
HAL Id: hal-03559043
https://hal.inrae.fr/hal-03559043

Submitted on 5 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

From cultivar mixtures to allelic mixtures: opposite
effects of allelic richness between genotypes and

genotype richness in wheat
Germain Montazeaud, Timothée Flutre, Elsa Ballini, Jean-Benoit Morel,
Jacques David, Johanna Girodolle, Aline Rocher, Aurélie Ducasse, Cyrille

Violle, Florian Fort, et al.

To cite this version:
Germain Montazeaud, Timothée Flutre, Elsa Ballini, Jean-Benoit Morel, Jacques David, et al.. From
cultivar mixtures to allelic mixtures: opposite effects of allelic richness between genotypes and genotype
richness in wheat. New Phytologist, 2022, 233 (6), pp.2573-2584. �10.1111/nph.17915�. �hal-03559043�

https://hal.inrae.fr/hal-03559043
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


From cultivar mixtures to allelic mixtures: opposite effects of
allelic richness between genotypes and genotype richness in
wheat

Germain Montazeaud1,2,3 , Timothée Flutre4 , Elsa Ballini5 , Jean-Benoit Morel5 , Jacques David1 ,
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Summary

� Agroecosystem diversification through increased crop genetic diversity could provide multi-

ple services such as improved disease control or increased productivity. However, we still

poorly understand how genetic diversity affects agronomic performance.
� We grew 179 inbred lines of durum wheat in pure stands and in 202 binary mixtures in field

conditions. We then tested the effect of allelic richness between genotypes and genotype

richness on grain yield and Septoria tritici blotch disease. Allelic richness was tested at 19K sin-

gle nucleotide polymorphisms distributed along the durum wheat genome. Both genotype

richness and allelic richness could be equal to 1 or 2.
� Mixtures were overall more productive and less diseased than their pure stand components.

Yet, we identified one locus at which allelic richness between genotypes was associated with

increased disease severity and decreased grain yield. The effect of allelic richness at this locus

was stronger than the effect of genotype richness on grain yield (−7.6% vs +5.7%).
� Our results suggest that positive effects of crop diversity can be reversed by unfavourable

allelic associations. This highlights the need to integrate genomic data into crop diversification

strategies. More generally, investigating plant–plant interactions at the genomic level is

promising to better understand biodiversity–ecosystem functioning relationships.

Introduction

Plant ecological research has long shown positive effects of bio-
diversity on ecosystem functioning (Loreau et al., 2001; Tilman
et al., 2001; Hooper et al., 2005). Accordingly, more diverse
agroecosystems could provide a range of services such as
improved disease control or increased productivity, while reduc-
ing the use of external inputs (Jackson et al., 2007; Litrico &
Violle, 2015). Growing mixtures of varieties instead of
monogenotypic crop stands could promote such diversity effects
at the intraspecific level (Barot et al., 2017). Most meta-analyses
indeed show that varietal mixtures have a slight yield advantage
over monovarietal stands (+2% to +5%). Yet, they also high-
light that mixing effects can be highly variable and even nega-
tive (Smithson & Lenné, 1996; Kiær et al., 2009; Reiss &
Drinkwater, 2018). Understanding such variability is necessary
to design optimal mixtures in which positive interactions are
promoted and negative interactions are prevented (Litrico &
Violle, 2015).

So far, mixing effects have mostly been studied with pheno-
typic approaches that aim at testing whether phenotypic diversity
in a given trait can drive positive interactions through ecological
mechanisms such as niche complementarity or facilitation
(Loreau & Hector, 2001). For instance, diversity in plant height
(Essah & Stoskopf, 2002), root traits (Montazeaud et al., 2018),
and phenological traits (Yu et al., 2015) have been investigated as
potential ways to promote spatial or temporal resource partition-
ing between crop species or genotypes. Even if some correlations
between phenotypic traits and mixing effects have been reported,
these approaches have not yet allowed the obtainment of general
and robust assembly rules for varietal mixtures (Borg et al.,
2018), as expected from theory (Litrico & Violle, 2015; Barot
et al., 2017). Moreover, they are intrinsically limited by the fact
that we do not know all the traits involved in plant–plant interac-
tions. Complementary approaches have been developed from the
statistical methods used in hybrid crop breeding (Gizlice et al.,
1989; Forst et al., 2019). These approaches aim at estimating the
mixing ability of a genotype by measuring its performance over
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many mixtures. Based on large mixing designs, one can identify
genotypes with good mixing abilities without any prior informa-
tion or hypothesis regarding their phenotype (Knott & Mundt,
1990). Even though these approaches can be very helpful for the
choice of mixture components, their results are only applicable to
the set of observed genotypes (although kinship-based predictions
for unobserved genotypes are theoretically possible, see Forst et
al., 2019). Moreover, additional experiments and analyses are
required if one is interested in understanding the ecological
mechanisms underlying mixing ability.

