
Acidosis, cognitive dysfunction and motor impairments in
patients with kidney disease

Pedro H. Imenez Silva1,2, Robert Unwin 3, Ewout J. Hoorn 4, Alberto Ortiz 5,
Francesco Trepiccione6,7, Rikke Nielsen8, Vesna Pesic9, Gaye Hafez 10, Denis Fouque 11,12,
Ziad A. Massy13,14, Chris I. De Zeeuw15,16, Giovambattista Capasso 6,7, Carsten A. Wagner 1,2; the
CONNECT Action (Cognitive Decline in Nephro-Neurology European Cooperative Target)
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A B S T R A C T

Metabolic acidosis, defined as a plasma or serum bicarbonate
concentration <22 mmol/L, is a frequent consequence of
chronic kidney disease (CKD) and occurs in ~10–30% of
patients with advanced stages of CKD. Likewise, in patients
with a kidney transplant, prevalence rates of metabolic acidosis
range from 20% to 50%. CKD has recently been associated with
cognitive dysfunction, including mild cognitive impairment
with memory and attention deficits, reduced executive func-
tions and morphological damage detectable with imaging.
Also, impaired motor functions and loss of muscle strength
are often found in patients with advanced CKD, which in
part may be attributed to altered central nervous system
(CNS) functions. While the exact mechanisms of how CKD
may cause cognitive dysfunction and reduced motor func-
tions are still debated, recent data point towards the possibil-
ity that acidosis is one modifiable contributor to cognitive
dysfunction. This review summarizes recent evidence for an
association between acidosis and cognitive dysfunction in
patients with CKD and discusses potential mechanisms
by which acidosis may impact CNS functions. The review
also identifies important open questions to be answered to
improve prevention and therapy of cognitive dysfunction in
the setting of metabolic acidosis in patients with CKD.

Keywords: acidosis, chronic kidney disease, cognitive dysfunc-
tion, klotho, motor function

I N T R O D U C T I O N

Chronic kidney disease (CKD) causes complex endocrine and
metabolic disturbances, leading to bone disease and excessive
cardiovascular morbidity and mortality. Among these endo-
crine disturbances are reduced levels of a-klotho and calcitriol
and an increase in fibroblast growth factor 23 (FGF23), para-
thyroid hormone (PTH) and accumulation of uraemic toxins,
including elevation of serum phosphate, as well as reduced
erythropoietin levels and anaemia. Advanced stages of CKD
also entail salt and water retention, along with hyperkalaemia
and metabolic acidosis [1]. More recently, cognitive dysfunc-
tion and impaired motor functions have been associated with
CKD and recognized as another complication that impacts on
the quality of life of affected patients [2–6]. The term cognitive
dysfunction is not very well defined but generally includes defi-
cits in declarative learning, related memory formation and sen-
sory processing. Also, sleep problems and mood disorders are
linked to altered brain function in patients with CKD. Motor
deficits are found in these patients that may encompass not
only aberrations in central nervous system (CNS) functioning,
but also remodelling of peripheral nerve and muscle configura-
tions. This review focuses on the role of metabolic acidosis as a
potential risk factor or contributor to the development of cogni-
tive dysfunction and motor deficits in patients with CKD. We
will review the evidence that associates metabolic acidosis with
impaired brain functions, discuss potential mechanisms and
raise questions that should be addressed both clinically as well

as in model organisms to provide a better understanding of this
problem.

