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Abstract: 13 

Wastewater treatment, a major issue at the European level, focuses on improving surface and 14 

groundwater quality, preserving the receiving environment and ensuring a sustainable use of water. 15 

Soil infiltration is increasingly practiced downstream of wastewater treatment plants, particularly in 16 

rural areas without surface water bodies, as is the use of soil as an additional buffer and treatment 17 

step. However, the design of infiltration areas on heterogeneous soils remains an extremely complex 18 

task due to the costly and time-consuming spatial measurement of saturated hydraulic conductivity 19 

(Ks). This article proposes integrating 2D electrical resistivity tomography and infiltration tests into a 20 

Bayesian Maximum Entropy method, yielding a vertical mapping of soil heterogeneities at a metric 21 

scale. This updated method will facilitate infiltration area design in a heterogeneous soil setting. 22 

Keywords: 23 

Wastewater treatment plant, design, Bayesian Maximum Entropy, saturated hydraulic conductivity, 24 

electrical resistivity tomography, infiltration test. 25 
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1. Introduction 27 

Despite the advances achieved in wastewater treatment plants over the last few decades, treated 28 

wastewater (TWW) can still exert a strong impact on downstream receiving rivers (Aubertheau et al., 29 

2017). This is especially true in French rural areas, where treatment plants are mainly dedicated to 30 

treating carbonaceous pollution due to their small capacities (< 1,000 population equivalent, 31 

(MEDDE, 2015)). Consequently, the application of an extensive process like soil infiltration has 32 

become increasingly practiced as an option to provide tertiary treatment; it consists of TWW 33 

discharge over a large surface area (trenches, ponds, basins or meadows), allowing for gradual 34 

infiltration through the soil. The pollutants (nitrogen and phosphorus) are naturally treated by 35 

biodegradation processes or retained in the soil. The design and management of a TWW infiltration 36 

area is mainly based on an estimation of the soil saturated hydraulic conductivity (Ks) in order to 37 

calculate the discharge capacity and evaluate its treatment potential (Siegrist, 2014). However, Ks 38 

remains one of the most difficult soil properties to determine (Mahapatra et al., 2020) and its spatial 39 

variability can significantly influence TWW infiltration (Zhang et al., 2019). Infiltration tests are 40 

usually carried out using the Porchet constant head method, which outputs direct and local 41 

measurements of Ks and requires 1 to 4 hours per test depending on the soil type. For 42 

heterogeneous soils, the estimation of Ks requires numerous measurements to establish confident 43 

predictions of TWW discharge (Warrick et al., 1977); this protocol can prove to be invasive and time-44 

consuming. Nevertheless, an incorrect estimations of Ks could lead to malfunctions in the TWW 45 

infiltration areas via: i) premature clogging (McKinley and Siegrist, 2011), ii) over-infiltration and 46 

groundwater contamination, and iii) under-infiltration leading to puddling and olfactory nuisances 47 

(Morugán-Coronado et al., 2011). 48 

For the estimation of Ks variability, Bisone et al. (2017) proposed using geophysical methods on 49 

TWW infiltration areas with a subjective delineation of heterogeneity in order to locate a few 50 

infiltration tests for an optimal design. Geophysical methods allow visualizing soil structures through 51 

the measurement of a given physical parameter (wave speed, electrical resistivity (ER), elasticity) 52 



(Romero-Ruiz et al., 2018). Such methods are non-intrusive and yield physical information on large 53 

soil volumes yet still involve significant uncertainties (Loke et al., 2013). In the environmental 54 

sciences for near-surface (0-2 m) investigations, electrical resistivity tomography (ERT) is a widely 55 

used method whenever 2D vertical information is required (Hellman et al., 2017). 56 

The ER signal is a function of a number of soil properties, including: the nature of solid constituents 57 

(particle size and distribution), the arrangement of voids (porosity, pore size distribution, 58 

connectivity), water content, the ER of the fluid, and the temperature (Samouëlian et al., 2005; 59 

Telford et al., 1990). On the other hand, the ER signal has no direct dependence on Ks (Attwa and Ali, 60 

2018; Weller and Slater, 2019); their physical relationship tends to be specific to the given soil type 61 

and is difficult to transpose directly to heterogeneous soils (Doussan and Ruy, 2009). 62 

Only a few articles have explored the notion of using ERT to determine soil Ks with ER. Two 63 

approaches were found to be extremely attractive: the first employs empirical relationships between 64 

ER and Ks (Vogelgesang et al., 2020), while the second adds a hydrodynamic model constrained by 65 

geophysics during the inversion process (Farzamian et al., 2015). The former is a simple method yet 66 

still generates a high level of Ks estimation uncertainty, whereas the latter is probably the most 67 

robust method but requires an extensive numerical approach and tends not to be well adapted to 68 

