h))2
[(1− τf )(1− s)Aash+ τ ]

]
−

[
θ′(η)

b(1− τf )sA− (b− τ)a1−s

αhAa
+ θ(η)

]
Aash(1− s) β(h)

1 + β(h)
(I. 26)

This is positive if and only if:

− θ
′(η)

1− s

(
bs

as
+ ha1−s

)[
1 + β(h)

β(h)
b− τ +

β′(h)h

β(h)2
(ah+ b)

]
−θ′(η)[b(1− τf )sA− (b− τ)a1−s] > αγAa (I. 27)

There exists ατ > 0 and α̃τ (> ατ ) such that this inequality is satisfied for α < ατ and is not

satisfied for α > α̃τ .13

H ′2(a) > H ′1(a) is equivalent to α > α, or (C. 10). Inequalities (H. 22) and (I. 27) are both

satisfied for α < α < ατ . This interval is non empty if:[
β′(h)h

(1 + β(h))β(h)
(ah+ b) + b− β(h)

1 + β(h)
τ

]
[

1 + β(h)

β(h)

(
bs

(1− s)as
+
ha1−s

1− s

)
− sb(1− τ

f )A− (b− τ)a1−s

ah∂F/∂a

]
> 0 (I. 28)

Since the first term into brackets is strictly positive, this inequality is satisfied if the second

term into brackets is strictly positive. Using a > a, this requires:

h2
1 + β(h)

β(h)

(
bs

1− s
+

ha

1− s

)[
1− β(h)

1 + β(h)
(1− s)

(
1− τ

b

)]
> (1− s)(b− τ) (I. 29)

Taking into account the expression of a given in Assumption 3, inequality (I. 29) is satisfied if τ

is sufficiently close to b.
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