One promising way to overcome the limitations of existing
approaches might be to scale down to the genomic level and look
for the most favourable allelic combinations. There is indeed evi-
dence that allelic differences at specific genes between mixture
components can promote positive mixing effects. For example,
the well known effect of disease reduction often observed in vari-
etal mixtures is classically attributed to allelic differences at major
resistance genes between mixture components (Mundt et al.,
1995; Gigot et al., 2013). The recent development of modern
genomic tools has opened up new opportunities to investigate
how allelic combinations underly plant–plant interactions
(Subrahmaniam et al., 2018). For example, allelic composition at
specific DNA regions associated with plant–soil interactions
(Wuest & Niklaus, 2018) and flowering time (Turner et al.,
2020) have been shown to drive stand-level productivity in the
model plant Arabidopsis thaliana. Although very promising in the
context of varietal mixtures, such genomic approaches have not
been applied in crops so far.

In this study, we used a field experiment to investigate mixing
effects at the genomic level in durum wheat (Triticum turgidum
ssp. durum). Durum wheat is a major staple crop that is processed
into various food products, mainly pasta in European and North
American countries, and couscous and bread in North African
and Middle Eastern countries. As with many self-fertilised cere-
als, most durum wheat varieties are inbred lines, that is each vari-
ety is fully homozygous. Here, we used 179 inbred lines derived
from a population with a broad genetic basis (David et al., 2014),
which we grew in pure stands and in 202 binary mixtures
designed at random. We quantified mixing effects on two agro-
nomic variables, grain yield and disease severity for Septoria tritici
blotch (STB). Septoria tritici blotch is caused by the fungus
Zymoseptoria tritici and it is one of the most devastating foliar dis-
ease in wheat (Fones & Gurr, 2015). Varietal mixtures have
already proved efficient to reduce the severity of this disease in
the field (Gigot et al., 2013; Kristoffersen et al., 2020). Then, we
tested the effect of allelic richness between genotypes and geno-
type richness on both grain yield and STB severity. The effect of
allelic richness was tested genomewide using 19K bi-allelic single
nucleotide polymorphisms (SNPs) distributed along the durum
wheat genome (Rimbert et al., 2018), with the aim of identifying
major effect loci at which allelic diversity could be associated with
mixture performance. Allelic richness was defined as the number
of alleles at a given SNP in the plot. As genotypes were fully
homozygous and mixtures were made of two genotypes, allelic
richness could be equal to 1 or 2: 1 in pure stands and in mix-
tures in which both components shared the same allele, and 2 in

mixtures in which the components had different alleles. Geno-
type richness was defined as the number of inbred lines in the
plot and equalled either 1 or 2: 1 in pure stands and 2 in mix-
tures.

Materials and Methods

Experimental design

We set up a field experiment at Mauguio, southern France
(INRAE – UE DIASCOPE – 43°360N, 3°590E) on 21 Novem-
ber 2017. We used 179 durum wheat inbred lines from the
highly diversified Evolutionary Prebreeding population (EPO)
developed at INRAE Montpellier, France (David et al., 2014).
We grew the 179 lines in pure stands and we randomly selected
202 pairwise combinations for mixture plots. We excluded pairs
that had having more than a 3-wk difference in heading date,
assuming that larger time lag would not be acceptable in real cul-
tivation conditions. Plots were not replicated because there was
no requirement to test for the effects of allelic richness and geno-
type richness. Indeed, we rather maximised the number of repli-
cates for both levels of genotype richness with 179 monocultures
(genotype richness = 1) and 202 mixtures (genotype rich-
ness = 2). Similarly, we filtered SNPs to only keep markers with
sufficient replicates for both levels of allelic richness (1 and 2, see
the ‘Genotyping data’ section). Not replicating plots allowed us
to increase the number of genotypes and genotype combinations
in mixtures, therefore limiting potential dependency of our
results on the effect of specific genotypes or genotype combina-
tions. Pure stands and mixture plots were randomly arranged in a
grid of 11 × 41 plots (Fig. 1). Each plot consisted of six 1.5 m
long rows with 20 cm between rows and 2–3 cm between plants
of the same row. Sixty seeds were sown on each row, resulting in
a planting density of 240 plants m−2. The interplot distance was
30 cm in the horizontal direction and 2 m in the vertical direc-
tion. In mixtures, genotypes were grown in alternate rows, (Fig.
1). Such spatial arrangement allowed us to individualise measure-
ments for each mixture component. Biotic damage was mitigated
by applying pesticides after symptom measurements (see later).
Fertilisers were used to prevent resource limitations. Detailed
information on plant growth conditions, agronomic manage-
ment and monthly meteorological data can be found in Support-
ing Information Methods S1 and Table S7 in Methods S1. The
initial design comprised 400 plots with 180 monocultures and
220 mixtures, but 19 plots had to be removed from the dataset
due to sowing or sampling problems.

Productivity measurements

Productivity was quantified by measuring grain yield (g m−2),
spike density (nb spikes m−2), and 1000 kernel weight (g). At
maturity, we collected aboveground biomass on the four central
rows of each plot on 70 cm length, leaving 40 cm on each side to
avoid edge effects. For each pure stand plot, we collected two
samples by pooling rows 2 and 3, and rows 4 and 5. In mixture
plots, we collected two samples per genotype by separating rows
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2 and 4 for the first component genotype, and rows 3 and 5 for
the second component genotype. Samples were then stored in a
drier for 48 h. Spikes were clipped out and counted to deter-
mined spike density. They were then threshed, and grains were
weighed to determine grain yield. A subset of 250 grains was
counted and weighed, and this weight was multiplied by four to
obtain the 1000 kernel weight.