TWW infiltration area design. 69 

The 2D estimation of Ks from geophysical measurements and point measurements necessitates the 70 

use of other emerging methods for simple and robust applications, e.g. data fusion methods (Dezert 71 

et al., 2019; Li et al., 2019). Data fusion refers to the process of integrating multiple data sources in 72 

order to produce more accurate and useful information. Until now, no paper has yet to be published 73 

regarding data fusion between ERT and Ks. 74 

Among all data fusion methods, Bayesian Maximum Entropy (BME) seems to be the best adapted in 75 

considering the datasets: ERT data (dense with high uncertainty, hard data), and infiltration data 76 

(reliable but sparse, soft data) (Christakos et al., 2002). BME is a nonlinear spatial estimator that 77 



rigorously accounts for spatial variability and the non-Gaussian characteristic of uncertain data (here, 78 

uncertainty is represented by a variance). Christakos et al. (2002) showed that BME is a relevant 79 

method for predicting spatial data encompassing several environmental parameters. For instance, it 80 

has been successfully used to predict water table variations (D’Or et al., 2001) and estimate soil 81 

salinity (Douaik et al., 2005). These examples suggest that the BME method is suitable to estimate 82 

2D-Ks maps. The aim of this paper is to merge Ks and ERT measurements in order to obtain the most 83 

accurate estimation of Ks, thus providing new TWW infiltration area design elements. 84 

2. Materials and methods 85 

2.1. General methodology 86 

The methodology adopted herein to evaluate the benefit of BME is based on a classical approach 87 

widely used in the geophysical literature (Radulescu et al., 2007); it is composed of three steps: 88 

• The first step consists of constructing synthetic datasets based on three synthetic Ks reference 89 

models (�����), and then simulating the ERT measurements and infiltration tests for each 90 

model. 91 

• The second step adapts, evaluates and determines the BME method limits by means of the 92 

numerical datasets created in the previous step, through: 93 

o Defining the optimal number of hard data points (14, 24 or 50) for a homogeneous 94 

Water Content (WC) of 0.25-m3.m-3; 95 

o Validating a robust sampling strategy of hard data; 96 

o Assessing the impact of soil moisture variation in the model. 97 

• The third step validates the BME method on a field dataset. 98 

2.2. Datasets 99 

2.2.1 Synthetic datasets 100 

The synthetic datasets generated from ����� (Figure 1a) are organized into both hard and soft data. 101 

Soft data generation consists of simulating the geophysical measurement and deriving hydraulic 102 



conductivity, denoted Ks�	
, from ERT (Figure 1b). Hard data, on the other hand, are local 103 

estimations of Ks sampled directly from �����; these data correspond to a simulation of the 104 

infiltration tests (Figure 1c). As for Ks�	
, the first step entails simulating soil WC based on 105 

groundwater flow modeling, which will provide a realistic soil WC data distribution (Section 106 

2.2.1.2.1). In taking WC and soil type into account, petrophysical relationships drawn from the 107 

literature will be used to calculate true electrical resistivity ER��	 (Section 2.2.1.2.2) and simulate 108 

apparent electrical resistivity (ER���) for each Ks model (Section 2.2.1.2.3.1); next, we will invert 109 

ER��� data to obtain interpreted electrical resistivity (ER���	��) (Section 2.2.1.2.3.2). Lastly, ER���	�� 110 

data will be transformed into Ks�	
 data (Section 2.2.1.3). 111 

 112 

Figure 1: Schematic diagram for generating synthetic datasets. In green: soft data represent spatial 113 

geophysical measurements; in blue: hard data correspond to infiltration tests (Ks measurement). 114 

2.2.1.1. Ks reference models  115 

Figure 2a presents three different �����. We have chosen to show ����� anomalies with a metric 116 

horizontal extension. In the BME framework, all data are introduced in log10 for purposes of 117 



computation. The 3 models of log��������� have been grouped in Figure 2a. These three models 118 

have been chosen based on various criteria. The first model is a field case presented in an article 119 

(Bisone et al., 2017a) devoted to a study of an infiltration site. The two other geological 120 

configurations are known to be difficult to reconstruct using ERT (Telford et al., 1990). 121 



 122 

Figure 2: Three synthetic datasets: a) �����(�����), b) WC, c) �����(!"#�$�), d) �����(!"%&&), and 123 

e) �����(!"'()��&) 124 



2.2.1.2. Soft data generation 125 

2.2.1.2.1. Subsurface flow modeling: Water content estimation 126 

According to Figure 1b, the first soft data generation step calls for WC simulation using subsurface 127 

flow modeling for variably-saturated soils. As suggested in Audebert et al. (2016), we will employ a 128 

single continuum model based on Richard’s Equation (Richards, 1931), as completed with Mualem-129 

van Genuchten's retention model, which expresses the relationship between water pressure and 130 

effective saturation (retention properties) as well as between relative Ks and effective saturation. To 131 

simulate TWW subsurface flow, we ran Comsol Multiphysics 5.4 with a subsurface flow module. The 132 

study domain is a 2D vertical profile 29.2 m long and 6 m high. The water flow boundary conditions 133 

were set as follows: (i) "No flow" on the top and sides; and (ii) "seepage face" for the bottom, as in 134 