Metabolic acidosis in patients with CKD

Metabolic acidosis is a common complication of patients
with CKD and increases in prevalence with the progression of
kidney disease [7]. Between 10% and 20% of patients with Stage
G4 CKD have overt metabolic acidosis, which increases to 30–
40% of patients with Stage G5 CKD (Figure 1) [1, 9–11].
Acidosis is defined here as a process causing a positive hydro-
gen (Hþ) balance in (extracellular) fluid compartments and
encompasses overt acidosis when serum or plasma bicarbonate
(HCO3

�) [or total carbon dioxide (CO2)] falls to <22 mmol/L
and/or a blood pH <7.36 as well as eubicarbonataemic acidosis
when systemic HCO3

� and pH are within normal limits but
acid accumulation occurs in some organs (see also below). This
definition is somewhat arbitrary, as only a few risk analyses
have assessed the threshold for upper and lower HCO3

� levels
that associate with disease risks and serum pH might influence
the association between serum HCO3

�, renal failure and other
disease risks [12]. As discussed below, such an analysis is also
missing for the association between HCO3

� levels and cognitive
dysfunction. However, an association study in an elderly popu-
lation for HCO3

� level and all-cause mortality suggests that
mortality is lowest in individuals with HCO3

� values from 23
to 26 mmol/L [13]. In patients with CKD Stages G3 and G4, all-
cause mortality is lowest between 23 and 32 mmol/L [14]. Overt
metabolic acidosis is also frequently encountered in kidney
transplant recipients and the prevalence reported in various
studies ranges between 20% and 50% of patients [7, 15]. In these
patients, metabolic acidosis may be caused by not only reduced
kidney function, but also promoted by some immunosuppres-
sants such as calcineurin inhibitors, immunological factors, the
process of donation and donor characteristics and diet [15].

More recently, a novel concept of eubicarbonataemic
acidosis has been introduced postulating accumulation of acid
equivalents in a tissue under conditions of normal systemic
acid–base balance [9, 10]. In kidney disease, acid retention in

FIGURE 1: Prevalence of MCI and metabolic acidosis (MA) in
patients with reduced kidney function. The prevalence of MCI and
MA as a function of eGFR is estimated from several studies that
reported the prevalence of MCI or MA in patients with reduced kid-
ney function [1, 3, 5, 7, 8]. Cross-sectional studies analysing the
prevalence of both clinical entities in the same cohort of patients
have not been reported to date.
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the kidney may drive kidney disease progression and possibly
also some of the systemic alterations, such as changes in circu-
lating hormones (i.e. endothelin or the renin–angiotensin–aldo-
sterone system), while blood pH, HCO3

� and partial pressure
of arterial CO2 remain within normal limits. This concept is
based mostly on observations in rat CKD models and lower uri-
nary citrate excretion in patients with CKD [16, 17].
Unfortunately, no methods exist that allow measurement of lo-
cal tissue pH with sufficient spatial and chemical resolution
in vivo in humans to corroborate this model. An immediate
consequence of this model would be the need to treat acidosis
with alkali equivalents at early stages of kidney disease and be-
fore the occurrence of overt systemic acidosis to delay further
progression of kidney disease. The implementation of a more
holistic assessment of the metabolic acidosis of CKD may need
to take into consideration multiple parameters, such as urinary
citrate and ammonium, blood pH, serum HCO3

� (or total
CO2) and, in the future, other new early diagnostic markers or
the direct measurement of tissue pH [18].

Multiple processes, conditions and diseases can lead to
acidosis, but this review focuses on metabolic acidosis in the set-
ting of CKD. Chronic metabolic acidosis is a condition in which
the daily acid load exceeds the capacity of (remnant) kidneys to
excrete Hþ and regenerate HCO3

� consumed by metabolism.
In CKD, this is typically caused by the diminished capacity of
kidneys to excrete acids and generate new HCO3

� rather than
an augmented daily acid load, although the latter can aggravate
pre-existing acidosis, for example, in diabetic nephropathy with
ketoacidosis. The main process that causes acidosis in CKD is
the loss of ammoniagenesis, which acts as the main adaptive
mechanism to excrete acid in the form of ammonium and to re-
generate HCO3

� [9, 19].

Cognitive dysfunction, motor dysfunction and acidosis
in patients with CKD

Overt metabolic acidosis is a hallmark of advanced stages
of CKD, while a higher risk of developing mild cognitive im-
pairment (MCI) has been observed already in the early stages
of CKD [3]. Only a few studies have examined the association
between acidosis or serum/plasma HCO3

� and brain functions.
These will be discussed next.

