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1 Abstract- 17 

Control programmes against non-regulated infectious diseases of farm animals are widely 18 

implemented. Different control programmes have different definitions of “freedom from infection” 19 

which can lead to difficulties when trading animals between countries. When a disease is still present, 20 

in order to identify herds that are safe to trade with, estimating herd-level probabilities of being 21 

infected when classified “free from infection” using field data is of major interest. Our objective was 22 

to evaluate the capacity of a Bayesian Hidden Markov Model, which computes a herd-level 23 

probability of being infected, to detect infected herds compared to using test results only. Herd-level 24 

risk factors, infection dynamics and associated test results were simulated in a population of herds, 25 

for a wide range of realistic infection contexts and test characteristics. The model was used to predict 26 

the infection status of each herd from longitudinal data: a simulated risk factor and a simulated test 27 

result. Two different indexes were used to categorize herds from the probability of being infected 28 

into a herd predicted status. The model predictive performances were evaluated using the simulated 29 

herd status as the gold standard. The model detected more infected herds than a single final test in 30 

85% of the scenarios which converged. The proportion of infected herds additionally detected by the 31 

model, compared to test results alone, varied depending on the context. It was higher in a context of a 32 

low herd test sensitivity. On average, around 20%, for high test sensitivity scenarios, and 40%, for 33 

low test sensitivity scenarios, of infected herds that were undetected by the test were accurately 34 

classified as infected by the model. Model convergence did not occur for 39% of the scenarios, 35 

mainly in association with low herd test sensitivity. Detection of additional newly infected herds was 36 

always associated with an increased number of false positive herds (except for one scenario). The 37 

number of false positive herds was lower for scenarios with low herd test sensitivity and moderate to 38 

high incidence and prevalence. These results highlight the benefit of the model, in particular for 39 
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control programmes with infection present at an endemic level in a population and reliance on test(s) 40 

of low sensitivity. 41 

2 Introduction 42 

Various control programmes (CPs) against infectious diseases of farm animals are implemented in 43 

Europe. In order to control or eradicate these diseases, CPs typically focus on the identification of 44 

infected units (animals or herds) using diagnostic tests performed at regular time intervals. CPs may 45 

be deployed across a territory, from regional to national scale. Testing schemes can vary in terms of 46 

type and performance of the test used, the cohorts and numbers of animals tested, and the time 47 

interval between tests. These differences have been documented for some endemic cattle diseases, 48 

including infections by bovine viral diarrhoea virus (van Roon et al., 2020b), Mycobacterium avium 49 

subspecies paratuberculosis (Whittington et al., 2019), and bovine herpesvirus 1 (Raaperi et al., 50 

2014). 51 

Heterogeneity in CPs may lead to difficulties when trading animals between different regions or 52 

countries, as each CP has its own definition of “freedom from infection” which cannot be directly 53 

compared. These definitions of a “free status” are usually based on one, or a combination of several, 54 

diagnostic test result(s). Limitations in test performance, and time interval between tests lead to 55 

uncertainty around these statuses. Imperfections in the testing schemes lead to two types of error. 56 

Firstly, a lack of specificity means that some uninfected herds are wrongly categorized as infected, 57 

i.e. false positives. Secondly, a lack of sensitivity leads to some infected herds being wrongly 58 

categorized as free from infection, i.e. false negatives.  The time interval between tests may result in 59 

a delay between the times of infection and detection. For herds classified as “free from infection”, 60 

those that become infected between two consecutive tests will remain classified as “free from 61 

infection” until a next test event. Hence, as each CP has its own surveillance strategy, the confidence 62 
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and associated uncertainty in the true status of a herd classified as “free from infection” may vary 63 

depending on the CP. Currently when purchasing an animal from a herd classified as “free from 64 

infection” under different CPs, it is not possible to assess the probability of infection for that animal. 65 

As trade can be an opportunity for infectious diseases to spread, confidence in “free status” is a key 66 

point to support international trade. 67 

There is a need for the development of methods that enable a CP-level comparison of confidence of 68 

herd-level “freedom from infection”.  The traditional solution to obtain a comparable surveillance 69 

output in different regions or countries is to use input-based surveillance. This type of surveillance 70 

consists in prescribing how surveillance should be performed in terms sampling design, sample size 71 

and tests used. However, input-based surveillance does not take into account the diversity of contexts 72 

in which CPs are applied (van Roon et al., 2020b) and can be expensive to run, while not being 73 

adapted to the specific context of each CP (Cameron, 2012). Alternatively, output-based surveillance 74 

may be used, which is not prescriptive in terms of the elements of the programme, but rather in the 75 

degree of confidence associated with a free status that must be achieved.  76 

Imperfect testing regimes lead to misclassification errors, as highlighted above. To account for this, 77 

known risk factors (RFs) for the introduction of infection could be included in the calculation of 78 

probability of freedom, as predictors of either current or new infection. Data on such disease-specific 79 

RFs should be available for many CPs, given that action on these RFs is used as a way to prevent the 80 

introduction of infection. Disease-specific RFs for introduction depend on the pathogen as well as the 81 

route of transmission (direct or indirect transmission). For many diseases, animal purchase is a 82 

common RF for introduction of infection into herds (Rangel et al., 2015; van Roon et al., 2020a). In 83 

the European Union, where cattle identification and the recording of cattle movements between 84 

holdings are mandatory, these data could be used to predict (new) infections through purchase, thus 85 

contributing to improved estimation of the infection-free status of a herd.  86 
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In Madouasse et al. (2021), a modelling framework was described, called the STOC free 87 

