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Introduction

Despite the advances achieved in wastewater treatment plants over the last few decades, treated wastewater (TWW) can still exert a strong impact on downstream receiving rivers [START_REF] Aubertheau | Impact of wastewater treatment plant discharge on the contamination of river biofilms by pharmaceuticals and antibiotic resistance[END_REF]. This is especially true in French rural areas, where treatment plants are mainly dedicated to treating carbonaceous pollution due to their small capacities (< 1,000 population equivalent, [START_REF] Medde | Arrêté du 21 juillet 2015 relatif aux systèmes d'assainissement collectif et aux installations d'assainissement non collectif, à l'exception des installations d'assainissement non collectif recevant une charge brute de pollution organique inférieure ou ég[END_REF]). Consequently, the application of an extensive process like soil infiltration has become increasingly practiced as an option to provide tertiary treatment; it consists of TWW discharge over a large surface area (trenches, ponds, basins or meadows), allowing for gradual infiltration through the soil. The pollutants (nitrogen and phosphorus) are naturally treated by biodegradation processes or retained in the soil. The design and management of a TWW infiltration area is mainly based on an estimation of the soil saturated hydraulic conductivity (Ks) in order to calculate the discharge capacity and evaluate its treatment potential [START_REF] Siegrist | Engineering design of a modern soil treatment unit. Innovations in soil-based onsite wastewater treatment[END_REF]. However, Ks remains one of the most difficult soil properties to determine [START_REF] Mahapatra | Assessing Variability of Infiltration Characteristics and Reliability of Infiltration Models in a Tropical Sub-humid Region of India[END_REF] and its spatial variability can significantly influence TWW infiltration [START_REF] Zhang | Dynamics of Infiltration Rate and Field-Saturated Soil Hydraulic Conductivity in a Wastewater-Irrigated Cropland[END_REF]. Infiltration tests are usually carried out using the Porchet constant head method, which outputs direct and local measurements of Ks and requires 1 to 4 hours per test depending on the soil type. For heterogeneous soils, the estimation of Ks requires numerous measurements to establish confident predictions of TWW discharge [START_REF] Warrick | Predictions of the Soil Water Flux Based upon Field-measured Soil-water Properties[END_REF]; this protocol can prove to be invasive and timeconsuming. Nevertheless, an incorrect estimations of Ks could lead to malfunctions in the TWW infiltration areas via: i) premature clogging [START_REF] Mckinley | Soil Clogging Genesis in Soil Treatment Units Used for Onsite Wastewater Reclamation: A Review[END_REF], ii) over-infiltration and groundwater contamination, and iii) under-infiltration leading to puddling and olfactory nuisances [START_REF] Morugán-Coronado | Short-term effects of treated wastewater irrigation on Mediterranean calcareous soil[END_REF].

For the estimation of Ks variability, Bisone et al. (2017) proposed using geophysical methods on TWW infiltration areas with a subjective delineation of heterogeneity in order to locate a few infiltration tests for an optimal design. Geophysical methods allow visualizing soil structures through the measurement of a given physical parameter (wave speed, electrical resistivity (ER), elasticity) [START_REF] Romero-Ruiz | A Review of Geophysical Methods for Soil Structure Characterization[END_REF]. Such methods are non-intrusive and yield physical information on large soil volumes yet still involve significant uncertainties [START_REF] Loke | Recent developments in the directcurrent geoelectrical imaging method[END_REF]. In the environmental sciences for near-surface (0-2 m) investigations, electrical resistivity tomography (ERT) is a widely used method whenever 2D vertical information is required [START_REF] Hellman | Structurally coupled inversion of ERT and refraction seismic data combined with cluster-based model integration[END_REF].

The ER signal is a function of a number of soil properties, including: the nature of solid constituents (particle size and distribution), the arrangement of voids (porosity, pore size distribution, connectivity), water content, the ER of the fluid, and the temperature [START_REF] Samouëlian | Electrical resistivity survey in soil science: a review[END_REF][START_REF] Telford | Resistivity Methods[END_REF]. On the other hand, the ER signal has no direct dependence on Ks [START_REF] Bibliography Attwa | Resistivity Characterization of Aquifer in Coastal Semiarid Areas: An Approach for Hydrogeological Evaluation[END_REF][START_REF] Weller | Permeability estimation from induced polarization: an evaluation of geophysical length scales using an effective hydraulic radius concept[END_REF]; their physical relationship tends to be specific to the given soil type and is difficult to transpose directly to heterogeneous soils [START_REF] Doussan | Prediction of unsaturated soil hydraulic conductivity with electrical conductivity[END_REF].