Dobre et al. [2] examined memory and cognition in the
cross-sectional SPRINT-MIND (Systolic Blood Pressure
Intervention Trial Memory and Cognition in Decreased
Hypertension) cohort, including 2853 hypertensive non-
diabetic participants. The mean age of participants was 68 years,
the mean estimated glomerular filtration rate (eGFR) was
71 mL/min/1.73 m2 and 30% had CKD. About 20% of partici-
pants had a HCO3

� level <24 mmol/L. In this cohort, a
1 mmol/L lower HCO3

� level associated with poorer perfor-
mance in various tests on global cognitive or executive func-
tions. This association persisted even after correction for eGFR
and albuminuria. However, the positive association was attenu-
ated when corrected for structural brain abnormalities typical
for CKD detected by brain magnetic resonance imaging in a
representative subset of patients. There was some specificity, as
HCO3

� did not associate with tests of memory, attention or

language. Of note, the cognitive domains associated with low
HCO3

� in the SPRINT-MIND cohort are distinct from those
found in patients with CKD, suggesting that distinct mecha-
nisms may be responsible.

In a subset of participants in the Health, Aging and Body
Composition (Health ABC) Study, a longitudinal study in older
individuals (70–79 years), the association between serum
HCO3

� level and functional limitation was examined [4].
Functional limitation was scored based on the ability to walk a
short distance and to climb stairs on two consecutive occasions
6 months apart with a follow-up of from 3 to 6 years. A total of
1544 participants were analysed with ~10% having HCO3

� lev-
els <23 mmol/L, while nearly 35% had levels >26 mmol/L.
CKD was most prevalent in the low-HCO3

� group.
Participants with low HCO3

� also had a lower blood pH and
lower partial pressure of CO2, demonstrating that low HCO3

�

levels were unlikely to be due to respiratory problems. Those
with the lowest HCO3

� levels had the highest risk of developing
functional limitations during the follow-up and this association
persisted after multiple adjustments. Of note, both CKD and
low HCO3

� were independent risk factors for functional limita-
tion. Some participants developed severe functional limitations,
and this was associated with both a low HCO3

� and a low blood
pH, while blood pH showed no effect for milder functional lim-
itations. Similar findings on the association of low HCO3

� with
lower gait speed and quadriceps strength had been reported
previously in 2675 participants of the National Health and
Nutrition Examination Survey 1999–2002 [20]. About 23% of
participants had bicarbonate levels<23 mmol/L and were more
likely to have CKD or diabetes. The association also persisted
after multiple adjustments. However, this study was based on a
single HCO3

� measurement and the outcome measures proba-
bly reflected muscle function rather than central coordination.

Afsar and Elsurer [21] examined a small cohort of 65 patients
on haemodialysis, measuring standard biochemical and clinical
parameters as well as indicators of cognitive function, depression
and sleep quality using well-established tests. In this cohort,
lower venous blood HCO3

� was associated with lower sleep
quality, while no significant association was detected for cogni-
tive functions and depression. However, this study lacked a con-
trol group, and as most of these patients had HCO3

� levels
<22 mmol/L, stratification could not be performed. The authors
speculated that poor sleep quality was caused mainly by sleep ap-
noea. Another cross-sectional study with 190 CKD patients and
100 healthy patients in Nigeria found a negative association be-
tween serum HCO3

� level and global cognitive impairment
[22]. We identified only one study conducted in children with
CKD that looked at the association between HCO3

� and execu-
tive functions [23]. Acidosis was defined in this cohort as a se-
rum HCO3

� �20 mmol/L at baseline. Blood pressure variability
and several cognitive tests as well as parental assessments of
childrens’ cognitive function were analysed in children >6 years
of age and with a median follow-up of 11.6 years. Most children
were in CKD Stages G2–3. About 20% of children had HCO3