(Surveillance analysis Tool for Output based Comparison of the confidence of FREEdom from 88 

infection) model, that estimates the herd-level probabilities of infection, using data from CP and 89 

taking RF occurrence into account. The model estimates the probability of infection at the last time-90 

step for each herd (in a series of sequential test results). Model inputs include repeated test results 91 

and the presence of RFs for each herd as measured regularly within the surveillance programme. The 92 

framework incorporates knowledge at the population level on infection dynamics, test characteristics 93 

and the effect of RFs when estimating probability of infection. 94 

In order to evaluate the capacity of the STOC free model to detect infected herds, a gold standard is 95 

required. Gold standard is the true herd status. In the context of the STOC free model, an infected 96 

herd is defined as the presence of at least one infected animal. To measure the true status of the herd, 97 

it would be necessary to test all the animals within a herd using a perfect test. However, no such data 98 

exist in the real-world. Up to now, the STOC free model has only been applied to a single French 99 

dataset, which included test results and RFs but no gold standard (Madouasse et al., 2020). An 100 

evaluation of the performance of this model under different circumstances is therefore lacking.  101 

The use of simulated data is an effective way to evaluate the predictive accuracy of the STOC free 102 

model given the absence of gold standard information in real-world surveillance data. This approach 103 

has been used for the evaluation of latent-class models for the estimation of infection prevalence in 104 

dairy herds(McAloon et al., 2019). Data simulation allows a simplified system to be created where 105 

the true herd status is known. Simulated surveillance data, i.e. test results and RF information 106 

collected at regular intervals, can be used as input for the STOC free model as an alternative to real-107 

world surveillance data. The performance of the model can be then evaluated by looking at errors in 108 

herd status classification, by comparing true herd status to the status predicted by the model. 109 

Furthermore, compared to real data, using simulated data enables a wide range of epidemiological 110 
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situations and surveillance modalities to be evaluated. It makes it possible to investigate the potential 111 

of the model to be used for different diseases where performance of CPs differs. 112 

The objective of this work was to evaluate the capacity of the STOC free model, which takes account 113 

of both dynamics of testing and risk factor information, to improve the detection of infected and 114 

newly infected herds compared to test results alone (i.e. the added value of the model in sensitivity). 115 

Among infected herds, newly infected are the ones which were not infected at the previous test event. 116 

We assumed that the added value of the model in terms of the detection of newly and previously 117 

infected herds could be different depending on the epidemiological context (impact of relative risk 118 

associated and frequency of risk factor and disease dynamics) and test performances (sensitivity and 119 

specificity). Simulated data were used to generate a wide range of realistic CPs (different CP 120 

corresponding either to different diseases or to the results of different testing strategies for a disease 121 

in different contexts). We quantified the number of additional infected herds detected by the STOC 122 

free model compared to test results.  123 

3 Material and methods 124 

3.1 Overall design strategy 125 

Firstly, a dynamic model was developed to simulate herd-level infection and surveillance data under 126 

a wide variety of CP scenarios corresponding either to different diseases or to the results of different 127 

testing strategies for a disease in different contexts. The simulated surveillance data were then used 128 

as input for the STOC free Bayesian Hidden Markov Model, which was run to generate outputs on 129 

model parameters estimates and predicted herd status for probability of infection at the last time-step. 130 

Finally, model and test performance were compared. The overall design strategy is presented in 131 

Figure 1.  132 
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3.2 Simulation of herd infection and surveillance data model 133 

We simulated the dynamics of herd infection status depending on the presence of a single RF 134 

associated with an increased probability of becoming infected, generating data on herd status and test 135 

results at each time-step. Initially, RF presence/absence was simulated. Herd infection status at the 136 

first time-step was based on the chosen simulated prevalence of infection. Then, at a given time-step, 137 

non-infected herds could become infected according to a probability of new infection between time-138 

steps, which varied depending on RF occurrence. The probability that an infected herd would remain 139 

infected between two sequential time-steps was determined by a simulation parameter that 140 

represented this probability (of infection not being resolved between two different time-steps). 141 

Infection status for a given herd at a given time-step determined the result of a test, assuming a given 142 

herd-level test sensitivity and specificity. 143 

3.2.1 Simulation of herd status at each time-step 144 

Infection dynamics were simulated by herd status change. Herd status was simulated as a binary 145 

event, with 0 and 1 denoting absence and presence of infection, respectively. Herd status was 146 

assumed to undergo Markovian dynamics with status at time t depending on status at time t-1 and RF 147 

occurrence. In each scenario, the overall herd infection prevalence was held constant over the time-148 

steps to evaluate the STOC free model in different situations over a short period. Keeping the 149 

prevalence constant prevents the infection of either dying out or rapidly increasing over the number 150 

of time-steps and allows a comparable number of infected herds to be detected. For consistency, the 151 

probability of new infection between time-steps was a function of both overall herd infection 152 

prevalence and the probability of a herd remaining infected between time-steps to allow overall 153 

prevalence to remain constant over time. 154 
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Status simulation can be described by the following set of equations. In herd h at time t, the infection 155 

status ��,�, was sampled from a Bernoulli distribution: 156 

��,� ∼ Bernoulli(��,�) , 157 

with ��,� being the probability of being infected at time-step t for herd h. For a given herd at time 158 