Only a few articles have explored the notion of using ERT to determine soil Ks with ER. Two approaches were found to be extremely attractive: the first employs empirical relationships between ER and Ks [START_REF] Vogelgesang | Using high-resolution electrical resistivity to estimate hydraulic conductivity and improve characterization of alluvial aquifers[END_REF], while the second adds a hydrodynamic model constrained by geophysics during the inversion process [START_REF] Farzamian | Application of EM38 and ERT methods in estimation of saturated hydraulic conductivity in unsaturated soil[END_REF]. The former is a simple method yet still generates a high level of Ks estimation uncertainty, whereas the latter is probably the most robust method but requires an extensive numerical approach and tends not to be well adapted to TWW infiltration area design.

The 2D estimation of Ks from geophysical measurements and point measurements necessitates the use of other emerging methods for simple and robust applications, e.g. data fusion methods [START_REF] Dezert | Combination of geophysical and geotechnical data using belief functions: Assessment with numerical and laboratory data[END_REF][START_REF] Li | Data fusion for resolution improvement by combining seismic data with logging data[END_REF]. Data fusion refers to the process of integrating multiple data sources in order to produce more accurate and useful information. Until now, no paper has yet to be published regarding data fusion between ERT and Ks. Among all data fusion methods, Bayesian Maximum Entropy (BME) seems to be the best adapted in considering the datasets: ERT data (dense with high uncertainty, hard data), and infiltration data (reliable but sparse, soft data) [START_REF] Christakos | Temporal GIS: Advanced Functions for Field-Based Applications[END_REF]. BME is a nonlinear spatial estimator that rigorously accounts for spatial variability and the non-Gaussian characteristic of uncertain data (here, uncertainty is represented by a variance). [START_REF] Christakos | Temporal GIS: Advanced Functions for Field-Based Applications[END_REF] showed that BME is a relevant method for predicting spatial data encompassing several environmental parameters. For instance, it has been successfully used to predict water table variations [START_REF] D'or | Application of the BME approach to soil texture mapping[END_REF] and estimate soil salinity [START_REF] Douaik | Soil salinity mapping using spatio-temporal kriging and Bayesian maximum entropy with interval soft data[END_REF]. These examples suggest that the BME method is suitable to estimate 2D-Ks maps. The aim of this paper is to merge Ks and ERT measurements in order to obtain the most accurate estimation of Ks, thus providing new TWW infiltration area design elements.

Materials and methods

General methodology

The methodology adopted herein to evaluate the benefit of BME is based on a classical approach widely used in the geophysical literature [START_REF] Radulescu | Time-lapse electrical resistivity anomalies due to contaminant transport around landfills[END_REF]; it is composed of three steps:

• The first step consists of constructing synthetic datasets based on three synthetic Ks reference models ( ), and then simulating the ERT measurements and infiltration tests for each model.

• The second step adapts, evaluates and determines the BME method limits by means of the numerical datasets created in the previous step, through:

o Defining the optimal number of hard data points (14, 24 or 50) for a homogeneous Water Content (WC) of 0.25-m 3 .m -3 ;

o Validating a robust sampling strategy of hard data;

o Assessing the impact of soil moisture variation in the model.

• The third step validates the BME method on a field dataset.

Datasets

Synthetic datasets

The synthetic datasets generated from (Figure 1a) are organized into both hard and soft data.

Soft data generation consists of simulating the geophysical measurement and deriving hydraulic conductivity, denoted Ks , from ERT (Figure 1b). Hard data, on the other hand, are local estimations of Ks sampled directly from ; these data correspond to a simulation of the infiltration tests (Figure 1c). As for Ks , the first step entails simulating soil WC based on groundwater flow modeling, which will provide a realistic soil WC data distribution (Section 2.2. 

Ks reference models

Figure 2a presents three different . We have chosen to show anomalies with a metric horizontal extension. In the BME framework, all data are introduced in log10 for purposes of computation. The 3 models of log have been grouped in Figure 2a. These three models have been chosen based on various criteria. The first model is a field case presented in an article (Bisone et al., 2017a) devoted to a study of an infiltration site. The two other geological configurations are known to be difficult to reconstruct using ERT [START_REF] Telford | Resistivity Methods[END_REF]. of soil derived from Rosetta [START_REF] Schaap | Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions[END_REF] To simulate variably-saturated soil, the model was initiated with a saturation set to 1. During a requisite time interval, the model was left to simulate soil drainage until the water table was close to 4 m deep. This value was chosen so that the given configuration could be considered free of any water table influence on the infiltration test within the first 2 m of soil. This set-up produced variable 2D-WC maps; for the constant WC model, we simply chose a value of 0.25 m 3 .m -3 .