�

levels <20 mmol/L and this was associated with higher blood
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pressure, lower eGFR and higher proteinuria. However, neither
HCO3

� nor blood pressure was independently associated with
executive functions. An interaction was found between blood
pressure variability and HCO3

� levels with executive functions,
which showed that low HCO3

� together with high blood pres-
sure variability was associated with a worse score for executive
functions. Thus one potential interpretation of this association is
that HCO3

� modifies the well-known effect of high blood pres-
sure on the risk for reduced executive functions: as discussed be-
low, pH alters the vascular reactivity of brain vessels and may
modify this relationship.

Interventional studies using alkalinizing therapies in patients
with CKD and acidosis have not examined their impact on
cognitive function. One study reported the effect of oral sodium
HCO3

� supplements in a small study with 20 patients with an
eGFR between 15 and 25 mL/min/1.73 m2 and serum HCO3

�

in the range of 20–24 mmol/L for 6 weeks. Alkali therapy im-
proved the sit-to-stand time, while not changing hand grip
strength [24]. While the sit-to-stand time might also include
some aspects of central coordination, it may also be explained
by increasing lower limb muscle strength. Likewise, de Brito-
Ashurst et al. [25] reported that mid-arm muscle circumference
increased in patients with CKD and acidosis when given alkali
therapy. However, this improvement was linked to an overall
improvement in nutritional status and again is unlikely to
reflect motor control.

Metabolic acidosis or CKD as a cause of cognitive
dysfunction?

The composition of the extracellular compartment is altered
in patients with CKD, with imbalances in electrolytes and min-
erals, accumulation of uraemic toxins, volume expansion and
accumulation of acids. Some of these disturbances are amelio-
rated in patients receiving peritoneal dialysis or haemodialysis,
which also improves cognitive dysfunction and mood altera-
tions. Other problems may be introduced by these treatment
modalities, such as a reduction in brain blood flow or rapid
alterations in acid–base parameters in haemodialysis.
Unfortunately the association between acidosis or its ameliora-
tion by renal replacement therapy and cognitive dysfunction
has not received much attention. While the associations be-
tween both cognitive dysfunctions and CKD as well as cognitive
dysfunction and metabolic acidosis in CKD have become more
apparent in recent years, it remains unclear how much can be
directly attributed to metabolic acidosis. This is inherent to epi-
demiological associations, which usually do not establish causal
links and direction of any dependencies. Moreover, there are
other conditions with acidosis in which cognitive dysfunction
and motor deficits are less common; in patients with tubulopa-
thies such as inborn or acquired forms of distal renal tubular ac-
idosis, cognitive and motor deficits are not part of the normal
disease spectrum unless severe hypokalaemia develops, which
can lead to muscle paralysis [26, 27]. Likewise, proximal renal
tubular acidosis due to mutations in the SLC4A4 transporter
does not cause cognitive dysfunction [28]. In rare cases of prox-
imal tubular acidosis (type II RTA), intellectual disabilities may
occur but are explained in part by the direct role of these genes

in the CNS in addition to their role in regulating systemic acid–
base homeostasis. Indeed, many genes that are expressed in the
kidney are also expressed in the brain, often contributing to
transport of ions as well as concentration control of electrolytes
[29–31]. Examples include mutations in carbonic anhydrase II,
which is expressed in kidney and in various CNS structures, as
its mutations can lead to local calcifications in the brain [32],
and the OCRL gene that leads to Lowe syndrome [33]. On the
other hand, in patients with intact kidney function and chronic
hypercapnia or patients with sleep apnoea and intermittent epi-
sodes of hypercapnia hypoxaemia, reduced vascular reactivity
to CO2/pH and cognitive dysfunction have been reported.
Clearly, better-powered and detailed clinical association studies
are required to further dissect the possible contribution of aci-
dosis as a risk factor for the development of cognitive dysfunc-
tion. Furthermore, intervention studies with correction of acid–
base status could also provide evidence for a causal link between
acidosis and cognitive dysfunction. Ideally these studies would
be embedded into some of the larger trials aiming to reduce loss
of kidney function with alkalizing therapies.