t=1, the probability of infection was: 159 

��,��� = � , 160 

with � being the herd infection prevalence for that scenario. For a given herd h at time t>1, ��,� 161 

depended on previous status and infection dynamics parameters: 162 

��,� = (1 − ��,���)��
�,� + ��,����� , 163 

with ��,��� being the status of herd h at the previous time-step, �� being the probability of remaining 164 

infected between time-steps (fixed variable in each scenario), and ��
�,� the probability of new 165 

infection between time-steps which was defined as a function of herd-level risk factor exposure and 166 

defined as: 167 

��
�,� = (1 − ��,���)� + ��,����� , 168 

where � was the probability of new infection when the risk factor was absent, i.e. ��,��� = 0 and �� 169 

was the probability of new infection when the RF was present, i.e. ��,��� = 1 . Thus, � was the 170 

relative risk of new infection in herds exposed to the RF. Exposure to the RF (�) was considered a 171 

random dichotomous variable simulated as: 172 

��,� ∼ Bernoulli(�) , 173 
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with F being the RF frequency in the data set. 174 

Assuming an endemic situation with a constant prevalence over time-steps, at each time-step in each 175 

scenario the average number of newly infected herds was constrained to be equal to the average 176 

number of herds eliminating the infection. Therefore, the following condition had to be met: 177 

 (��
�,�)(1 − �) = (1 − ��)� , 178 

where  (��,�
� ) was the expectation for the probability of new infection. This amounts to applying the 179 

following constraint on the overall probability of new infection: 180 

 (��
�,�) = (��!")#

��#   . 181 

From the definition of ��
�,� and the frequency of the RF, F, at a given time-step, the expected 182 

probability of new infection was: 183 

 (��
�,�) = (1 − �)� + ��� , 184 

where � was the relative risk of new infection in herds exposed to the RF and � the probability of 185 

new infection in herds that were not exposed to the RF. The frequency of the RF (�) and the relative 186 

risk of new infection in herds exposed to the RF (�) are inputs in the simulation. The probability of 187 

new infection in herds that were not exposed to the RF (�) can be computed as: 188 

� = $(!%
&,')

�()(*��) . 189 
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3.2.2 Simulation of test results 190 

A test result was simulated for each herd at each time-step as a function of the simulated herd status, 191 

the herd-level test sensitivity and specificity. Test result in herd h at time t was sampled from a 192 

Bernoulli distribution: 193 

+�,� ∼ Bernoulli(,(+�,�
( )) , 194 

with p(+�,�
( ) being the probability of being tested positive defined by: 195 

p(+�,�
( ) = ��,��- + (1 − ��,�)(1 − �,) , 196 

with �- and �, being respectively herd-level test sensitivity (probability for an infected herd to be 197 

tested positive) and specificity (probability for an uninfected herd to be tested negative). 198 

3.3 Input scenario: differing infection and epidemiological situation 199 

We simulated various scenarios to represent different diseases in different contexts and different tests 200 

performances for which STOC free model could be used. Different range of values for the 10 201 

different parameters of the data simulation are presented in Table 1. For all scenarios, the number of 202 

simulated herds was set at 5,000 and the number of simulated time-steps to 6. At each time-step, test 203 

results and RF information were available. The choice of parameter values was based on knowledge 204 

and discussion with a group of infectious disease experts, from different countries involved in the 205 

STOC free consortium, to represent variation in context for different endemic situations. 206 

Various epidemiological situations were simulated to represent various endemic infections and 207 

contexts. We simulated two prevalence values, 0.3 and 0.1, representing territories in the beginning 208 

of their CP and territories already in an advanced stage of control, respectively. The probability of 209 

remaining infected depends on the effectiveness of herd-level eradication measures in the CP. We 210 



 
11 

consider high values, from 0.75 to 0.9, consistent with endemic infection dynamics. For consistency 211 

with a constant prevalence of infection, the probability of becoming infected (��) was calculated for 212 

all combinations of � and ��values (4 values).  213 

Various effect of RFs on infection dynamics have been simulated to account for variability between 214 

CP. We simulated low to high RF frequency setting a maximum frequency of 0.5 considering that a 215 

more frequent risk factor would not be discriminatory between herds. In contrast, we have set a 216 

minimum frequency at 0.1 because a very rare RF (below 0.1) will only bring information for a small 217 

number of herds. The relative risk of new infection in herds exposed to the RF (γ) ranged from 1.5 to 218 

5, given that RF association may be variable depending on the infection and territory (van Roon et 219 

al., 2020a). 220 

The test sensitivities and specificities considered in this paper measure test performance for the 221 

detection of infection at the herd-level. These parameters depend on test characteristics at the animal 222 

level, the number of animals tested and within-herd prevalence (Christensen and Gardner, 2000). 223 

Therefore, herd-level sensitivity and specificity can differ from specific test characteristics and 224 

context (Duncan and Humphry, 2016; Nielsen and Toft, 2008). We simulated herd-level sensitivity 225 

from 0.4 to 0.9 and herd-level specificity from 0.8 to 0.95. Low herd-level sensitivity values 226 

represent infections for which highly sensitive tests are not available, e.g. paratuberculosis (Nielsen 227 

and Toft, 2008). We considered a sensitivity of 0.9 as the maximum value. In case of higher 228 

sensitivity, we hypothesized that there would be limited added value from the STOC free model. 229 