Petrophysical relationship

Just a few articles in the literature include the petrophysical relationship in determining Ks with the true electrical resistivity of soil (ER ) [START_REF] Vogelgesang | Using high-resolution electrical resistivity to estimate hydraulic conductivity and improve characterization of alluvial aquifers[END_REF]. Soil WC can be considered as the most influential parameter on ER ; it is necessary therefore to take the variability of WC and Ks into account in the relationship. According to the literature, potential physical relationships between ER and WC are specific to a given soil type [START_REF] Brunet | Monitoring soil water content and deficit using Electrical Resistivity Tomography (ERT) -A case study in the Cevennes area, France[END_REF]. For this study, we extracted the (WC, ER) pairs measured in the laboratory for broad sandy, loamy and clayey soil textures [START_REF] Wunderlich | Pedophysical Models for Resistivity and Permittivity of Partially Water-Saturated Soils[END_REF] and associated a ( ) value with each relationship [START_REF] Mallants | Parameters values used in the performance assessment of the disposal of low level radioactive waste at the nuclear zone Mol-Dessel. Annexes to the data collection forms for engineered barriers[END_REF]. A 2D interpolated map of ER was estimated as a function of Ks and WC (Figure 3). Based on both the 

Electrical resistivity tomography

The ERT measurement has been well described in the geophysical literature [START_REF] Clement | OhmPi: An open source data logger for dedicated applications of electrical resistivity imaging at the small and laboratory scale[END_REF].

ER is measured by injecting electric current into the ground with two current electrodes, in measuring the potential difference between two other electrodes; this device is called a quadrupole.

The distribution of ER in the soil is determined by operating many quadrupoles at various positions along a line of electrodes installed at the surface of the soil. At the end of the measurement sequence, all quadrupoles are inverted using an inversion code [START_REF] Telford | Resistivity Methods[END_REF].

Forward modeling

To simulate ER on each of the three synthetic ER models (Figure 2c), we ran the Comsol Multiphysics and Matlab F3DM 3.08 package, which is commonly used in geophysics forward modeling with the AC/DC module (quasi-stationary electromagnetic field in accordance with electromagnetic field theory) to evaluate the potential difference induced by the injected current [START_REF] Clement | How should an electrical resistivity tomography laboratory test cell be designed? Numerical investigation of error on electrical resistivity measurement[END_REF]. A Gaussian noise distribution with a 3% standard deviation relative error was added to the ER dataset to simulate the noise commonly recorded in the field [START_REF] Friedel | Resolution, stability and efficiency of resistivity tomography estimated from a generalized inverse approach[END_REF]). An acquisition line of 72 electrodes was implemented at a 0.4-m spacing. A complete sequence of 829 quadrupoles was carried out with Wenner Arrays.

Inversion procedure

The synthetic ER was inverted using pyGIMLi, an open-source multi-method library for geophysics modeling and inversion [START_REF] Rücker | pyGIMLi: An open-source library for modelling and inversion in geophysics[END_REF]. A finite element method, relying on regular grid models, was applied to solve the forward problem in the routine inversion program. An isotropic smoothness-constrained regularization and a quasi-Gauss Newton optimization method were both used along with a fixed regularization parameter (λ= 30, Zweight = 1.0). This inversion procedure produced an ER map [START_REF] Günther | Boundless electrical resistivity tomography[END_REF].

Uncertainties

An interpreted ERT is not the perfect image of ER . The smooth nature of electrical current implies a loss of resolution when moving away from the electrodes. In some parts of the inverted model, the ER value of a cell has a very low impact on the measured ER . It is therefore of paramount importance to account for the uncertainty on ERT.