Symptom measurements

We measured the impact of STB at the end of the tillering–early
stem elongation stage (c. GS30) on 23 March 2018. By this time,
no fungicides had been applied on the experiment. STB was pre-
sent in almost all plots, and no other diseases were detected. We
used pycnidia observations to identify STB. We scored disease
severity at the plot level, which integrates the vertical and hori-
zontal spread of the disease (Seem, 1984). The vertical spread
corresponds to the infection of different leaf layers, whereas the
horizontal spread corresponds to the infection of different plants.
Septoria tritici blotch severity was assessed visually using the fol-
lowing scoring system: 0, no symptoms; 0.5, 5%–50% individu-
als with symptoms only on the low leaf layers; 1, 50%–75%
individuals with symptoms only on the low leaf layers; 1.5,
75%–100% individuals with symptoms only on the low leaf lay-
ers; 2, 75%–100% individuals with symptoms on the low leaf

layers and 5%–50% individuals with symptoms on the high
leaf layers; 2.5, 75%–100% individuals with symptoms on the
low leaf layers and 50%–75% individuals with symptoms on the
high leaf layers; 3, 75%–100% individuals with symptoms on all
leaf layers.

In mixture plots, the two genotypes were scored separately,
and their scores were then averaged. The experiment was subdi-
vided in three areas that were respectively scored by two interns
and one experienced technician. A subset of plots was scored by
all operators to compare their notations. Because intern scores
were poorly correlated with the technician scores, we only
retained the plots scored by the experienced technician in the
analysis. We ended up with 226 plots with high-confidence STB
severity scores (166 pure stands and 60 mixtures; Fig. 1). Because
almost all plots were infected by STB at this stage, we decided to
apply two fungicide treatments on 20 April and 18 May to pro-
tect the experiment. We used Priori®Xtra at 1 l ha−1.

Relative yield total computation

We compared the performance of the mixtures to the perfor-
mance of their pure stand components using the relative yield
total (RYT) index (de Wit & van den Bergh, 1965). We com-
puted RYT for both grain yield and STB severity using the fol-
lowing formula:

Fig. 1 Overview of the experimental design with 400 field plots of durum wheat (Triticum turgidum ssp. durum) grown as single-variety plots or binary
mixtures. The whole design is represented on the left, with single-variety (pure stand) plots in black, and mixture plots in grey. As shown in the figure, the
design had to be split in two parts separated by c. 10 m to allow the irrigation system wheel to pass through. Pure stands and mixture plots were arranged
randomly in the field. Plots scored for Septoria tritici blotch disease (STB) are framed in red. In total, 381 plots (179 pure stands and 202 mixtures) were
included in the analyses after removing plots with incomplete data due to sowing or sampling problems.
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RYTij ¼
Y imixt

=Y imonoc
þ Y jmixt

=Y jmonoc

2
,

where: RYTij , relative yield total of the mixture containing geno-
types i and j, Y imixt

and Y jmixt
, the grain yield or STB severity of

genotypes i and j in mixture; Y imonoc
and Y jmonoc

, the grain yield
or STB severity of genotypes i and j in pure stands. Under no
mixing effects, RYT equals 1. Relative yield total > 1 means that
the mixture produced more grains (grain yield) or was sicker
(STB severity) than the average of the two pure stand compo-
nents, whereas RYT < 1 means the opposite. Due to missing
data for some plots (see the ‘Experimental design’ section), we
were only able to calculate RYT for 197 (grain yield) and 46
(STB severity) mixtures, respectively.

Genotyping data

The 179 inbred lines were genotyped with the TaBW280K high-
throughput genotyping array (Rimbert et al., 2018) which pro-
vided 280K SNPs. Durum wheat is allotetraploid, meaning that
it combines two independent diploid genomes composed of
seven chromosome pairs each (2n = 4X = 28). Nonpolymorphic
SNPs and SNPs with > 5% missing values across individuals
were discarded, leaving us with 117 888 SNPs. As SNPs were bi-
allelic and genotypes were inbred lines, two genotypes were
observed at each locus: ‘AA’ or ‘BB’, ‘A’ and ‘B’ being the two
SNP alleles.

We used this set of SNPs to compute genetic similarity
between inbred lines. Indeed, EPO lines were derived from a
composite-cross population with recurrent gene flows between
individuals, and were therefore genetically related to each other
(David et al., 2014; Methods S1). To account for this noninde-
pendence between observations in statistical analyses, we
included a ‘genotype’ or a ‘genotypic pair’ random effect in our
mixed models, depending on whether the response variable was
measured at the individual or at the plot level, respectively. These
random effects were structured according to pairwise genetic sim-
ilarity matrices either computed between genotypes or between
genotypic pairs. For individual-level observations, we used the
classical VanRaden additive genetic relatedness matrix
(VanRaden, 2008), K, which we computed with the function es-
timGenRel() from the RUTILSTIMFLUTRE package (Flutre & Brault,
2019). For plot-level observations, we defined the matrix Kp,
where K p[i, j] measures the genetic similarity between genotypic
pairs i and j. K p[i, j] was computed as the probability to draw
the same allele when sampling randomly an allele in each of the
two pairs, averaged over all loci (Fig. S1):

K p½i, j � ¼ 1� 1

4L
∑L

l¼1 x i1l þ x i2l þ x j1l þ x j2l
� �

þ 1

8L
∑L

l¼1 x i1l x j1l þ x i1l x j2l þ x i2l x j1l þ x i2l x j2l
� �

Eqn 1

x i1l and x i2l , being the SNP genotypes of respectively, line 1 and
line 2 at locus l in the plot i, x j1l and x j2l , the SNP genotypes of

respectively, line 1 and line 2 at locus l in the plot j; L, the
total number of SNPs (L = 117 888). Line 1 and line 2 were
identical in pure stand plots. Single nucleotide polymorphisms
genotypes were encoded as the number of copies of the minor
allele in the pool of 179 lines, which was either 0 or 2 as we used
inbred lines.