Mechanisms by which acidosis may impact on kidney
disease progression

Acidosis has been shown to accelerate progression of CKD
by multiple mechanisms. However, the relative contribution of
each mechanism to reduced kidney function is unknown. We
will briefly discuss these mechanisms here and examine later
whether they might also be relevant for the brain:

a. Accumulation of ammonium in the kidney tissue leading
to activation of the alternative complement pathway. This
causes local inflammation, fibrosis and ultimately reduced
kidney function [34]. Additionally, lower urine pH may
lead to activation of the alternative complement pathway
[35].

b. Renal tissue Hþ retention has been proposed to stimulate
the (local) production of hormones like endothelin, angio-
tensin II and aldosterone, which in turn cause renal in-
flammation and fibrosis [9, 36, 37].

c. a-Klotho is a protein required for FGF23 signalling that
also has anti-inflammatory and renoprotective effects. Its
levels fall early with a decrease in GFR and alkali therapy
protects renal a-klotho levels in CKD patients [38].

d. Extrarenal inflammation. The effects of extracellular
acidosis on immune cells have been covered by multiple
studies [39], but except for indirect associations, a pH-
dependent modulation of the immune response in CKD
has not been shown. Oral HCO3

� supplementation given
to a hypertensive kidney disease rat model activated polar-
ization of macrophages to the anti-inflammatory M2 type,
suggesting that acidosis might regulate splenic immune
responses in CKD [40].

Can acidosis contribute to cognitive dysfunction in
CKD?

The pH-dependent mechanisms that may contribute to pro-
gression of renal disease should also be considered as possible
modifiers of brain function. This poses three questions: Can
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acidosis of CKD contribute to cognitive dysfunction? Can the
same or similar mechanisms contribute to kidney disease and
brain dysfunction? Which other pH-dependent mechanisms
may cause cognitive dysfunction?

The relationship between systemic pH and HCO3
� levels

and brain tissue and cerebrospinal fluid (CSF) pH is only par-
tially understood. In 1969, repeated measurements in four
humans showed that 5 days of acid or alkali load produced
much narrower changes in the CSF pH compared with arterial
pH [41]. Similar findings were obtained from patients with
CKD compared with normal individuals [42]. Multiple studies
have demonstrated that pH and HCO3

� are lower in the CSF
than in plasma in normal conditions and reductions in both
parameters are highly attenuated in the CSF during metabolic
acidosis [43]. In steady-state conditions, pH and HCO3

� are
expected to be the same in the CSF and brain extracellular fluid
(ECF). However, in non-steady-state conditions, the values of
these parameters tend to dissociate between these compart-
ments [44]. Acidaemia causes smaller, but significant, changes
in the same direction in brain ECF, even when CSF pH is unal-
tered [45, 46]. However, very small changes in the ECF
pH during exercise, physical work and acute or chronic meta-
bolic acidosis are capable of altering ventilatory responses and
cerebral blood flow (CBF) [43]. Therefore, chronic low-grade
metabolic acidosis may alter brain acid–base status and blood
flow.

Even though chronic acidaemia may well translate into a
more acidic environment in the brain, it is currently unclear to
what extent eubicarbonataemic metabolic acidosis can affect
the brain acid–base balance. Given that the acid–base changes
in brain ECF are smaller than in arterial pH in individuals dur-
ing overt chronic metabolic acidosis, one would need to account
for very small changes (if any) in brain local acid–base status in
cases of subclinical acidosis. Moreover, arguments that negative
effects of subclinical acidosis on kidneys occur because of aug-
mented ammoniagenesis cannot be applied to the brain. Also,
while ammonia toxicity in the brain is well described [46], CKD
is not a state of higher blood ammonia levels and therefore
an accumulation of ammonium in the brain is unlikely [47].
Thus the accumulation of Hþ and/or NHþ4 in brain tissue in
eubicarbonataemic metabolic acidosis is unlikely to cause cog-
nitive dysfunction. Recently, astrocytes have been shown to se-
crete HCO3