Audebert et al. (2016). To assign all hydraulic parameters, we extracted from the literature 12 soil 135 

types with known parameters. Considering  log��(�����), for each cell in Table 1, we sought the Ks 136 

corresponding to the closest ����� value and assigned the remaining hydraulic parameters (Θs, α 137 

and n). 138 

  139 



Table 1: Mualem - van Genuchten parameters and saturated hydraulic conductivity (Ks)  140 

of soil derived from Rosetta (Schaap et al., 2001) 141 

 142 

To simulate variably-saturated soil, the model was initiated with a saturation set to 1. During a 143 

requisite time interval, the model was left to simulate soil drainage until the water table was close to 144 

4 m deep. This value was chosen so that the given configuration could be considered free of any 145 

water table influence on the infiltration test within the first 2 m of soil. This set-up produced variable 146 

2D-WC maps; for the constant WC model, we simply chose a value of 0.25 m3.m-3. 147 

2.2.1.2.2. Petrophysical relationship 148 

Just a few articles in the literature include the petrophysical relationship in determining Ks with the 149 

true electrical resistivity of soil (ER��	) (Vogelgesang et al., 2020). Soil WC can be considered as the 150 

most influential parameter on ER��	; it is necessary therefore to take the variability of WC and Ks 151 

into account in the relationship. According to the literature, potential physical relationships between 152 

ER and WC are specific to a given soil type (Brunet et al., 2010). For this study, we extracted the (WC, 153 

ER) pairs measured in the laboratory for broad sandy, loamy and clayey soil textures (Wunderlich et 154 

al., 2013) and associated a �����(��) value with each relationship (Mallants et al., 2003). A 2D 155 

interpolated map of ER��	 was estimated as a function of Ks and WC (Figure 3). Based on both the 156 



WC model and �����(��) reference model, for each cell estimating �����(!"), the closest WC and 157 

�����(��) values were sought (Figure 2c). 158 

 159 

Figure 3: Results of the interpolation of �����(!"#�$�) vs. WC and �����(��) 160 

2.2.1.2.3. Electrical resistivity tomography 161 

The ERT measurement has been well described in the geophysical literature (Clement et al., 2020). 162 

 ER��� is measured by injecting electric current into the ground with two current electrodes, in 163 

measuring the potential difference between two other electrodes; this device is called a quadrupole. 164 

The distribution of ER in the soil is determined by operating many quadrupoles at various positions 165 

along a line of electrodes installed at the surface of the soil. At the end of the measurement 166 

sequence, all quadrupoles are inverted using an inversion code (Telford et al., 1990). 167 

2.2.1.2.3.1. Forward modeling 168 

To simulate ER��� on each of the three synthetic ER models (Figure 2c), we ran the Comsol 169 

Multiphysics and Matlab F3DM 3.08 package, which is commonly used in geophysics forward 170 

modeling with the AC/DC module (quasi-stationary electromagnetic field in accordance with 171 

electromagnetic field theory) to evaluate the potential difference induced by the injected current 172 

(Clement and Moreau, 2016). A Gaussian noise distribution with a 3% standard deviation relative 173 

error was added to the ER��� dataset to simulate the noise commonly recorded in the field (Friedel, 174 

2003). An acquisition line of 72 electrodes was implemented at a 0.4-m spacing. A complete 175 

sequence of 829 quadrupoles was carried out with Wenner Arrays. 176 



2.2.1.2.3.2. Inversion procedure 177 

The synthetic ER��� was inverted using pyGIMLi, an open-source multi-method library for 178 

geophysics modeling and inversion (Rücker et al., 2017). A finite element method, relying on regular 179 

grid models, was applied to solve the forward problem in the routine inversion program. An isotropic 180 

smoothness-constrained regularization and a quasi-Gauss Newton optimization method were both 181 

used along with a fixed regularization parameter (λ= 30, Zweight = 1.0). This inversion procedure 182 

produced an ER���	�� map (Günther and Rücker, 2011). 183 

2.2.1.2.3.3. Uncertainties 184 

An interpreted ERT is not the perfect image of ER��	. The smooth nature of electrical current 185 

implies a loss of resolution when moving away from the electrodes. In some parts of the inverted 186 

model, the ER value of a cell has a very low impact on the measured ER���. It is therefore of 187 

paramount importance to account for the uncertainty on ERT. 188 

The total uncertainty of ER depends on: the inversion process, the measured data, and the loss of 189 

information with depth. Calculating total uncertainty is a long and complex process; consequently, it 190 

is proposed herein to estimate uncertainty by means of simple inversion indicators derived from the 191 

geophysical literature, namely: coverage, resolution radius (Friedel, 2003), or DOI (D. Carrière et al., 192 

2014). All inversion indicator calculations require knowledge of the Fréchet derivative matrix 193 

G[N×M], also called the Jacobian matrix or sensitivity matrix (Equation 1): 194 

G7,9 = :;<:=>    i = ?1: NB, j = ?1: MB Equation 1 

where d7  and  m9 are the ER��� data and model parameter, respectively. A single sensitivity value 195 