The total uncertainty of ER depends on: the inversion process, the measured data, and the loss of information with depth. Calculating total uncertainty is a long and complex process; consequently, it is proposed herein to estimate uncertainty by means of simple inversion indicators derived from the geophysical literature, namely: coverage, resolution radius [START_REF] Friedel | Resolution, stability and efficiency of resistivity tomography estimated from a generalized inverse approach[END_REF], or DOI (D. [START_REF] Carrière | How Calculate DOI Index to Assess Inverted ERT model[END_REF]. All inversion indicator calculations require knowledge of the Fréchet derivative matrix G[N×M], also called the Jacobian matrix or sensitivity matrix (Equation 1): 2) [START_REF] Günther | Inversion Methods and Resolution Analysis for the 2D/3D Reconstruction of Resistivity Structures from DC Measurements[END_REF]:

G 7,
R G = G W ; W ; G + λC C L G W ; W ; G Equation 2
where G is the sensitivity matrix, W ; a diagonal matrix containing the data errors, λ the damping parameter, and C the a priori model covariance matrix. The diagonal element R 77 indicates how the inverted model of ER is resolved. If all diagonal elements of R G equal 1, then the "exact model" is perfectly resolved. The further the R G diagonal element from 1, the poorer the resolution. In accordance with the ideas of [START_REF] Friedel | Resolution, stability and efficiency of resistivity tomography estimated from a generalized inverse approach[END_REF], a resolution radius for each model cell can be determined from the diagonal elements of the resolution matrix R 77 . Let's assume a piecewise constant cell resolution with r N 7 as the radius of a cell circle having a perfect resolution of 1. For a cell of dimensions ∆x 7 and I∆z 7 , the resolution radius is defined by Equation 3 below:

r S N 7 = T ∆x 7 ∆z 7 πR 77
Equation 3

The resolution matrix r S N allows assessing the reliability of the inverted models according to the degree of resolution specific to each cell. r S N is therefore the most suitable indicator for unstructured or irregular BERT meshes. For this reason, r S N has been chosen as an uncertainty to be introduced into the BME (Section 2.3).

Hard data generation: Hydraulic conductivity sampling method

We have sampled hard data (Ks V ) by extracting the log10(Ks) value from (Ks W ) (Figure 2a). It is assumed that our measurements of (Ks V ) have a zero variance. We used ER data and a random selection technique to optimize the Ks sample location, as per the following strategy:

• 50% of the number of points were manually sampled above and below the anomalies.

• 25% of the points were sampled in the upper part of the ER map, where Rres has low uncertainty. Our ER maps were divided into three ranges, between the min and max values. In each range, an equivalent number of points were randomly sampled.

• 25% were sampled in the area with the lowest r S N ; these points were sampled entirely randomly, owing to the poor performance of ERT in this area.

For this step, the spatialization of Ks with the BME has been tested with three differing sample numbers, i.e. 14, 24 and 50.

Field data

The experimental site is located in France and had already been studied in previous articles [START_REF] Benz-Navarrete | Servo-Assisted and Computer-Controlled Variable Energy Dynamic Super Heavy Penetrometer[END_REF]. It comprises a fairly heterogeneous agricultural plot and is relatively tabular in its sandy-loam surface, presenting sandy lenses in loam over its depth. ERT acquisitions were carried out using Iris Instruments' "Syscal Pro 72-electrodes" resistivity-meter (IRIS Instruments, France). The ERT profile was acquired with a Wenner array-type and a 0.25-m electrode spacing. To cover the proposed profile length (45 m) and maintain reasonable subsurface lateral resolution, the roll-along acquisition technique was performed with 48 electrode overlaps. The contact resistance was continuously measured at less than 4 kOhms. The 2D image of the ER profile was inverted with the pyGIMLi software [START_REF] Rücker | pyGIMLi: An open-source library for modelling and inversion in geophysics[END_REF]; a 2D flat inversion was carried out. We chose an isotropic smoothness constraint, with a Z-weight of 1 and a lambda value of 30 [START_REF] Günther | Inversion Methods and Resolution Analysis for the 2D/3D Reconstruction of Resistivity Structures from DC Measurements[END_REF][START_REF] Loke | Time-lapse resistivity imaging inversion[END_REF]. Moreover, we used a tetrahedral mesh with 2,920 cells.

According to the sampling strategy presented in the previous section, 23 infiltration test locations were selected. The Aardvark permeameter, developed by Soil Moisture Inc. (USA), was employed to measure the infiltration rate. From the measured flow rate, log10(Ks) could be estimated by applying

Reynolds and Elrick's equation [START_REF] Elrick | Hydraulic Conductivity Measurements in the Unsaturated Zone Using Improved Well Analyses[END_REF].