For each SNP, we then counted the number of genotypic pairs
falling into each of the five possible categories: monogenotypic &
monoallelic ‘AA’, monogenotypic & monoallelic ‘BB’, bi-
genotypic & monoallelic ‘AA-AA’, bi-genotypic & monoallelic
‘BB-BB’, and bi-genotypic & bi-allelic ‘AA-BB’. We discarded all
SNPs for which the least frequent category represented less than
5% of the total dataset (c. 19 genotypic pairs). We ended up with
18 868 SNPs that we used to test the effect of allelic richness on
grain yield. The same filtering process resulted in 6193 SNPs for
STB severity as this variable was only measured in 226 plots. Sin-
gle nucleotide polymorphisms physical positions and functional
annotations were retrieved from the durum wheat reference
genome (Maccaferri et al., 2019).

Statistical analysis

All statistical analysis were performed in R v.3.5.3 (R Core Team,
2019).

Spatial corrections We corrected yield components (spike den-
sity, 1000 kernel weight, and grain yield) for spatial autocorrela-
tion at the scale of each plot row for both pure stands and
mixture plots using the P-splines method implemented in the
SPATS package (Rodrı́guez-Álvarez et al., 2018; Figs S2–S4). Such
corrections were not possible for STB severity as measurements
were not replicated within plots. We fitted a linear mixed model
with genotype identity, row identity, and column identity as ran-
dom effects and a smooth bivariate surface function to model the
deviation to the linear trends along rows and columns. Row iden-
tity was defined as the coordinate of the plot along the smallest
dimension of the grid and therefore ranged from 1 to 11 (Figs 1,
S2). As yield measurements were individualised for the four cen-
tral rows of each plot, each of the 41 columns of the grid was
divided into four subcolumns. Column identity was defined as
the subcolumn where the yield component was measured and
ranged from 1 to 164 (4 × 41) (Figs 1, S2). We used the geno-
type best linear unbiased predictors (BLUPs) obtained from this
model as response variables for all subsequent analyses, which
provided us with one value per genotype per plot.

Detection of single-locus allelic richness effects on grain yield
and STB severity We tested the effect of allelic richness on grain
yield using an association mapping approach. For each of the 18
868 SNPs, we used the following linear mixed model:

y ¼ 1μþ aβa þ gβg þ p þ ϵ Eqn 2

where y denotes the vector of 381 observations of grain yield, μ is
the mean grain yield across all plots, a is the vector of allelic rich-
ness, that is the number of alleles at the tested SNP (1 vs 2) across
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the 381 plots, and βa is the fixed effect of allelic richness. We used
genotype richness as a cofactor for all SNPs, with, g being the
vector of genotype richness, that is the number of inbred lines in
the plot (1 vs 2) across the 381 plots, and βg being the fixed effect
of genotype richness. The model was fitted sequentially with
allelic richness specified before genotype richness. This allowed
us to test first for allelic richness, our main factor of interest in
this study, by considering that all monoallelic plots were equiva-
lent, that is disregarding potential differences between monoal-
lelic pure stands and monoallelic mixtures when testing the effect
of allelic richness. Our design did not allow us to test for an inter-
action between allelic richness and genotype richness: while mix-
tures could be either monoallelic or bi-allelic, pure stands were
always monoallelic. We therefore ended up with three possible
combinations of allelic and genotype richness: one allele and one
inbred line (pure stand plots), 1 allele and two inbred lines
(monoallelic mixture plots), and two alleles and two inbred lines
(bi-allelic mixtures). As mentioned before, as the 381 genotypic
pairs are not independent, we included a ‘genotypic pair’ random
effect, p, which corresponds to the concatenation of the identity
of the two genotypes present in a pair. p was assumed to be nor-
mally distributed with a mean of 0 and a variance σ2p , and to be
structured according to a 381 × 381 pairwise genetic similarity
matrix Kp. Structuring genotypic pair random effect with Kp

allowed us to control for the confounding effect of the genetic
background (Vilhjálmsson & Nordborg, 2013) and to minimise
the detection of false positives (Fig. S5). Finally, ε is the vector of
error terms which are assumed to be independent and identically
distributed with variance σ2r . To account for potential grain yield
differences between the two alleles at the tested SNP, we initially
included an ‘allelic dosage effect’, defined as the total number of
minor allelic copies in the plot at the given locus. By encoding
SNP alleles 0 and 1 for the major and minor alleles respectively,
we defined allelic dosage value as 0 for SNP combination 0–0, 2
for combination 0–2 or 2–0, and 4 for combination 2–2. This
effect was never significant and was therefore discarded.