G7,9 indicates the change in apparent resistivity data d7 m with respect to a small change in model 196 

parameter m9. G is used to determine how a change in resistivity of model cell j affects the measured 197 

value of d7. In our case, we have opted for model resolution RG, where the RG matrix is calculated 198 

by inversion software according to the following formula (Equation 2) (Günther, 2004): 199 

RG = �GW;W;G + λCC�L�GW;W;G Equation 2 



where G is the sensitivity matrix, W; a diagonal matrix containing the data errors, λ the damping 200 

parameter, and C the a priori model covariance matrix. The diagonal element R77 indicates how the 201 

inverted model of ER is resolved. If all diagonal elements of RG equal 1, then the "exact model" is 202 

perfectly resolved. The further the RG diagonal element from 1, the poorer the resolution. In 203 

accordance with the ideas of (Friedel, 2003), a resolution radius for each model cell can be 204 

determined from the diagonal elements of the resolution matrix R77. Let's assume a piecewise 205 

constant cell resolution with r�	N7  as the radius of a cell circle having a perfect resolution of 1. For a 206 

cell of dimensions ∆x7 and I∆z7, the resolution radius is defined by Equation 3 below: 207 

rS	N7 = T∆x7∆z7πR77  

Equation 3 

The resolution matrix rS	N allows assessing the reliability of the inverted models according to the 208 

degree of resolution specific to each cell. rS	N is therefore the most suitable indicator for 209 

unstructured or irregular BERT meshes. For this reason, rS	N has been chosen as an uncertainty to be 210 

introduced into the BME (Section 2.3). 211 

2.2.1.3. Hard data generation: Hydraulic conductivity sampling method 212 

We have sampled hard data �����(KsV) by extracting the log10(Ks) value from �����(Ks�	W) (Figure 213 

2a). It is assumed that our measurements of �����(KsV) have a zero variance. We used ER���	�� 214 

data and a random selection technique to optimize the Ks sample location, as per the following 215 

strategy: 216 

• 50% of the number of points were manually sampled above and below the anomalies. 217 

• 25% of the points were sampled in the upper part of the ER���	�� map, where Rres has low 218 

uncertainty. Our ER���	�� maps were divided into three ranges, between the min and max 219 

values. In each range, an equivalent number of points were randomly sampled. 220 

• 25% were sampled in the area with the lowest rS	N; these points were sampled entirely 221 

randomly, owing to the poor performance of ERT in this area. 222 



For this step, the spatialization of Ks with the BME has been tested with three differing sample 223 

numbers, i.e. 14, 24 and 50. 224 

2.2.2. Field data 225 

The experimental site is located in France and had already been studied in previous articles (Benz-226 

Navarrete et al., 2019). It comprises a fairly heterogeneous agricultural plot and is relatively tabular 227 

in its sandy-loam surface, presenting sandy lenses in loam over its depth. ERT acquisitions were 228 

carried out using Iris Instruments' "Syscal Pro 72-electrodes" resistivity-meter (IRIS Instruments, 229 

France). The ERT profile was acquired with a Wenner array-type and a 0.25-m electrode spacing. To 230 

cover the proposed profile length (45 m) and maintain reasonable subsurface lateral resolution, the 231 

roll-along acquisition technique was performed with 48 electrode overlaps. The contact resistance 232 

was continuously measured at less than 4 kOhms. The 2D image of the ER���	�� profile was inverted 233 

with the pyGIMLi software (Rücker et al., 2017); a 2D flat inversion was carried out. We chose an 234 

isotropic smoothness constraint, with a Z-weight of 1 and a lambda value of 30 (Günther, 2004; Loke, 235 

1999). Moreover, we used a tetrahedral mesh with 2,920 cells. 236 

According to the sampling strategy presented in the previous section, 23 infiltration test locations 237 

were selected. The Aardvark permeameter, developed by Soil Moisture Inc. (USA), was employed to 238 

measure the infiltration rate. From the measured flow rate, log10(Ks) could be estimated by applying 239 

Reynolds and Elrick's equation (Elrick et al., 1989). 240 

2.3. BME fusion method 241 

The Bayesian Maximum Entropy (BME) method and its BMElib numerical implementation (Christakos 242 

et al., 2002; Serre and Christakos, 1999) provide a mathematically rigorous framework that 243 

incorporates information from several data sources featuring different uncertainties and point 244 

densities. These data have been organized into both "hard data" corresponding to exact 245 

measurements and "soft data" with a given uncertainty. 246 



The spatial random field Y(x,z)=log��(KY(Z, [)) indicates log��(KY) of the soil at location (Z, [), 247 

where Z (\) is the longitudinal coordinate along our study transect, and [ (\) the depth. Y], YN and 248 