BME fusion method

The Bayesian Maximum Entropy (BME) method and its BMElib numerical implementation [START_REF] Christakos | Temporal GIS: Advanced Functions for Field-Based Applications[END_REF][START_REF] Serre | Modern geostatistics: computational BME analysis in the light of uncertain physical knowledge -the Equus Beds study[END_REF] provide a mathematically rigorous framework that incorporates information from several data sources featuring different uncertainties and point densities. These data have been organized into both "hard data" corresponding to exact measurements and "soft data" with a given uncertainty. 

f ^(Y ^) = A h f (Y ] , Y Y , Y ^)f Y (Y N )dY N , Equation 4
where A is a normalization constant.

The mean m ` of field Y(x,z) is set to a first-degree polynomial, while the covariance cov ` is obtained by fitting an anisotropic covariance model to experimental covariance values calculated from the Y ] data. A covariance model quantifies the degree of similarity between pairs of measurements in terms of their separation distance and the orientation of the line between such pairs. See [START_REF] Chils | Geostatistics: modeling spatial uncertainty[END_REF] for details on how covariance models describe the variability of spatial processes; also, Olea ( [START_REF] Mastrocicco | Surface electrical resistivity tomography and hydrogeological characterization to constrain groundwater flow modeling in an agricultural field site near Ferrara (Italy)[END_REF] proposed a log-linear relationship between ER and Ks, hence the need for a linear regression of the observed log ( ) with respect to their corresponding log (ER ).

Then, for each node of the inversion grid where a log (ER ) is available but for which log (Ks V ) was not measured, we set f Y (Y N ) to a Gaussian PDF with a mean equal to the value predicted by linear regression Y N = log (Ks i j ). However, for BME to work efficiently, we must set the variance σ N l (x, z) of f Y (Y N ) to a value that captures the uncertainty in the Y N obtained from log (ER ) at location (x,z). This can be accomplished by using the following:

where r N (x, z) is the resolution radius (Section 2.2.1.2.3.3), mean(r N (x, z)) its mean, σ `m l the variance of Y ] , |z| the absolute value of depth, mean(|z|) its mean, and σ q l a parameter obtained by maximizing the R² of validation (as explained in previous section). The terms stu (v,q) = w ( stu ) and |q| = w (|q|) are unitless, while both σ `m l and σ q l have units of log (m.s -1 ) 2 . The first term in Equation 5 is equal to the resolution radius normalized to a variance, while the second term is a gradient with depth, also normalized to a variance. Combined, these two terms allow the BME to account for the fact that the uncertainty in the soft geophysical data increases with both r N and depth.

BME validation strategy

We adopted a validation strategy to compare the estimation error of three methods: kriging (of the hard data alone), geophysics (i.e. geophysical data alone), and BME (i.e. fusion of both hard data and geophysical data). For the numerical simulations, we computed the estimation error by comparing the estimated Ks with log (Ks ). Our field study was limited to log (Ks f ) at nh sampled locations, in which case we conducted a cross-validation analysis [START_REF] Lee | A Bayesian Maximum Entropy approach to address the change of support problem in the spatial analysis of childhood asthma prevalence across North Carolina[END_REF]. The validation statistics used to assess model performance were: mean square estimation error (MSE), mean 5estimation error (ME), variance of estimation error (VE), and square of the Pearson correlation coefficient R² [START_REF] Christensen | Analysis of Variance, Design, and Regression Linear Modeling for Unbalanced Data[END_REF]. • Row 1: log (Ks W ).

σ N l (x, z) = r N (x, z) mean(r N ) σ `m l + |z| mean(|z|) σ q l Equation
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• Row 2: log (ER x N ) data. The black circles indicate the sampling locations (where the ( f ) data has been sampled from ( )).

• Row 3: log Ks .

• Rows 4 and 5: results of the spatialization log (Ks V ) data by means of kriging log (Ks y 7z ), associated with variance map σ y 7z l .

• Rows 6 and 7: log (Ks {G| ) and the estimated variance map σ {G| l .

The columns in each figure present all the results for several Ks samples (nh). Tables 2, 3 and4 respectively summarize the following statistical tools: MSE, ME, VE, and R², applied to evaluate the performance of these estimation methods. Reducing the number of samples to 24 hard data (log (Ks V )) produces no noticeable change in the proposed log (Ks )) map. Kriging is more likely to overwhelm the anomalies. The BME fusion method provides an attractive log (Ks {G| ) estimate, with a reasonable number of samples. Let's note that reducing the number of points at depth reduces resolution of the anomaly at the position x = 10 m and z = 3.5 m.