After taking into account the complete testing process, which often includes retesting of positive 230 

herds, high values of specificity were considered appropriate. Low diagnostic specificity is less 231 

common in CPs. 232 
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Combinations of parameters values represented the simulation of 216 different scenarios. Simulation 233 

of herd infection and surveillance data model were implemented in R software (R Core Team, 2017). 234 

3.4 Description and use of the STOC free model 235 

The model described by  Madouasse et al., 2020, represents infection presence at herd level as a 236 

latent status over time-steps. The latent status is evaluated at regular time intervals through testing. 237 

Tests may be imperfect, i.e. with a sensitivity and a specificity less than 1. The variable of interest 238 

(the latent status) has a Markovian dynamic: the latent status at a given time-step depends on both the 239 

latent status at the previous time-step and actions taken or RF occurrence since the previous time-240 

step. Risk factors are incorporated as predictors for new infection. The model predicts the probability 241 

of infection in the final time-step for each herd in the CP. Data collected before the final time-step are 242 

used as historical data for the estimation of the different model parameters, including previous latent 243 

statuses. Parameters estimation and prediction are performed in a Bayesian framework.  244 

3.4.1 Model Structure 245 

To describe the STOC free model and explain how predictions were performed, we use the following 246 

notation: �/  is the estimated value of � and 01 is the predicted value of 0. 247 

Latent state. We consider two latent states: 0 for uninfected herds and 1 for infected herds. For a 248 

given herd ℎ at a given time 3, status �/�,� follows a Bernoulli distribution: 249 

�/�,� ∼ Bernoulli(�4�,�) , 250 

with �4�,� being the probability of being infected. At t=1, a beta prior is used for �4�,���, representing 251 

initial prevalence: 252 

�4�,��� ∼ Beta(78, �8) ). 253 
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Infection dynamics. From the second time-step on, the probability of being infected at 3 depends on 254 

the latent state at 3 − 1. Herds that were uninfected at 3 − 1 (i.e. �/�,(���) = 0) can become infected 255 

with probability of new infection �̂�
�,�. Infected herds remain infected with a probability of remaining 256 

infected �̂� : 257 

�4�,� = (1 − �/�,(���))�̂�
�,� + �/�,(���)�̂� . 258 

A beta prior is used for the probability of remaining infected, which is constant over time and herds: 259 

��: ∼ Beta(7!" , �!"). 260 

Probability of new infection. The probability of new infection �;,�
�  is modelled as a function of the 261 

presence or absence of the RF ��,��� using a logistic regression: 262 

logit(�̂�
�,�) = =>� + =>���,��� . 263 

Normal priors are used for logistic regression parameters (=>�, =>�): 264 

=>� ∼ Normal(A�, B�) , 265 

=>� ∼ Normal(A�, B�). 266 

Test results. Test results are considered as an imperfect measure of the latent status. We consider 267 

two herd-level test results: positive or negative (discrete). Each result follows a Bernoulli distribution 268 

with a probability ,(+()�,� of being positive: 269 

+�,� ∼ C-DEFGHHI J,K+�,�
( LM , 270 
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with ,K+�,�
( L depending on estimate latent status at t and test characteristics: herd-level sensitivity 271 

(�-N) and specificity (�,N): 272 

,(+�,�
( ) = �-N�/�,� + (1 − �,N)(1 − �/�,�). 273 

Beta priors are used for test characteristics parameters: 274 

�-N ∼ Beta(7OP , �OP) , 275 

�,N ∼ Beta(7OQ, �OQ). 276 

3.4.2 Predicting the probability of infection 277 

The model predicts the herd-level probability of being infected at the last time-step using status 278 

prediction from the previous month, estimated infection dynamic parameters, and estimated test 279 

specificity and sensitivity. 280 

First, the model predicts the probability of being herd status positive (noted ,(�R�,�
(∗)) depending on 281 

previous predicted status (�/�,���
( ) and estimated infection dynamics parameter(�̃�,�

� , �̂�): 282 

,(�R�,�
(∗) = ,(�R�,�

(∗|,K�/�,���
( , �̃�

�,�, �̂�L) , 283 

with 284 

�̃�
�,� = HFWI3��(=>� + =>���,���) . 285 

Then, it combines this prediction to test results to compute the final predicted probability of being 286 

infected (noted ,(�R�,�
( )): 287 

,K�R�,�
( X+�,�

( , �R�,�
(∗L = +�,�

( . OPN .QKOR&,'Z%
[ L

OPN .QKOR&,'Z%
[ L((��OQN ).J��QKOR&,'Z%

[ LM
+ (1 − +�,�

( ). (��OPN ).Q(OR&,'Z%
[ )

(��OPN ).Q(OR&,'Z%
[ )(OQN .(��Q(OR&,'Z%

[ )) , 288 
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with +�,�
( being test results at final step time, and �-N and �,N  being test characteristics parameters 289 

estimated by the model. The way to estimate these predicted probability and test results is presented 290 

in supplementary materials. 291 

3.4.3 Choice of prior distribution 292 

The STOC free model requires prior distributions for six different parameters: �-N, �,N , ��: , �4�,���, 293 

=>�and =>� . The distributions and distribution parameters used are summarized in Table 2.  We used 294 

Beta distributions for parameters bounded between 0 and 1. The Beta distribution requires two 295 

parameters. The α and β parameters were estimated using the mean and variance. In our model, a 296 