Y^ denote Y at: the hard data points (where Y] is obtained from geotechnical measurements), the 249 

soft data points (where YN is derived from ERT and petrophysical relationships), and the estimation 250 

point, respectively. 251 

BME relies on two principles: (i) maximum entropy theory processes the general knowledge base of 252 

means and covariances G = {m`, cov`} and produces a "prior" f� PDF (probability density function) 253 

describing the spatial process; and (ii) Epistemic Bayesian conditioning updates this prior f� PDF with 254 

the site-specific knowledge base S, which then yields a BME posterior PDF f^ describing the value Y^ 255 

at any estimation point. Here, S = {Y], fY}, where Y] = log��(Ksf(Z, [)) is the measurement of the 256 

hard geotechnical data and fY is a PDF describing the uncertainty associated with soft geophysical 257 

data; moreover, the BME posterior PDF is given by: 258 

f^(Y^) = A h f�(Y], YY, Y^)fY(YN)dYN,  Equation 4 

where A is a normalization constant. 259 

The mean m` of field Y(x,z) is set to a first-degree polynomial, while the covariance cov` is obtained 260 

by fitting an anisotropic covariance model to experimental covariance values calculated from the Y] 261 

data. A covariance model quantifies the degree of similarity between pairs of measurements in terms 262 

of their separation distance and the orientation of the line between such pairs. See Chils and Delfiner 263 

(1999) for details on how covariance models describe the variability of spatial processes; also, Olea 264 

(2006) provided details on fitting a covariance model to experimental covariance values obtained 265 

from a covariogram analysis. In this study, the experimental covariance values are calculated based 266 

on a sample size (of Y] measurements). The anisotropy model fitted to these experimental 267 

covariance values is assumed to be exponential, with a major direction aligned with the x 268 

(longitudinal) axis, and a ratio of covariance ranging along the major direction over the covariance 269 

ranging along the transverse direction. 270 



The soft data PDF fY(YN) is obtained by transforming log��(ER���	��) into log��(���	
). 271 

(Mastrocicco et al., 2010) proposed a log-linear relationship between ER and Ks, hence the need for a 272 

linear regression of the observed log��(���	
) with respect to their corresponding log��(ER���	��). 273 

Then, for each node of the inversion grid where a log��(ER���	��) is available but for which 274 

log��(KsV) was not measured, we set fY(YN) to a Gaussian PDF with a mean equal to the value 275 

predicted by linear regression YN = log��(Ksi�j). However, for BME to work efficiently, we must set 276 

the variance σNl(x, z) of fY(YN) to a value that captures the uncertainty in the YN obtained from 277 

log��(ER���	��) at location (x,z). This can be accomplished by using the following: 278 

where r�	N(x, z) is the resolution radius (Section 2.2.1.2.3.3), mean(r�	N(x, z)) its mean, σ`ml  the 279 

variance of Y], |z| the absolute value of depth, mean(|z|) its mean, and σql a parameter obtained by 280 

maximizing the R² of validation (as explained in previous section). The terms 
�stu(v,q)=	w�(�stu) and 

|q|=	w�(|q|) 281 

are unitless, while both σ`ml  and σql have units of log��(m.s-1)2. The first term in Equation 5 is equal to 282 

the resolution radius normalized to a variance, while the second term is a gradient with depth, also 283 

normalized to a variance. Combined, these two terms allow the BME to account for the fact that the 284 

uncertainty in the soft geophysical data increases with both r�	N and depth. 285 

2.4 BME validation strategy 286 

We adopted a validation strategy to compare the estimation error of three methods: kriging (of the 287 

hard data alone), geophysics (i.e. geophysical data alone), and BME (i.e. fusion of both hard data and 288 

geophysical data). For the numerical simulations, we computed the estimation error by comparing 289 

the estimated Ks with log��(Ks���). Our field study was limited to log��(Ksf) at nh sampled 290 

locations, in which case we conducted a cross-validation analysis (Lee et al., 2009). The validation 291 

statistics used to assess model performance were: mean square estimation error (MSE), mean 292 

σNl(x, z) = r�	N(x, z)mean(r�	N) σ`ml + |z|mean(|z|) σql 
Equation 5 



estimation error (ME), variance of estimation error (VE), and square of the Pearson correlation 293 

coefficient R² (Christensen, 2018). 294 

3. Results 295 

3.1. Numerical approach 296 

3.1.1. Evaluation of hard data number 297 

Figures 4, 5 and 6 show the spatial distribution of log��(Ks) for synthetic models 1, 2 and 3, 298 

respectively. The three columns in each figure represent the spatialization result when the number of 299 

sampling points where �����?��fB has been sampled equals 10, 24 and 50, respectively. The rows 300 

offer the following: 301 

• Row 1: log��(Ks�	W). 302 

• Row 2: log��(ER��x	�N) data. The black circles indicate the sampling locations (where the 303 