The 14 sampling points are insufficient to cover all anomalies, which obviously influences the kriging results and geophysical transformation by the empirical law; therefore, the BME fusion method is closest to the reference model. Indeed, the BME is capable of delineating large sand anomalies, yet it tends to underestimate the extent of the clay anomaly at depth. This finding can be explained by the lack of resolution of the ERT method at depth, where information from soft data is less reliable. anomalies on the surface, but the silty anomaly is not apparent. The clay anomalies are stretched towards the bottom. In Figure 5d.3, kriging serves to identify the four anomalies; however, even with such a large sample, kriging merges the two near-surface anomalies at the position x = 16 m. In Figure 5f.3, the anomalies are correctly delineated with BME. We can observe that kriging deteriorates and merges the anomalies. BME would appear to be better with 24 points than with 50 because the loam anomaly is more sharply defined with 24 points. In reality, this outcome is due to the differentiation in the selected sampling points. More specifically, with a minimal number of 14 Ks hard data, results maintain the same trend as with 50 and 24 points. Table 3 shows that for 50 log (Ks f ) sampling points, the BME method slightly improves the estimation result in terms of correlation (R²=0.82 for nh=14 vs. R²=0.84 for nh=50) and targeting (MSE around 0.3). The increase in number of samples (from 14 to 24 points) degrades the kriging estimate in terms of correlation; this trend is linked to the random sampling that in this case has selected points of lesser interest.

Regardless of the number of samples, the R² calculation demonstrates that BME once again produces the highest value in this second model. Table 4 of the statistical indicators confirms that BME is, regardless of the number of points, always higher than kriging or geophysical transformation. In conclusion, the BME method seems to extract the best information from geophysical transformation and kriging; however, the number of samples does influence the spatialization of Ks by BME. In taking the results and statistical analysis into account, we feel that 20 infiltration test points offers a valuable number of points. The BME method is the one that best estimates the log (Ks) data. Compared to the reference models, the BME spatialization (log ( •'! )) actually reproduces all anomalies of the three distinct models. [START_REF] Bornand | Composition minéralogique de la phase argileuse des Terres noires de Limagne (Puy-de-Dôme)[END_REF]. The position of log (Ks f ) was identified according to the sampling strategy presented above. Figure 8c presents the mapping of log (Ks y 7z ) based solely on infiltration test data. Observations can be made of: a surface layer with an average value of -5

(log (m.s -1 )), a deep anomaly (at the position x = 20 m and y = -2 m) with a value of -6 (log (m.s -1 )), and another deep anomaly (at the position x = 4 m and y = -2 m) with a value of -3 (log (m.s -1 )).

Figure 8d provides the map of log (Ks ) from the petrophysical relationship. Let's note the various layers between 0 and -1 m, with values on the order of log Ks =-4) (log (m.s -1 )). We can also distinguish a deep layer with values between -5 and -6 (log (m.s -1 )) inclusive. BME behaves here as the fusion of kriging and geophysical data. The surface layer is taken into account, and the deep anomalies highlighted by log (Ks V ) appear in the final model of Ks. From a visual standpoint, BME takes the best features from both kriging and geophysics.

Based on cross-validation and statistical analysis (MSE, ME, VE and R²), BME slightly improves results with a high R² correlation index of 0.78 and a low root mean square error of 0.46. According to our statistical analysis, the BME method proves to be the most highly focused, accurate and correlated method. 

Discussion

Previous results lead the ensuing discussion to three points, namely: (i) the lack of validation data for BME generalization, (ii) the sampling strategy, and (iii) its future applications.

4.1.

Lack of validation data

Due to the lack of validation data, it is extremely difficult to consolidate these approaches in the field. This work has proposed a static analysis to evaluate the BME data fusion methodology as a means of overcoming the absence of validation data. Nevertheless, the statistical indicator for 24 points is not adequately significant, and the method would require validation at other sites with a larger set of available Ks data. In spite of this fact, the method has allowed obtaining, for the very first time, an impressive map of Ks based on the available parcel information. To improve these BME methods in the future, an expanded number of measurements at well-known reference sites will be necessary. To date, the BME is an efficient method but cannot be definitively generalized.

Sampling strategy

The sampling strategy is based on ERT data for selecting the optimal Ks measurement location in the field. Such a strategy has proven to be successful but is still capable of being improved. Indeed, ERT

does not recognize all potential anomalies. We have limited this bias by splitting our sampling strategy into two parts: first, sampling by electrical resistivity (ER) over a range with low uncertainty for the ERT measurements; then, sampling randomly where uncertainty is high. However, when using the numerical dataset, an evaluation of the hard data sampling number (Section 3.1.1.2) showed that 14 points could be better than 24 points for the kriging method, which means that the Ks sampling point location could be improved even further.