Beta prior was used for the probability of being infected at time-step 1 �4�,���,, test characteristics �-N 297 

and �,N  or the probability of remaining negative ��:  .We used true input simulated parameter values as 298 

the means. The mean value was associated with low variance to build informative priors. We 299 

consider that in the case of using real data accurate information would be available to construct such 300 

prior.  We used a Normal prior for the logistic regression parameter (=>�and =>�) centred on the true 301 

value. Types of priors and distribution parameters used are summarized in Table 2. Example of the 302 

95% credibility intervals are displayed in the supplementary material. 303 

3.5 Evaluation of STOC free model output 304 

For each scenario, the STOC free model produced different outputs. The model returns Markov 305 

Chain Monte Carlo (MCMC) samples from the posterior distributions model parameters and 306 

probabilities of being infected at the last time-step. Model parameters include parameters related to 307 

infection dynamics, association between RF and probability of new infection and test characteristics. 308 

Estimations of these model parameters are performed from historical data on test results and RFs (in 309 

our case, data from the first five time-steps) as well as from the prior distributions for the different 310 

model parameters. First, we evaluated the convergence of the MCMC chains as well as the 311 
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consistency between estimated model parameters and the parameters used for simulating the data. 312 

Then, from the posterior distributions of the herd-level probabilities of infections, rules were defined 313 

to categorize herds as infected or uninfected. Error rates of the STOC free model were computed and 314 

compared to simulated test results to enable computation of model performance. 315 

3.5.1 Evaluation of model parameter estimation 316 

3.5.1.1 Assessing MCMC convergence 317 

The STOC free model were implemented in the JAGS computer programme (Plummer, 2003). The 318 

model was applied to each scenario, running 4 chains in parallel. We removed the first 1,000 319 

iterations as burn-in. Then 5,000 more iterations were run, of which one in five iterations was stored 320 

for analysis, to reduce the size of the output file. For each parameter, the posterior distribution was 321 

built with 4000 iterations (1000 for each chain). We used the Gelman-Rubin statistics (D̂) to assess 322 

convergence of the chains (Gelman and Rubin, 1992). This statistic was computed for the five 323 

parameters estimated by the model (�-N,  �,N , ��: , =>�and =>�). We considered that scenarios with D̂ 324 

values less than 1.05 had converged. Scenarios that did not reach convergence using 1,000 iterations 325 

of burn-in were run again using 5,000 iterations of burn-in. Scenarios that did not reach convergence 326 

after this second step were excluded for the rest of the analysis. To again run these scenarios with 327 

more iterations would have been too time consuming. 328 

3.5.1.2 Verification of parameter estimation 329 

Parameter estimation was verified by comparing the posterior distributions to the empirical parameter 330 

values within the simulated populations. In the data simulation process the value of a parameter can 331 

differ between the chosen value for simulating a scenario and the resulting simulated population 332 

value. For example, because of the stochasticity in the simulations, for a chosen sensitivity of 0.7 as a 333 

simulation parameter there could have been 695 simulated test positives out of 1000 simulated 334 
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infections. In this case, the empirical sensitivity of 0.695 was used as the reference to evaluate the 335 

posterior distribution for sensitivity.  336 

3.5.2 Evaluation of model prediction performances 337 

The STOC free model returns distributions of the predicted posterior probability of being infected for 338 

the 5000 herds at the last time-step (Figure 1). In order to evaluate the performance of the model for 339 

the prediction of true infection status, these probability distributions were discretised into predicted 340 

infected or predicted uninfected status. First, each herd posterior probability of being infected was 341 

summarised. The median probability per herd was used as the summary value as it was the variable 342 

that best discriminated between uninfected and infected herds (results not shown). Then, a cut-off 343 

value was applied to the summary values to classify herds as predicted infected or uninfected. The 344 

general framework of the prediction performances analysis is presented in Figure 2. 345 

Two different indices were used to select the cut-off value, corresponding to two different objectives 346 

and are described below. Those two methods are based on knowledge of true herd status. In our 347 

study, we used the simulated herd status as the gold standard, which allowed the number of true 348 

positive (TP), false positive (FP), false negative (FN), and true negative (TN) to be calculated. TP 349 

herds are infected herds classified infected, FN are infected herds classified uninfected, FP are 350 

uninfected herds classified infected and TN are uninfected herds classified uninfected. We computed 351 

them using the STOC free model or the test, represented by corresponding subscript (e.g. TPSTOCfree 352 

and TPtest).  353 

3.5.2.1 Identification of cut-off value using Youden’s index 354 

Firstly, we used all herd predictions at the last time-step to estimate the cut-off value which 355 

minimized classification error (i.e. false positive and false negative). The cut-off choice was 356 
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determined using the criterion below (Youden, 1950), noting that it is a trade-off between sensitivity 357 

and specificity: 358 

\FG]-E′_ IE]-a = bca(�- + �,) , 359 

with  360 

�- = d#efghijkk
d#efghijkk()#efghijkk

   , 361 

and  362 

�, = dlefghijkk
dlefghijkk()lefghijkk

 . 363 

We ran this analysis using pROC packages in R software. 364 

We compared STOC free model performances to test performances. We firstly compared the number 365 

of accurately classified herds (TN+TP) by the STOC free model and by the test. Then, we explored 366 

the impact of the simulation parameter values on the additional number of infected herds (TP) 367 

detected by the STOC free model compared to test results.  368 

We applied this cut-off value to a sub-group of the population, specifically only herds that were not 369 

infected at the step before prediction (i.e. candidate herds for new infection), using true simulated 370 

herd status, to allow us to distinguish between herds remaining uninfected and newly infected herds. 371 