As the 18 868 tests were not independent due to linkage dise-
quilibrium between SNPs, we computed the effective number of
independent tests for each chromosome using the Galwey
method (Galwey, 2009) implemented in the meff() function from
the POOLR package. We obtained a total of 902 independent tests.
Based on this number, we then limited the detection of false posi-
tive by controlling the family-wise error rate (FWER) at 5% with
the Bonferroni correction. We checked linkage disequilibrium
(Fig. S6) and we analysed gene functional annotation (Dataset
S1) in the genomic regions where we found significant effects of
allelic richness on grain yield. To select functional annotations,
we used the positions of the closest SNPs outside the significant
hit as upper and lower bounds (Fig. S6) and we only considered
high-confidence annotations (Dataset S1).

We ran the exact same locus-by-locus analysis for STB severity,
except that we used 6193 SNPs (see the ‘Genotyping data’ sec-
tion) and 226 observations (Fig. S7).

For SNPs at which we detected a significant effect of allelic
richness on grain yield, we used the model defined by Eqn 2 with
spike density or 1000 kernel weight as response variables to assess

which yield component was primarily affected by allelic richness.
Also, to check if the effect on grain yield could originate from an
effect on STB severity, we first tested the overall relationship
between grain yield and STB severity (Table S1). We included
the fixed effect of genotype richness as well as the interaction
between genotype richness and STB severity to account for differ-
ences between monocultures and mixtures. Then, we used the
model defined by Eqn 2 with STB severity as the response vari-
able and allelic richness computed at the subset of SNPs with a
significant effect on grain yield. For these SNPs, we also checked
whether the significant effect of allelic richness on grain yield
could originate from unwitting sampling effects resulting from
either (1) the genotypes observed in bi-allelic mixtures being, by
chance, the genotypes with the lowest yield and the highest STB
severity among the 179 genotypes used in our experiment; (2)
the genotypes observed in monoallelic mixtures being, by chance,
the genotypes with the highest yield and lowest STB severity; or
(3) both (1) and (2). We did not detect such sampling effects
(Methods S1). Finally, to identify the traits underlying the effects
of allelic richness, we tested the association between allelic varia-
tion at the significant SNPs and phenotypic variation at 20 func-
tional traits measured in single-variety plots. The 20 traits
included seven aboveground traits, 11 root traits, and two pheno-
logical traits (see Methods S1 for details on trait measurements).
We used a classical genome-wide association study (GWAS)
model with the phenotypic trait as the response variable, the
allelic value at the tested SNP as a fixed effect, and the identity of
the genotype as a random effect. The genotype identity random
effect was structured with a 179 × 179 additive genetic related-
ness matrix K. As we tested multiple traits, we used the Ben-
jamini–Hochberg P-value correction to limit the detection of
false positives.

Contribution of each mixture component to single-locus allelic
richness effects When we detected significant allelic richness
effects on grain yield or STB severity, we investigated how indi-
vidual genotypes within mixture plots were affected depending
on their allele and the allele of their neighbour, that is the mix-
ture partner of the focal genotype, at the significant SNP. We
used the following linear mixed model:

y ¼ 1μþ x fβf þ xnβn þ x fnβfn þ Z f f þ Z nn þ ϵ Eqn 3

where y, denotes the 404 × 1 vector of grain yield or the 120 ×
1 vector of STB severity measured on each mixture component
referred to as the focal genotypes; μ, the mean value across all
mixture components; xf, vector of focal alleles at the tested SNP;
βf, the fixed effect of the focal allele; xn, the vector of neighbour
alleles at the tested SNP; βn, the fixed effect of the neighbour
allele; xfn, the vector of focal-neighbour allelic combinations at
the tested SNP; βfn, the fixed effect of the interaction between
focal and neighbour alleles; f, the random effect of the focal geno-
type, which accounts for the polygenic effect of all loci other than
those tested in the focal genotype; n, the random effect of the
neighbour genotype, which accounts for the polygenic effect of
all loci other than those tested in the neighbour genotype; Zf and
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Zn, the incidence matrices linking observations to the correct ran-
dom effects; and ε, the vector of error terms assumed to be inde-
pendent and identically distributed with a mean of 0 and a
variance σ2r . Focal and neighbour genotype random effects were
assumed to be normally distributed with a mean of 0 and a vari-
ance σ2f and σ2n, respectively, and to be structured with a related-
ness matrix K. Note that the same matrix was used for both
effects because mixture components are alternatively considered
as focal and neighbour genotypes in this analysis. Results from
the full model are reported in Table S2. Results in the main text
are presented according to the allele carried by focal individuals
(Table S3).

All mixed models were fitted with the lmerAM() function from
the RUTILSTIMFLUTRE package (Flutre & Brault, 2019). We esti-
mated marginal means (bμ) for each factor levels using the
emmeans() function from the EMMEANS package. We computed
partial coefficients of determination ðR2

pÞ for fixed effects using
the R2BETA() function from the R2GLMM package. Post-hoc multi-
ple comparisons were tested with the GLHT() function from the
MULTCOMP() package.

Results

On average, mixtures had higher yields (+4%, P < 0.001) and
were significantly less affected by STB (−17%, P = 0.0091) than
expected from their pure stand components (Fig. 2). However,
mixing effects were highly variables: 43% of the mixtures were
less productive than expected from their pure stand components
(Fig. 2a), and 24% of the mixtures were more affected by STB
than expected from their pure stand components (Fig. 2b).