� in response to purinergic signalling and
consequently protect extracellular pH of the brain in response
to a higher metabolic demand [48]. The in-tandem organiza-
tion of the blood–brain barrier and astrocytes generates a ‘buff-
ering wall’ in the brain, attenuating changes in extracellular pH
and HCO3

�. This involves a set of HCO3
� importing or export-

ing transporters located in various brain cell types that, when
absent in rodents, can affect diverse brain functions [49]. While
hypoxia and hypercapnia impact the expression of several of
these transporters [50, 51], the effect of CKD or metabolic aci-
dosis has not been examined.

Another family of proteins involved in local and systemic
control of pH homeostasis is carbonic anhydrase, which cataly-
ses the hydration of CO2 to form carbonic acid (H2CO3) and
subsequently Hþ and HCO3

�. At least nine isoforms of

carbonic anhydrase are present in the human brain in different
areas and cell types and their importance is highlighted by
mutations in carbonic anhydrase II or IV, which causes intellec-
tual disabilities or blindness. Pharmacological inhibition of car-
bonic anhydrase in young rats lowered intracellular pH in the
cerebral cortex and cerebellum and increased CSF HCO3

� levels
without altering CSF pH [52]. In animal models, genetic abla-
tion of some carbonic anhydrase isoforms or inhibition with ac-
etazolamide reduced carbonic anhydrase activity in the brain
and caused amnesia in object recognition tests [53, 54]. At least
in animal models, carbonic anhydrase activators enhance mem-
ory formation [53]. Fear conditions and consolidation were also
affected. In humans, carbonic anhydrase inhibitors such as top-
iramate are used to treat migraine and prevent epilepsy but im-
pair processes involved in memory formation. Also,
acetazolamide given for prevention of high-altitude sickness has
similar effects on memory. In both cases, particularly emotional
memory is affected. While the exact mechanisms by which car-
bonic anhydrases act on memory are mostly elusive, some evi-
dence suggests that changes in local HCO3

� concentrations
affect neurotransmitter fluxes and excitability of GABAergic
neurons [53], which in turn can affect motor learning [55].

a-Klotho is a protein required for FGF23 signalling and is
mostly expressed in the kidney, parathyroid glands and choroid
plexus. It exists as a membrane-bound form and after cleavage
as soluble a-klotho circulating in the blood. The kidney is the
main source of soluble a-klotho and the expression of a-klotho
in the kidney decreases rapidly in the course of acute or chronic
kidney disease [56]. In the brain, a-klotho deficiency impacts
immune functions and complete absence of a-klotho is associ-
ated with Parkinson-like motor deficits that may be attributed
in part to highly elevated calcitriol levels [57]. a-Klotho may
also be protective of cognitive function [58, 59]. While calcitriol
is typically rather low in patients with CKD, the local expression
and concentration of a-klotho in the brain has not been charac-
terized. Alkali therapy, by protecting kidney function, could in-
directly influence brain function via klotho. A pilot study with
CKD patients showed that HCO3

� supplementation restored
urinary but not serum a-klotho levels [38]. Additional studies
are necessary to examine the role of a-klotho in the brain, its
role in CKD and its sensitivity to systemic and/or local changes
in acid–base status.

Metabolic acidosis of CKD could also affect the brain indi-
rectly by altering the release of hormones into the bloodstream.
Circulating renin–angiotensin–aldosterone system (RAAS)
components have low permeability across the blood–brain bar-
rier and are unlikely to be causes of cognitive dysfunction [60].
However, high levels of circulating endothelin-1 disturb the in-
tegrity of the blood–brain barrier, cause brain microvascular
dysfunction and impair cognitive function [61, 62]. While
blood endothelin levels are associated with both acidosis and
CKD, and alkali therapy reduced plasma and urinary
endothelin-1 levels in CKD patients [37], a recent clinical trial
did not observe any reduction in urinary endothelin levels in ac-
idotic CKD patients receiving alkali [63].