We compared STOC free model performances to test performances by doing the same analysis as 372 

described above.  373 

3.5.2.2 Alternative cut-off optimizing detection of newly infected herds 374 

We explored an alternative method to choose a cut-off value designed to evaluate the performances 375 

of the model for detection of newly infected herds compared to testing. We selected herds that were 376 
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candidates to be newly infected. With this approach, we firstly constrained the cut-off value to detect 377 

at least one more newly infected herd compare to test results: 378 

mGbn-D Fo c]]I3IFEcH +� = +�OdpqrsPP −  +��Pt� > 0 . 379 

For cut-off values that verified this condition, we computed the associated additional number of false 380 

positive (FP): 381 

mGbn-D Fo c]]I3IFEcH �� = ��OdpqrsPP − ���Pt�  . 382 

Finally, we computed the NewI cost index. This index was based on a trade-off between the 383 

additional numbers of true positive herds and of false positive herds in the STOC free model 384 

compared to test results:  385 

m-vw xF_3 IE]-a = lyz{Ps |r }~~;�;|�}� )#
lyz{Ps |r }~~;�;|�}� d# . 386 

We chose the cut-off value with the lowest value of NewI cost index. This NewI cost index 387 

represents the additional number of false positive for each additional true positive detected by the 388 

model compared to the test results. When the NewI cost index is negative, the STOC free model 389 

classifies less herds as FP and more herds as TP compared to the test results. A NewI cost index of 1 390 

implies that using the STOC free model we had one additional FP for each additional TP. When the 391 

NewI cost index is positive (and more than one), there is more than one additional FP for each 392 

additional TP using the STOC free model. 393 

In addition, cut-off values selected with both methods (Youden index and NewI cost index) were 394 

compared. 395 

4 Results 396 
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4.1 Evaluation of model parameter estimation 397 

4.1.1.1 Assessing MCMC convergence 398 

Of the 216 scenarios, 131 had a D̂ < 1.05 for all parameters (�-N,  �,N , ��: , =>�and =>�) which confirmed 399 

convergence. For the 85 other scenarios, at least one of the five estimated parameters had a D̂ > 1.05. 400 

For most of these scenarios (71/85), =�chains did not converge. There were fewer scenarios where 401 

�-, �,, �� and =� chains did not converge (21, 28, 43 and 37 of 85 scenarios, respectively). These 402 

scenarios were re-run using a greater number of iterations during burn-in. From those 85 scenarios, 403 

41 subsequently converged.  404 

The proportion of scenarios that finally converged (with either 1,000 or 5,000 iterations) varied 405 

between values of the simulation parameters (Figure 3). About half of the scenarios (38/72) with a 406 

test sensitivity of 0.4 did not converge, and about a third of the scenarios (34/108) with a test 407 

specificity of 0.8 did not converge. The values of these two simulation parameters (�- and �,) had 408 

the biggest impact on convergence (Figure 3). Considering both parameters, it appears that higher 409 

specificity values helped the model to converge for lower and medium, but to a lesser extent with 410 

sensitivity values of 0.4 and 0.7. However, it did not make any difference for scenarios with higher 411 

sensitivity values (Figure 4).  412 

4.1.1.2 Checking parameters estimation  413 

Of the 172 scenarios for which model convergence was validated, the simulated parameter value was 414 

not within the 95% credibility interval of the posterior distribution, for at least one of the simulation 415 

parameters, in 13 scenarios. For each of these 13 scenarios, the parameter for which this was the case 416 

varied. This corresponds to 14 parameters i.e. 1.6% of the cases (14/860) for which the true value is 417 

outside the 95% credibility interval. The gap between the 95% confidence interval of the posterior 418 
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distribution and the simulated population value was low for each of the 14 parameters 419 

(supplementary material).  420 

4.2 Evaluation of model prediction performances 421 

Performances of the model were analysed for the 172 scenarios that did converge. Table 3 422 

summarizes the number of scenarios for each simulation parameter value remaining at this step.  423 

4.2.1 Ability to detect infected herds in the whole population 424 

With the cut-off based on the Youden index to select the “best” cut-off to classify the whole 425 

population, the model accurately classified more infected herds in 152 of the 172 scenarios compared 426 

to test results alone (Figure 5). The difference between the model and test results varied from 125 427 

fewer to 509 additional infected herds detected. On average the model detected an additional 105 428 

truly infected herds. This represented a proportion of infected herds additionally detected by the 429 

STOC free model from -0.085 to 0.358, with a mean value of 0.110, corresponding to the added 430 

value in sensitivity of the surveillance scheme provided by the model (Figure 6). 431 

For all scenarios with herd test sensitivity (�-) of 0.4 and 0.7, the STOC free model detected more 432 

infected herds than the test results (Figure 6). For 12 out of 34 scenarios with low sensitivity, the 433 

STOC free model detected an additional 0.3 proportion of infected herds than the test, with a mean 434 

value of 0.258. Conversely, when sensitivity was high (0.9) the mean value of additional proportion 435 

of infected herds was 0.022. Additionally, for all but two scenario with a herd test specificity (�,) of 436 