At the genomic scale, we detected a single major effect locus
located around SNP cfn0881580 (chr. 6B) at which allelic rich-
ness was significantly associated with grain yield
(P = 2.1772 × 10−5; Fig. 3a). Plots in which genotypes had two
different alleles at this locus were significantly less productive
than plots in which both genotypes shared the same allele (Fig.
3b; Table S4). Moreover, the two types of monoallelic plots at
cfn0881580 (AA-AA and BB-BB), showed similar productivities
(Fig. 4a). The joint effect of genotype richness was positive: plots
with two genotypes were on average more productive than plots
with a single genotype when accounting for allelic richness at

cfn088580 (P < 0.001; Fig. 3b; Table S4). This means that the
yield advantage of the mixtures was not only a relative to their
components grown in pure stands (Fig. 2a), but also absolute
compared with all pure stands (Fig. 3b). Overall, the effect of
allelic richness at cfn0881580 was opposite and stronger than the
effect of genotype richness on grain yield (−7.6% � 1.8% vs
+5.7% � 1.7%, Fig. 3b; Table S4). Moreover, both allelic rich-
ness at cfn0881580 and genotype richness primarily affected
grain yield through spike density, with no effect on 1000 kernel
weight (Fig. 5; Table S5).

The effect of STB severity on grain yield was not significant over-
all (Fig. S8; Table S1). Also, the genome-wide scan did not detect
any locus with significant allelic richness effect on STB severity (Fig.
S7). However, when considering only cfn0881580, allelic richness
was significantly associated with STB severity: plots combining two
alleles at cfn0881580 were more impacted by STB than monoal-
lelic plots (+30.7% � 10%, P = 0.002; Fig. 6; Table S4). The
two alternative alleles at cfn0881580 showed similar STB severities
in monoallelic plots (Fig. 4b). As observed for grain yield, genotype
richness had the opposite effect of allelic richness on STB severity:
mixture plots were less impacted by STB than pure stands
(−33.5% � 5.5%, P < 0.001; Fig. 6; Table S4).

The effect of allelic richness at cfn0881580 could not be
explained by intrinsic differences in yield or STB susceptibility
between the genotypes used in monoallelic vs bi-allelic plots (Fig.
4), therefore suggesting that differences between monoallelic and
bi-allelic plots resulted from an interaction between the alleles
carried by the two genotypes.

When analysing mixture plots only, we did detect a strong
interaction between the alleles carried by the two components of
the mixture at cfn0881580 (Fig. 7; Tables S2, S3): genotypes
were significantly less productive (Fig. 7a,b) and more diseased
(Fig. 7c,d) when grown with a mixture partner carrying a differ-
ent allele at cfn0881580.

To check if the results observed at cfn0881580 were specific to
this locus, we also analysed the effect of allelic richness at the two
most significant SNPs outside the peak on chromosome 6B,
namely cfn0576659 on chromosome 2A and cfn1784374 on
chromosome 2B (Figs 3, S9). As for cfn0881580, mixture plots
with two different alleles at these SNPs were, on average, less pro-
ductive than mixtures plots where a single allele was shared by

(a) (b)

Fig. 2 Distribution of mixing effects in field-
grown varietal mixtures of durum wheat
(Triticum turgidum ssp. durum). Mixing
effects are reported for grain yield (a,
n = 197) and Septoria tritici blotch disease
(STB) severity (b, n = 46). Mixing effects
were quantified with the relative yield total
(RYT) index. Means (μ) and standard
deviations (σ) are reported. The star symbol
indicates a mean RYT significantly different
from 1 (t-test, **, P ≤ 0.01; ***,
P ≤ 0.001).
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both genotypes (P = 2.9087 × 10−4 and P = 9.1756 × 10−4,
respectively; Fig. S9b,c). We found no relationship between
allelic richness at cfn0576659 and STB severity (Fig. S9d). We
could not check the relationship between allelic richness at
cfn1784374 and STB severity because this SNP had very unbal-
anced allelic representation in the STB dataset.

We did not find any association between allelic variation at
cfn0881580 and phenotypic variation at the 20 functional traits
measured in the experiment (Table S6).

Discussion

Ecological theories suggest that greater crop diversity can provide
multiple benefits to agriculture, including greater productivity
and reduced disease severity (Altieri, 1999; Jackson et al., 2007;
Hajjar et al., 2008). In this study, we confirmed longstanding
results showing that such benefits can be obtained by mixing dif-
ferent genotypes within the same field. Indeed, we report an over-
all benefit of genotype diversity for both grain yield and STB
severity in wheat varietal mixtures grown in field conditions.
However, mixing crop genotypes randomly does not seem suffi-
cient to benefit from positive diversity effects, as shown by the
considerable variability in mixing effects classically reported in
previous studies on varietal mixtures (Smithson & Lenné, 1996;
Kiær et al., 2009; Reiss & Drinkwater, 2018). We here con-
firmed this pattern by reporting significant variation in produc-
tivity and disease severity (both absolute and relative to

monocultures). Research efforts are then still needed to define
general guidelines for the design of optimised multifunctional
mixtures (Litrico & Violle, 2015). So far, the vast majority of
these efforts have tried to identify the most favourable combina-
tions of traits, or the best genotypes to assemble based on their
mixing abilities (Barot et al., 2017). However, such approaches
might have overlooked lower-scale interactions occurring at the
genomic level. In this study, we show for the first time in crops
that allelic richness at a single locus can have major negative
effects on varietal mixture performance.