�����(��f) data has been sampled from �����(�����)). 304 

• Row 3: log�� Ks�	
. 305 

• Rows 4 and 5: results of the spatialization log��(KsV) data by means of kriging 306 

log��(Ksy�7z), associated with variance map σy�7zl . 307 

• Rows 6 and 7: log��(Ks{G|) and the estimated variance map σ{G|l . 308 

The columns in each figure present all the results for several Ks samples (nh). Tables 2, 3 and 4 309 

respectively summarize the following statistical tools: MSE, ME, VE, and R², applied to evaluate the 310 

performance of these estimation methods. 311 

3.1.1.1. Model 1 312 

Figure 4b.3 shows the log��(ER���	��) map for a 50-point sampling (nh=50) conducted on a two-313 

layer soil. The surface displays an initial layer (depth: 0-2.5 m) with an estimated log��(ER���	��) of 314 

1.8. Two anomalies are present in this layer, at x = 5 m and 22 m. The synthetic reference model 315 

(Figure 4a) shows two anomalies with the same thickness, whereas the anomalies are deformed and 316 

stretched downward in Figure 4b. At depth, the layer with log��(ER���	��) of 1.4 is more reduced 317 



than that in the reference model; it starts at the x = 2.5 m position and disappears at the x = 17 m 318 

position. In Figure 4c.3, the log��(Ks�	
) distribution is very similar to the log��(ER���	��) map. In 319 

Figure 4d.3, the result of kriging based solely on log��(KsV) reveals a highly smoothed map; 320 

however, the BME results lie closest to the reference model. The surface anomalies are in the correct 321 

position and the shape of the anomaly is closer to reality (Figure 4f.3). 322 

Reducing the number of samples to 24 hard data (log��(KsV)) produces no noticeable change in the 323 

proposed log��(Ks�	
)) map. Kriging is more likely to overwhelm the anomalies. The BME fusion 324 

method provides an attractive log��(Ks{G|) estimate, with a reasonable number of samples. Let's 325 

note that reducing the number of points at depth reduces resolution of the anomaly at the position x 326 

= 10 m and z = 3.5 m. 327 

The 14 sampling points are insufficient to cover all anomalies, which obviously influences the kriging 328 

results and geophysical transformation by the empirical law; therefore, the BME fusion method is 329 

closest to the reference model. Indeed, the BME is capable of delineating large sand anomalies, yet it 330 

tends to underestimate the extent of the clay anomaly at depth. This finding can be explained by the 331 

lack of resolution of the ERT method at depth, where information from soft data is less reliable. 332 

Figures 4e and 4g exhibit the variance for both the kriging and BME methods. The information given 333 

by the σy�7zl  map is weak for data close to the Ks hard value: σ{G|l  is minimized compared to σy�7zl . 334 

All visual results have been confirmed by error estimators, which are more efficient for the BME. 335 



 336 

Figure 4: Spatial estimation of �����(��) and its variances for Model 1: kriging, geophysical 337 

transformation and BME at a constant WC for 14, 24 and 50-point sampling 338 

 339 



Table 2: Statistical analysis of the spatialization of Model 1 for the three samples 340 

 341 

3.1.1.2. Model 2 342 

Figure 5 shows the spatialization of log��(Ks). Figure 5b.3 presents the log��(ER���	��) map and 343 

estimated log��?KsVB for 50 sampling points. In Figure 5c.3, log��(Ks�	
) reveals the three clay 344 

anomalies on the surface, but the silty anomaly is not apparent. The clay anomalies are stretched 345 

towards the bottom. In Figure 5d.3, kriging serves to identify the four anomalies; however, even with 346 

such a large sample, kriging merges the two near-surface anomalies at the position x = 16 m. In 347 

Figure 5f.3, the anomalies are correctly delineated with BME. We can observe that kriging 348 

deteriorates and merges the anomalies. BME would appear to be better with 24 points than with 50 349 

because the loam anomaly is more sharply defined with 24 points. In reality, this outcome is due to 350 

the differentiation in the selected sampling points. More specifically, with a minimal number of 14 Ks 351 

hard data, results maintain the same trend as with 50 and 24 points. Table 3 shows that for 50 352 

log��(Ksf) sampling points, the BME method slightly improves the estimation result in terms of 353 

correlation (R²=0.82 for nh=14 vs. R²=0.84 for nh=50) and targeting (MSE around 0.3). The increase in 354 

number of samples (from 14 to 24 points) degrades the kriging estimate in terms of correlation; this 355 

trend is linked to the random sampling that in this case has selected points of lesser interest. 356 



Regardless of the number of samples, the R² calculation demonstrates that BME once again produces 357 

the highest value in this second model. 358 

 359 



Figure 5: 2D estimation of �����(��) and variances for Model 2: kriging, geophysical transformation 360 

and BME at a constant WC for 14, 24 and 50-point sampling 361 

  362 



Table 3: Statistical analysis of the spatialization of Model 2 for the three samples 363 

 364 

3.1.1.3. Model 3 365 

Figure 6 presents the results of the spatialization of log��(��). For 50 points (Figure 6b.3), 366 

log��(ER���	��) indicates the presence of two sand anomalies with a log��(ER���	��) of 2 and one 367 

loam anomaly with a log��(ER���	��) of 1.7; meanwhile, ERT does not show the deep clay layer. In 368 