Although acidosis has been proposed as a direct immuno-
modulatory factor [39, 64], the effects of chronic metabolic
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acidosis on systemic inflammation are controversial and still
poorly understood [65]. Short-term exposure to HCO3

� in
drinking water reduced the abundance of neutrophils and
shifted macrophages towards an M2 phenotype in human
blood [40]. If chronic metabolic acidosis can affect systemic in-
flammation, it could also affect brain functions in CKD
patients. Indeed, inflammation per se can disrupt the blood–
brain barrier, making it potentially more permeable to neuro-
toxic substances and metabolites, including uraemic toxins
[66–68]. Also, inflammation increases the risk of vascular dam-
age in the brain that again may alter cognitive function [69].
Pro-inflammatory cytokines such as tumour necrosis factor
and interleukin-1b (IL-1b) can directly act on the brain or me-
diate effects via afferent nerves [70]. Locally, pH could also af-
fect inflammation. In animals, chronic hypercapnia induces an
inflammatory response in the midbrain, brainstem and cere-
brum followed by changes in glutamatergic, serotonergic and
catecholaminergic neurotransmission [71, 72]. Whether this re-
sponse is triggered by local acidosis or other mediators is
unclear, but it seems to involve IL-1b signalling, which is often
enhanced in patients with CKD. As discussed above, a-klotho
is highly expressed in the choroid plexus and if its expression at
this site follows the same pattern of decline as in the kidney and
parathyroid glands of patients and animal models of CKD, the
reduced levels of a-klotho may increase brain inflammation
[73]. The absence of brain a-klotho in a murine model stimu-
lated the expression of pro-inflammatory cytokines and macro-
phage invasion into the brain. Also, microglial cells were
activated. a-Klotho appears to act in part via suppression of
the NLRP3 inflammasome in macrophages. Strikingly, a-klo-
tho levels in the brain decline with age and similarities in
cognitive dysfunction in patients with CKD and elderly
patients with age-related decline in cognitive functions have
been noted. Whether lower a-klotho levels in the brain are a
common pathway in these different clinical entities remains
to be explored.

Additionally, brain metabolism and CBF may be pH
sensitive and contribute to cognitive dysfunction in patients
with CKD. Brain metabolism is controlled by multiple factors
including blood flow and pH-dependent mechanisms [48, 74].
Cerebral glutamine uptake was reduced in normal human sub-
jects with ammonium chloride loading for 3 or 6 days and in
CKD patients with severe acidosis [75]. Glutamine transport in
the brain might be affected by the activity of HCO3

� transport-
ers. The astrocytic–neuronal lactate shuttle model proposes that
astrocytes respond to a higher metabolic demand by stimulat-
ing glycolysis and exporting lactate to the extracellular space,
which can fuel the energy metabolism of neurons [76].
Interestingly, a recent study demonstrated that astrocytes se-
crete HCO3

� in concert with local neuronal energy demand
[48]. As for glutamine, lactate transporters seem to be affected
by HCO3

� transport activity as well as by other Hþ-dependent
mechanisms [77].

Acid–base status also directly impacts synaptic activity,
which is the largest sink of energy equivalents in the brain [78].
As a rule of thumb, acidosis tends to reduce neuronal excitabil-
ity and alkalosis to increase it [79]. While acidic pH is

associated with lower synaptic activity, Hþ has also been impli-
cated in excitotoxicity [80]. Exposure of murine brain slices to
an acidic perfusate overexcites murine pyramidal neurons and
astrocytes, both impairing activity of GABAergic neurons [29–
31, 81, 82]. The impaired activity of GABAergic neurons has
been documented in experimental CKD models [68].
Therefore, given the close relationship between brain metabo-
lism and acid–base status, it is tempting to speculate that a
chronic low-grade metabolic acidosis might affect brain metab-
olism by regulating the transport of key substrates for energy
metabolism and synaptic activity, besides other potential indi-
rect effects via modulation of CBF and glycaemic control [83].