Sampling remains a highly critical issue, especially with such strong constraints on the number of Ks measurements; these constraints are time-consuming and therefore expensive. As a result, the number of tests should be minimized and optimally located when investigating a TWW infiltration area of use for the BME. This challenge still needs to be addressed in the future. The authors are convinced that a better sampling protocol will improve kriging and therefore the BME results.

4.3.

Future applications and outlook

Ks is an essential parameter for dimensioning a TWW infiltration area; it allows evaluating the maximum TWW discharge load for a specific soil surface. Its main drawback however involves the difficulty in obtaining a sufficient number of Ks measurements (due to both time and financial costs) in field applications. The geophysics and BME approach proposed in this paper was initially suggested to solve such an issue. The method yields an accurate distribution of Ks by fusing 24 experimental measurements of Ks with the ERT method. Yet for infiltration area design, conducting 24 infiltration tests remains too expensive. Consequently, it can only be applied to those cases representing a serious risk for the environment. In order to overcome this method use limitation, we are proposing to focus future research efforts on combining ERT and infiltration tests with less time-consuming methods, e.g. dynamic penetrometer. The BME method could also be generalized to other soil parameters (e.g. WC) and applications, especially in the field of water resources management.

Conclusion

This article has proposed a new approach to obtain Ks spatial distribution based on the integration of ERT and infiltration test data in the BME method. This method allows for the fusion of point-specific data, with a null variance (Ks), and distributed data, with a specific variance (ER). We have adapted the BME method to the specificities of both geophysical and geotechnical datasets. The results of this study show that BME is a high-performance method producing maps with a lower variance than any of the other methods tested (kriging, petrophysical relationship). Indeed, BME offers a first-level Ks distribution as well as many new possibilities, namely: i) the development of a new multi-method approach to coupling geophysical and geotechnical methods, ii) application to other fields of geosciences, and iii) use of results in hydrodynamic modeling for TWW infiltration area design.
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 1 Figure 1: Schematic diagram for generating synthetic datasets. In green: soft data represent spatial geophysical measurements; in blue: hard data correspond to infiltration tests (Ks measurement).
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  WC model and( ) reference model, for each cell estimating (!"), the closest WC and ( ) values were sought (Figure2c).
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  and m 9 are the ER data and model parameter, respectively. A single sensitivity value G 7,9 indicates the change in apparent resistivity data d 7 m with respect to a small change in model parameter m 9 . G is used to determine how a change in resistivity of model cell j affects the measured value of d 7 . In our case, we have opted for model resolution R G , where the R G matrix is calculated by inversion software according to the following formula (Equation

  The spatial random field Y(x,z)=log (K Y (Z, [)) indicates log (K Y ) of the soil at location (Z, [), where Z (\) is the longitudinal coordinate along our study transect, and [ (\) the depth. Y ] , Y N and Y ^ denote Y at: the hard data points (where Y ] is obtained from geotechnical measurements), the soft data points (where Y N is derived from ERT and petrophysical relationships), and the estimation point, respectively. BME relies on two principles: (i) maximum entropy theory processes the general knowledge base of means and covariances G = {m `, cov `} and produces a "prior" f PDF (probability density function) describing the spatial process; and (ii) Epistemic Bayesian conditioning updates this prior f PDF with the site-specific knowledge base S, which then yields a BME posterior PDF f ^ describing the value Y ^ at any estimation point. Here, S = {Y ] , f Y }, where Y ] = log (Ks f (Z, [)) is the measurement of the hard geotechnical data and f Y is a PDF describing the uncertainty associated with soft geophysical data; moreover, the BME posterior PDF is given by:

( 2006 )

 2006 provided details on fitting a covariance model to experimental covariance values obtained from a covariogram analysis. In this study, the experimental covariance values are calculated based on a sample size (of Y ] measurements). The anisotropy model fitted to these experimental covariance values is assumed to be exponential, with a major direction aligned with the x (longitudinal) axis, and a ratio of covariance ranging along the major direction over the covariance ranging along the transverse direction. The soft data PDF f Y (Y N ) is obtained by transforming log (ER ) into log ().

1 .