Figure 6c.3, log��(Ks�	
) follows the log���ER���	��� map. The kriging result in Figure 6d.3 exposes 369 

a deep loam layer with well delimited anomalies. At the surface however, the method tends to 370 

merge anomalies. The BME results in Figure 6f.3 clearly identify the 3 anomalies as well as the loamy 371 

layer. With 24 points, kriging (Figure 6d.2) of the surface anomaly is merged. The near-surface 372 

anomalies and deep layer are well distinguished in Figure 6g.2 with BME methods; however, the first 373 

anomaly on the left has been attenuated. With 14 points, BME correctly reproduced (Figure 6g.1) the 374 

near-surface anomalies except for the loamy layer at depth. Visually, the BME method produces the 375 

best results. 376 

Table 4 of the statistical indicators confirms that BME is, regardless of the number of points, always 377 

higher than kriging or geophysical transformation. In conclusion, the BME method seems to extract 378 

the best information from geophysical transformation and kriging; however, the number of samples 379 

does influence the spatialization of Ks by BME. In taking the results and statistical analysis into 380 

account, we feel that 20 infiltration test points offers a valuable number of points. 381 



 382 

Figure 6: Spatialization of �����(��) for Model 3: kriging, geophysical transformation and BME  383 

at a constant WC for 14, 24 and 50-point sampling 384 

  385 



Table 4: Statistical analysis of the spatialization of Model 3 for the three samples (14, 24 and 50) 386 

 387 

3.1.2. Influence of variable soil WC 388 

This section will consider the influence of variable soil WC, with 24 hard data values and the three 389 

same log��(Ks�	W) models. All results are presented in Figure 7; each column of the figure lists all 390 

results for the various models. 391 

Figure 7b displays log��(ER���	��), which has decreased in depth and increased at the surface. This 392 

change can be explained by the variable WC obtained from the groundwater flow model. Model 1 in 393 

Figure 7 shows that the simple petrophysical transformation of the data does not highlight the 394 

variations in log��(Ks). Let's also note that the anomalies are heavily distorted, along with the 395 

presence of an artifact at the 15-m position of the clay anomaly at depth. For Model 2, four 396 

anomalies are distinguished, though a deep stretching of the central anomaly can be observed 397 

(Figure 7c.2). Model 3 exhibits the three anomalies, but the clay layer is poorly defined; the loamy 398 

layer (log�����}~��=-7) (Figure 7a.3) at depth has been replaced by a clay layer (log��(���~�)=-9) 399 

(Figure 7c.3). 400 

The BME method is the one that best estimates the log��(Ks) data. Compared to the reference 401 

models, the BME spatialization (log��(����!)) actually reproduces all anomalies of the three distinct 402 

models. 403 



 404 

Figure 7: Spatialization of �����(��) for Models 1, 2 and 3: kriging, geophysical transformation  405 

and BME at a variable WC for 24-point sampling 406 

 407 



Table 5: Statistical analysis of spatialization with BME, kriging and petrophysical relationship  408 

for all three models 409 

 410 

Table 5 reports on the statistical tools used to evaluate the performance of estimators (kriging, 411 

geophysics, BME) for all three models. It can be observed that the statistical analysis applied to the 412 

models studied shows a strong correlation between the reference model and the BME method 413 

result. For example, on Model 3, the correlation coefficient R² equals 0.77 for the BME vs. 0.66 for 414 

kriging or 0.08 for kriging geophysics. The lower MSE value obtained with BME (0.43) reflects BME's 415 

high accuracy and targeting. Although data from the log��(ER���	��) map are degraded, this has 416 

nevertheless allowed BME to improve the Ks spatialization, an extremely encouraging result that 417 

underscores BME performance. 418 

3.2. Field validation 419 

Figure 8 presents the field result of a single ERT profile and 23 infiltration test log��(KsV) values. In 420 

Figure 8a, ERT results are presented on a 45-m line; also, the log��(ER���	��) points of low sensitivity 421 

(coverage < 0.7) are masked. It can be acknowledged that the log��(ER���	��) measurement in this 422 

area is not realistic. The log��(ER���	��) data show variations from 1 to 2.2 (log��(Ω.m)). Infiltration 423 

tests (as represented by black points) have allowed us to determine that the log��(Ksf) of the 424 

parcel varies between -3 and -7 (log��(m.s-1)); this value is standard for Limagne soils, which are 425 

often called "black soil". These soils contain varying clay and sand contents, which explains the 426 

log��(Ksf) (Bornand et al., 1984). The position of log��(Ksf) was identified according to the 427 



sampling strategy presented above. Figure 8c presents the mapping of log��(Ksy�7z) based solely on 428 

infiltration test data. Observations can be made of: a surface layer with an average value of -5 429 

(log��(m.s-1)), a deep anomaly (at the position x = 20 m and y = -2 m) with a value of -6 (log��(m.s-1)), 430 

and another deep anomaly (at the position x = 4 m and y = -2 m) with a value of -3 (log��(m.s-1)). 431 