We identified one major effect locus at which allelic differences
between genotypes were associated with decreased grain yield and
increased STB severity. While such negative effect of allelic rich-
ness at a single locus had never been reported in crops, a similar
pattern was recently documented in the model plant Arabidopsis
thaliana (Turner et al., 2020), where allelic differences between
mixture components led to underyielding. We observed similar
negative associations between allelic diversity and grain yield at
two other SNPs that were the closest from the significance level.
Overall, this suggests that negative associations between allelic
diversity and crop performance might not be uncommon. Such
opposite effects of genotype richness and allelic richness at speci-
fic loci might explain why meta-analyses on varietal mixtures
have reported both positive and negative mixing effects on mix-
ture productivity (Smithson & Lenné, 1996; Kiær et al., 2009;
Reiss & Drinkwater, 2018). Importantly, our results showed that
such negative effects of allelic diversity at a single locus do not

(a)

(b)

Fig. 3 Effects of allelic richness and genotype
richness on grain yield in durum wheat
(Triticum turgidum ssp. durum). (a)
Manhattan plot reporting P-values (−log10
transformed) for the association tests
between grain yield and allelic richness at
18 868 SNPs distributed along the durum
wheat genome. The solid red line represents
the family-wise error rate (FWER) of 5%
computed with the Galwey method. (b)
Grain yield over the different combinations
of allelic richness at cfn0881580 and
genotype richness. Genotype richness is
quantified as the number of genotypes in the
plot, while allelic richness is quantified as the
number of alleles in the plot. Point shapes:
triangle, pure stand plots; circles, mixture
plots. Point colours: blue, monoallelic plots;
red, bi-allelic plots. Black points and error
bars represent the estimated marginal means
and their 95% confidence interval. n,
number of observations in each category, bμ,
marginal means. Categories with different
letters are significantly different at P < 0.05
(Tukey adjustment). Detailed results of the
statistical analyses can be found in
Supporting Information Table S4.
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preclude an overall positive effect of genetic diversity, as shown
by the average increase in grain yield and decrease in STB severity
associated with genotype richness. However, the yield reduction
associated with allelic richness was stronger than the yield
increase associated with genotype richness. This suggests that
beneficial mixing effects arising from genotype diversity can be
cancelled and even reversed by unfavourable allelic associations.
Therefore, our findings do not question the benefits of crop
diversity for agriculture, but rather provide a new perspective on
the relative contributions of different levels of diversity to these
benefits.

Analysing diversity effects at the allelic level can help the under-
standing of the ecological basis of mixing effects. For example,
Turner et al. (2020) showed that the gene associated with
community-level biomass in A. thaliana was a major flowering
time locus, and they could therefore attribute mixture underyield-
ing to differences in flowering time between accessions. In our

case, we did not find direct associations between allelic variation at
the identified locus and any of the phenotypic traits measured in
the experiment. However, the traits were measured in monocul-
tures only and the effect of allelic richness was primarily detected
in mixtures. Then, phenotypic plasticity between monocultures
and mixtures could explain why we did not find any association
with this locus (Dahlin et al., 2020). Our results however sug-
gested that the yield reduction observed in bi-allelic mixtures was a
direct consequence of higher STB severity. The early timing of
STB infection combined with the fact that allelic differences
mostly affected spike density together supported this hypothesis.
Indeed, STB infections occurring around tillering are known to
reduce spike density, either through a decrease in tiller production,
or through a reduction in tiller survival (Leitch & Jenkins, 1995;
Simón et al., 2002; Castro & Simón, 2016). Interestingly, while
multiple studies previously reported significant mixing effects on
both yield and disease severity, it has been challenging to relate

(a)

(b)

Fig. 4 Detailed effects of allelic richness at cfn0881580 and genotype richness on grain yield (a) and Septoria tritici blotch disease (STB) severity (b) in
durum wheat (Triticum turgidum ssp. durum). Here we compare grain yield and STB severity, both measured at the plot level, among different subsets of
pure stand and mixture plots: all pure stands in which genotypes carried the ‘A’ allele at cfn0881580 (‘Mono AA’), subset of pure stands in which
genotypes carried the ‘A’ allele and were used in monoallelic mixtures (‘Mono AA in Mix AA-AA’), subset of pure stands in which genotypes carried the ‘A’
allele and were used in bi-allelic mixtures (‘Mono AA in Mix AA-BB’), mixtures in which both genotypes carried the ‘A’ allele (‘Mix AA-AA’), mixtures in
which one genotype carried the ‘A’ allele and the other genotype carried the ‘B’ allele (‘Mix AA-BB’), mixtures in which both genotypes carried the ‘B’
allele (‘Mix BB-BB’), subset of pure stands in which genotypes carried the ‘B’ allele and were used in bi-allelic mixtures (‘Mono BB in Mix AA-BB’), subset of
pure stands in which genotypes carried the ‘B’ allele and were used in monoallelic mixtures (‘Mono BB in Mix BB-BB’), and all pure stands in which
genotypes carried the ‘B’ allele (‘Mono BB’). Point shapes: triangles, pure stand plots; circles, mixture plots. Point colours: blue, monoallelic plots;
red, bi-allelic plots. n, number of observations in each category. Categories with different letters are significantly different at P < 0.05 (Tukey adjustment).
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these two effects (Mille et al., 2006; Gigot et al., 2013; Kristof-
fersen et al., 2020). Similarly, the overall effect of STB severity on
grain yield was not significant in this study, highlighting the rele-
vance of the genome-wide approach to better understand the con-
nection between yield and disease. More generally, analysing
diversity effects at the genomic scale could help us to better under-
stand the interrelationships between multiple services provided by
crop diversity.