 1 Figures 4, 5 and 6 show the spatial distribution of log (Ks) for synthetic models 1, 2 and 3, respectively. The three columns in each figure represent the spatialization result when the number of sampling points where ? f B has been sampled equals 10, 24 and 50, respectively. The rows offer the following:

Figure

  Figure 4b.3 shows the log (ER ) map for a 50-point sampling (nh=50) conducted on a twolayer soil. The surface displays an initial layer (depth: 0-2.5 m) with an estimated log (ER ) of 1.8. Two anomalies are present in this layer, at x = 5 m and 22 m. The synthetic reference model

Figures

  Figures 4e and 4g exhibit the variance for both the kriging and BME methods. The information given

Figure 4 :Figure 5

 45 Figure 4: Spatial estimation of ( ) and its variances for Model 1: kriging, geophysical transformation and BME at a constant WC for 14, 24 and 50-point sampling

  Figure 5 shows the spatialization of log (Ks).Figure 5b.3 presents the log (ER ) map and estimated log ?Ks V B for 50 sampling points. In Figure 5c.3, log (Ks ) reveals the three clay

Figure 5 :Figure 6

 56 Figure 5: 2D estimation of

Figure 6 :

 6 Figure 6: Spatialization of ( ) for Model 3: kriging, geophysical transformation and BME at a constant WC for 14, 24 and 50-point sampling

Figure

  Figure 7b displays log (ER ), which has decreased in depth and increased at the surface. This change can be explained by the variable WC obtained from the groundwater flow model. Model 1 in

Figure 7 :

 7 Figure 7: Spatialization of ( ) for Models 1, 2 and 3: kriging, geophysical transformation and BME at a variable WC for 24-point sampling

Figure 8 :

 8 Figure 8: Spatialization of Ks on the data field: a) location map of infiltration tests on the (!") profile (RMS = 3.55%); b) empirical law between (!") and ( ); c, d and e) Results of the spatialization of ( ) by kriging, geophysics and BME, respectively

  

  

  

Table 1 :

 1 Mualem -van Genuchten parameters and saturated hydraulic conductivity (Ks) 

	2.2.1.2.	Soft data generation
	2.2.1.2.1. Subsurface flow modeling: Water content estimation
	According to Figure 1b, the first soft data generation step calls for WC simulation using subsurface
	flow modeling for variably-saturated soils. As suggested in Audebert et al. (2016), we will employ a
	single continuum model based on Richard's Equation (Richards, 1931), as completed with Mualem-
	van Genuchten's retention model, which expresses the relationship between water pressure and
	effective saturation (retention properties) as well as between relative Ks and effective saturation. To
	simulate TWW subsurface flow, we ran Comsol Multiphysics 5.4 with a subsurface flow module. The
	study domain is a 2D vertical profile 29.2 m long and 6 m high. The water flow boundary conditions
	were set as follows: (i) "No flow" on the top and sides; and (ii) "seepage face" for the bottom, as in
	Audebert et al. (2016). To assign all hydraulic parameters, we extracted from the literature 12 soil
	types with known parameters. Considering log (	), for each cell in Table 1, we sought the Ks
	corresponding to the closest	value and assigned the remaining hydraulic parameters (Θs, α
	and n).	

Table 5 :

 5 Statistical analysis of spatialization with BME, kriging and petrophysical relationship for all three modelsTable 5 reports on the statistical tools used to evaluate the performance of estimators (kriging, geophysics, BME) for all three models. It can be observed that the statistical analysis applied to the models studied shows a strong correlation between the reference model and the BME method result. For example, on Model 3, the correlation coefficient R² equals 0.77 for the BME vs. 0.66 for kriging or 0.08 for kriging geophysics. The lower MSE value obtained with BME (0.43) reflects BME's

	high accuracy and targeting. Although data from the log (ER	) map are degraded, this has
	nevertheless allowed BME to improve the Ks spatialization, an extremely encouraging result that
	underscores BME performance.
	3.2.	Field validation
	Figure 8 presents the field result of a single ERT profile and 23 infiltration test log (Ks V ) values. In
	Figure 8a, ERT results are presented on a 45-m line; also, the log (ER	) points of low sensitivity
	(coverage < 0.7) are masked. It can be acknowledged that the log (ER	) measurement in this
	area is not realistic. The log (ER	) data show variations from 1 to 2.2 (log (Ω.m)). Infiltration
	tests (as represented by black points) have allowed us to determine that the log (Ks f ) of the
	parcel varies between -3 and -7 (log (m.s -1 )); this value is standard for Limagne soils, which are

often called "black soil". These soils contain varying clay and sand contents, which explains the log (Ks f )

Table 6 :

 6 Statistical analysis of the spatialization of Ks on field data