Both high and low CBF can affect brain function [84]. While
decreased kidney function is associated with reduced CBF [85],
other concurrent and common conditions in CKD, such as
anaemia, can cause brain hyperperfusion [86]. Acid–base status
also alters CBF, with metabolic and respiratory acidosis increas-
ing CBF and alkalosis having the opposite effect [41, 87, 88].
However, in a CKD mouse model, the CBF induced by
hypercapnia was initially increased but eventually attenuated,
suggesting altered vascular reactivity and possible secondary
consequences on brain metabolism [89]. Therefore it could be
speculated that acidosis may harm the brain by elevating CBF
and causing excitotoxicity. In the SPRINT study, serum
HCO3

� levels were associated with cognitive and executive per-
formance, but not with CBF [2]. In another study with 2645
participants, high CBF in CKD patients was associated with a
lower prevalence of stroke and dementia when compared with
low-CBF patients [85]. Therefore, while theoretical aspects sup-
port that an elevation of CBF in response to chronic metabolic
acidosis might drive cognitive dysfunction, high-quality data
are still missing.

Chronic metabolic acidosis also results in renal magnesium
wasting and hypomagnesaemia is often one of the features of
acidosis. Even though there are few data linking magnesium
and CKD progression, in the Atherosclerosis Risk in
Communities study, higher dietary magnesium was associated
with a lower risk of CKD [90]. Acidosis-associated hypomagne-
saemia might contribute to cognitive dysfunction. Magnesium
regulates neuronal transmission, protein synthesis and energy
metabolism and magnesium deficiency mostly affects nervous
and cardiovascular systems, resulting in weakness, tremors and
even seizures. Magnesium is also implicated in memory func-
tion and neuronal plasticity, acting as an allosteric modulator of
N-methyl-D-aspartate receptors involved in long-term potenti-
ation. Another possible mechanism could be the association of
low magnesium and neuroinflammation [91]. In a mouse
model, a low-magnesium diet resulted in brain neuroinflamma-
tion, affecting the hippocampus and cortex, and impaired
memory formation. Low magnesium is also associated with vas-
cular damage that might affect CBF [92]. Last, low magnesium
levels accelerate the loss of renal a-klotho expression [93].

S U M M A R Y A N D O U T L O O K

A number of epidemiological studies demonstrate an associa-
tion between low HCO3

� and mild cognitive and motor
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impairment in the general population and identify an even
more accentuated association in patients with CKD.
Mechanistic studies demonstrating a causal link between
acid–base status and brain function are not available yet and
possible mechanisms can only be inferred (see hypothetical
model in Figure 2). Thus a first step is to examine whether
low HCO3

� and/or acidosis are a cause of or only coexist
with disturbed CNS function. A second step consists in ex-
amining which mechanisms modulated by low HCO3

�/aci-
dosis can affect CNS functions. This may allow identification
of biomarkers to predict or monitor alterations of CNS func-
tion as well as to find pathways or molecular targets for
treatment. A third step is to design clinical trials that test
whether amelioration of acidosis is not only beneficial in pre-
serving residual kidney function, but also positively impacts
the loss of central brain functions or has the ability to reverse
these changes. The growing recognition that kidney disease
affects central and peripheral neuronal function is a critical
step towards better preservation of brain organ functions in
patients with reduced kidney function. A better understand-
ing of the factors linking kidney disease and impaired brain
function is necessary and acidosis/low HCO3

� needs to be
considered among other factors such as uraemic toxins, vas-

cular changes or alterations in neurotransmitters and brain
metabolism.
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