0.95, the STOC free model detected more infected herds than the test (Figure 6). The proportion of 437 

herds additionally detected was similar whatever the values of the infection dynamics parameters 438 

(prevalence (�), incidence rate (��), and probability to remain infected (��)) and RF link parameters 439 

(frequency (�) and relative associated risk (�)) (Figure 6). 440 
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4.2.2 Classification of uninfected herds 441 

With the cut-off based on the Youden index, the number of herds classified as false positives 442 

increased in 126 scenarios with the model (Figure 5). Only 27 of the 172 scenarios had a higher 443 

number of both infected and uninfected herds that were accurately classified. They were mainly 444 

associated with medium and high values of sensitivity (0.7, 0.9), the lowest value of specificity (0.8) 445 

and the highest value of probability of remaining infected (��) (0.9). 446 

4.2.3 Ability to detect newly infected herds among candidates to new infection 447 

4.2.3.1 Using Youden index 448 

With the cut-off based on the Youden index, the STOC free model accurately classified more newly 449 

infected herds in 65 scenarios compared to the test results (Figure 7). The difference between the 450 

model and test results varied from 82 fewer to 88 more newly infected herds detected. On average, 451 

the model detected 5 fewer herds than the test. This corresponded to a proportion of newly infected 452 

herds additionally detected by the STOC free model from -0.603 to 0.370, with a mean value of -453 

0.046 (Figure 8). 454 

Interestingly, for all scenarios with herd test sensitivity of 0.4, the STOC free model detected more 455 

newly infected herds than the test results, with the additional proportion of newly infected herds 456 

detected ranging from 0.008 to 0.370 (Figure 8). For 48 of the 98 simulated scenarios with a herd test 457 

specificity of 0.95, the model detected more truly newly infected herds than the test alone.  458 

4.2.3.2 Using NewI cost index 459 

We developed a new index to select cut-off values, with the constraint to detect at least one more 460 

newly infected herd compared to the test. For 13 of the 172 scenarios, no cut-off value allowed the 461 

detection of at least one additional newly infected herd. For all the 159 remaining scenarios, using 462 

this index allowed the detection of an additional proportion of newly infected herds, ranging from 463 
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0.003 to 0.429, with a mean value of 0.071 (Figure 9). This corresponded to the detection of 1 to 156 464 

additional newly infected herds with a mean value of 14 herds. In 24 scenarios, the proportion of 465 

additional newly infected herds that were detected was higher than 0.15 (Figure 9). By construction, 466 

the test sensitivity value limits the potential number of additional newly infected herds that can be 467 

detected by the model (e.g. with a sensitivity of 0.9, the maximum potential proportion of newly 468 

infected herds additionally detected is 0.1). On average, the model captured proportions increased by 469 

0.125, 0.076, and 0.034 for sensitivity values of 0.4, 0.7 and 0.9, respectively (Figure 9).  470 

Using the NewI cost index, the cut-off value allows systematically for a better detection of newly 471 

infected herds compared to test results but is associated with a cost in false positives. Only 3 472 

scenarios had a negative cost index, whereby it was able to detect more newly infected herds while 473 

having less false positives (Figure 10). For all the other scenarios, the additional detection of newly 474 

infected herds was always associated with a positive NewI cost index, i.e. a number of additional 475 

false positives for each additional true positive detected (Figure 10). This NewI cost index ranged 476 

from - 266 to 1055. On average, the cost index value was 98 meaning that for each additional newly 477 

infected herd detected, there were an additional 98 false positive herds compared to test results. NewI 478 

cost index was <100 for 73% of the scenarios (116/159) (Figure 10). Extremely high values of the 479 

cost index (above 500) were associated with a sensitivity of 0.9 for 5 scenarios (Figure 10). These 480 

extreme values were also associated with lower proportions of additionally detected newly infected 481 

herds (Figure 11.A)). When the proportion of herds additionally detected was above 0.1, the cost 482 

index was <100 except in three (Figure 11.A). All scenarios (43) with a high number of newly 483 

infected herds (corresponding to ��=0.107) had a NewI cost index below 100 (Figure 10 and Figure 484 

11.B).  485 
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4.2.4 Comparison of cut-off values 486 

The cut-off values varied substantially between scenarios for both indexes (Figure 12). Use of the 487 

Youden index resulted in higher cut-off values (mean cut-off equal0.14 against 0.05 for cost index) 488 

(Figure 12). No association between input parameter values (test characteristics, disease dynamics 489 

and risk factors parameters) and selection of a cut-off value was found (supplementary material). 490 

5 Discussion  491 

Our simulation study illustrates the added value of a Bayesian Hidden Markov model, the STOC free 492 

model, compared to test results alone to detect infected herds in many different contexts. This model 493 

was able to predict herd-level probabilities of infection in about 80% of the investigated scenarios. 494 

Situations in which the model did not converge and therefore could not provide estimates of the 495 

probabilities of infection were mainly related to low sensitivity values. When it converged, the model 496 

detected more infected herds compared to test alone in 152 of the 172 scenarios and detected more 497 

newly infected herds in only 65 of 172 scenarios. In these scenarios, the STOC free model sensitivity 498 

was higher than the herd-level test sensitivity.  499 

Test sensitivity had a great impact on the added value of the STOC free model. Indeed, following a 500 

test, the total number of infected and newly infected herds still to be detected (false negatives) 501 

increases as test sensitivity decreases. The STOC free model was able to detect an important 502 

proportion of these undetected infected herds. On average, the model detected around 25% more 503 

infected herds when sensitivity was low (0.4) and around 2% more infected herds when the 504 

sensitivity was high (0.9), i.e. around 40% and 20% of the herds still to be detected in our simulations 505 