Figure 8d provides the map of log��(Ks�	
) from the petrophysical relationship. Let's note the 432 

various layers between 0 and -1 m, with values on the order of log��Ks�	
=-4) (log��(m.s-1)). We can 433 

also distinguish a deep layer with values between -5 and -6 (log��(m.s-1)) inclusive. BME behaves 434 

here as the fusion of kriging and geophysical data. The surface layer is taken into account, and the 435 

deep anomalies highlighted by log��(KsV) appear in the final model of Ks. From a visual standpoint, 436 

BME takes the best features from both kriging and geophysics. 437 

Based on cross-validation and statistical analysis (MSE, ME, VE and R²), BME slightly improves results 438 

with a high R² correlation index of 0.78 and a low root mean square error of 0.46. According to our 439 

statistical analysis, the BME method proves to be the most highly focused, accurate and correlated 440 

method. 441 



 442 

Figure 8: Spatialization of Ks on the data field: a) location map of infiltration tests on the �����(!") 443 

profile (RMS = 3.55%); b) empirical law between �����(!") and �����(��); c, d and e) Results of  444 

the spatialization of �����(��) by kriging, geophysics and BME, respectively 445 

Table 6: Statistical analysis of the spatialization of Ks on field data 446 

 447 

4. Discussion 448 

Previous results lead the ensuing discussion to three points, namely: (i) the lack of validation data for 449 

BME generalization, (ii) the sampling strategy, and (iii) its future applications. 450 

 451 



4.1. Lack of validation data 452 

Due to the lack of validation data, it is extremely difficult to consolidate these approaches in the 453 

field. This work has proposed a static analysis to evaluate the BME data fusion methodology as a 454 

means of overcoming the absence of validation data. Nevertheless, the statistical indicator for 24 455 

points is not adequately significant, and the method would require validation at other sites with a 456 

larger set of available Ks data. In spite of this fact, the method has allowed obtaining, for the very 457 

first time, an impressive map of Ks based on the available parcel information. To improve these BME 458 

methods in the future, an expanded number of measurements at well-known reference sites will be 459 

necessary. To date, the BME is an efficient method but cannot be definitively generalized. 460 

4.2. Sampling strategy 461 

The sampling strategy is based on ERT data for selecting the optimal Ks measurement location in the 462 

field. Such a strategy has proven to be successful but is still capable of being improved. Indeed, ERT 463 

does not recognize all potential anomalies. We have limited this bias by splitting our sampling 464 

strategy into two parts: first, sampling by electrical resistivity (ER) over a range with low uncertainty 465 

for the ERT measurements; then, sampling randomly where uncertainty is high. However, when using 466 

the numerical dataset, an evaluation of the hard data sampling number (Section 3.1.1.2) showed that 467 

14 points could be better than 24 points for the kriging method, which means that the Ks sampling 468 

point location could be improved even further. 469 

Sampling remains a highly critical issue, especially with such strong constraints on the number of Ks 470 

measurements; these constraints are time-consuming and therefore expensive. As a result, the 471 

number of tests should be minimized and optimally located when investigating a TWW infiltration 472 

area of use for the BME. This challenge still needs to be addressed in the future. The authors are 473 

convinced that a better sampling protocol will improve kriging and therefore the BME results. 474 



4.3. Future applications and outlook 475 

Ks is an essential parameter for dimensioning a TWW infiltration area; it allows evaluating the 476 

maximum TWW discharge load for a specific soil surface. Its main drawback however involves the 477 

difficulty in obtaining a sufficient number of Ks measurements (due to both time and financial costs) 478 

in field applications. The geophysics and BME approach proposed in this paper was initially suggested 479 

to solve such an issue. The method yields an accurate distribution of Ks by fusing 24 experimental 480 

measurements of Ks with the ERT method. Yet for infiltration area design, conducting 24 infiltration 481 

tests remains too expensive. Consequently, it can only be applied to those cases representing a 482 

serious risk for the environment. In order to overcome this method use limitation, we are proposing 483 

to focus future research efforts on combining ERT and infiltration tests with less time-consuming 484 

methods, e.g. dynamic penetrometer. The BME method could also be generalized to other soil 485 

parameters (e.g. WC) and applications, especially in the field of water resources management. 486 

5. Conclusion 487 

This article has proposed a new approach to obtain Ks spatial distribution based on the integration of 488 

ERT and infiltration test data in the BME method. This method allows for the fusion of point-specific 489 

data, with a null variance (Ks), and distributed data, with a specific variance (ER). We have adapted 490 

the BME method to the specificities of both geophysical and geotechnical datasets. The results of this 491 

study show that BME is a high-performance method producing maps with a lower variance than any 492 

of the other methods tested (kriging, petrophysical relationship). Indeed, BME offers a first-level Ks 493 

distribution as well as many new possibilities, namely: i) the development of a new multi-method 494 

approach to coupling geophysical and geotechnical methods, ii) application to other fields of 495 

geosciences, and iii) use of results in hydrodynamic modeling for TWW infiltration area design. 496 
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