In agreement with the plant pathology literature (Mille et al.,
2006; Gigot et al., 2013; Kristoffersen et al., 2020), we detected
an overall reduction of STB severity in mixtures compared with
pure stands. In previous studies (Mundt et al., 1995; Zeller et al.,
2012; Gigot et al., 2013), this effect was mainly attributed to
allelic diversity at major resistance genes among mixture compo-
nents. Yet, at the genomic scale, we did not find any locus at which
allelic differences between individuals significantly reduced STB
severity. As the durum wheat population used in this study is very
likely to contain major resistance genes for STB (see QTLs
reported in Ballini et al., 2020), this result could be explained
either by the absence of molecular markers in close linkage disequi-
librium with such genes, or by the fact that STB reduction in mix-
tures was otherwise caused by diversity in quantitative traits (i.e.
traits encoded by many loci with small effects). For example, diver-
sity at quantitative resistance loci has already been shown to reduce
STB epidemics in varietal mixtures (Cowger & Mundt, 2002).

Both alleles at cfn0881580 were found to provide lower STB
severity and higher yields when grown in the vicinity of an identi-
cal allelic copy. This pattern could result either from a positive
interaction between identical alleles or from a negative interac-
tion between nonidentical alleles. In the former case, genotypes
carrying the same allele could have increased the productivity of
their neighbours by stimulating their immunity. Such an effect
has already been reported in Artemisia tridentata for which plant
defences have been shown to be triggered by volatile signals pro-
duced by related individuals (Karban & Shiojiri, 2009; Karban et
al., 2013). In the latter case, plants could have produced allelo-
pathic compounds that were toxic only to neighbours sharing a
different allele. Interestingly, among the functional annotations
documented in the genomic region of cfn0881580 (Dataset S1),
we found an enzyme involved in the synthesis of 4-
hydroxybenzoic acid (4-HBA), a common allelopathic com-
pound in cereals (Guenzi & McCalla, 1966; Chou & Patrick,
1976). Whatever the nature of interactions between alleles, our

(a) (b)

Fig. 5 Effects of allelic richness at cfn0881580 and genotype richness on spike density (a) and 1000 kernel weight (b) in durum wheat (Triticum turgidum
ssp. durum). Both spike density and 1000 kernel weight are compared over the different combinations of allelic richness at cfn0881580 and genotype
richness. Genotype richness is quantified as the number of genotypes in the plot, while allelic richness is quantified as the number of alleles at in the plot.
Point shapes: triangles, pure stand plots; circles, mixture plots. Point colours: blue, monoallelic plots; red, bi-allelic plots. Black points and error bars
represent the estimated marginal means and their 95% confidence interval. n, number of observations in each category, bμ, marginal means. Categories
with different letters are significantly different at P < 0.05 (Tukey adjustment). Detailed results of the statistical analyses can be found in Supporting
Information Table S5.

Fig. 6 Effects of allelic richness at cfn0881580 and genotype richness on
Septoria tritici blotch disease (STB) severity in durum wheat (Triticum
turgidum ssp. durum). Septoria tritici blotch severity is compared over the
different combinations of allelic richness at cfn0881580 and genotype
richness. Genotype richness is quantified as the number of genotypes in
the plot, while allelic richness is quantified as the number of alleles at in the
plot. Point shapes: triangles, pure stand plots; circles, mixture plots. Point
colours: blue, monoallelic plots; red, bi-allelic plots. Black points and error
bars represent the estimated marginal means and their 95% confidence
interval. n, number of observations in each category, bμ, marginal means.
Categories with different letters are significantly different at P < 0.05
(Tukey adjustment). Detailed results of the statistical analyses can be
found in Supporting Information Table S4.
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results were consistent with the greenbeard effect described in
evolutionary biology, in which a single gene (or cluster of tightly
genes) could favour its own transmission by making individuals
either more altruistic towards other individuals sharing the same
gene copy or more harmful towards individuals bearing a differ-
ent copy (Hamilton, 1964). In any case, further experimental
work will be required to replicate this result in a different year/
location, and then to decipher the fine-scale mechanisms respon-
sible for such negative allelic interactions.

By disentangling genetically driven positive and negative inter-
actions among individuals, genomic approaches offer interesting
perspectives for leveraging crop diversity in agroecological prac-
tices. Notably, varietal mixture composition could be optimised
by using marker-assisted assembly rules. Such genomic
approaches of plant diversity could also allow us to decipher the
genetic and molecular basis of plant–plant interactions in natural
communities. Overall, our study demonstrates that investigating
plant–plant interactions at the genomic level may therefore be
relevant for tackling both applied issues in the agricultural con-
text, and forefront research questions in plant biology.
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