(as assumed for the given levels of sensitivity).  The range of herd-level test sensitivities evaluated in 506 

this study covers the known range of sensitivities for endemic diseases for which control programmes 507 

are in place.  508 
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An increase in the number of newly infected herds detected by the STOC free model was associated 509 

with an increase in the number of false positive herds detected in all but one scenario. We quantified 510 

the proportion of additional false positives for each additional newly infected herd detected using a 511 

cost index. This cost index increased with high test sensitivity and low prevalence corresponding to 512 

small numbers of false test negatives. In five scenarios with a high herd-level test sensitivity, the cost 513 

index was substantial (above 500, i.e. 500 false positives for each additional true positive herd 514 

detected by the model). This tends to advise against using the STOC free model when test sensitivity 515 

is high. On the other hand, the cost index was lower (below 100) with low test sensitivity and high 516 

incidence, i.e. when the number of newly infected herds still to be detected was high. For decision 517 

support, the level of acceptability in terms of extra false positives would differ according to the 518 

consequences in a given control programme, and to the possibilities and resources necessary to 519 

confirm a herd status with complementary testing. 520 

Different reasons could explain the fact that the STOC free model did not reach convergence in a 521 

number of scenarios. In this study, we limited the number of burn-in and sampling iterations to 522 

reduce computing time (around 3.5 hours per scenario). For scenarios that did not meet our 523 

convergence criterion, re-running the model with more burn-in iterations allowed convergence in 524 

around 50% of cases. Adding more iterations could address the remaining convergence issues. A 525 

larger population (number of herds) would increase available data (especially in terms of numbers of 526 

infected herds) to estimate parameters values. We did not further investigate these hypotheses due to 527 

computing time constraint for both simulation and analysis. Low test performance also led to 528 

convergence issues. Indeed, as test sensitivity and specificity decrease, the contribution of test results 529 

to defining the latent status decreases whereas the contribution of model parameters accounting for 530 

new infection and elimination of infection increases. In our study, given the relatively wide prior 531 

distributions put on the association between the risk factor and the probability of new infection, this 532 
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association was estimated from the data. This means that in the scenarios in which test performance 533 

was poor, the contribution of surveillance data to estimation and prediction could be expected to be 534 

small, which could have made it more difficult for the model to converge. Such estimation issues 535 

have already been described in state-space models, when measurement error is high (Auger-Méthé et 536 

al., 2016). In such cases, increase the sample size (e.g. the number of herds) or adding prior 537 

information could reduce this issue. In our study, informative priors were used for measurement error 538 

parameters (sensitivity and specificity) assuming that relevant epidemiological quantities would be 539 

known beforehand. To decrease convergence issue, it could be hypothesised that a good knowledge 540 

of the strength of association between risk factors and the probability of new infection facilitates 541 

convergence by reducing uncertainty around latent statuses. This knowledge would need to be 542 

translated into narrow prior distributions. 543 

The frequency and strength of the risk factor did not influence the STOC free model performances, 544 

contrary to our assumptions. The inclusion of RFs was expected to improve the detection of newly 545 

infected herds when they strongly contribute to the risk of new infections (high strength of 546 

association). This added value was especially expected to be important when test sensitivity is poor, 547 

because knowing that a RF is present could compensate for the lack of sensitivity. In our study, only 548 

one RF was included to establish its influence on model performance. More RFs can easily be added 549 

to the logistic regression if necessary. The choice of RFs to be included must be based on specific 550 

knowledge of infection dynamics within the CP. 551 

A cut-off value is needed to classify herds as infected or uninfected from the distributions of 552 

probabilities of infection predicted by the STOC free model. The cut-off value varied depending on 553 

the method of selection and the simulated context. In the field, the “best” cut-off value would also 554 

depend on the objective of the CP. The Youden index equally values sensitivity and specificity 555 

without other constraint (i.e. separates at best infected versus non infected herds), while our NewI 556 
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cost index ensures the detection of a higher number of newly infected herds than the test alone. For 557 

most scenarios, the cut-off value identified with the cost index was lower than the cut-off value 558 

identified with the Youden index. Indeed, given an endemic situation, the probability of becoming 559 

infected is lower than the probability of remaining infected. The specific detection of newly infected 560 

herds, that have not been detected by the test, requires a lower cut-off value compared to the cut-off 561 

value selected without this constraint. To compute our cost index associated with the detection of a 562 

higher number of newly infected herds we gave the same weight to false positives and false 563 

negatives. These two types of misclassification have different consequences: in the context of cattle 564 

trade, introducing a false negative into a disease free herd is more damaging than not allowing a false 565 

positive to be introduced. Whatever the method of selection used, cut-off values were highly variable 566 

between the simulated contexts. According to our study, it does not seem possible to determine a cut-567 

off value directly from CP characteristics. However, we can argue that low cut-off values should be 568 

favoured where the objective is safe trade, i.e. limiting false negative herds. In real data where no 569 

gold standard is available, the choice of the cut-off value has to rely on another method. This point is 570 

an important question when this framework is applied to real data and it needs more exploration. 571 

Applying the STOC free model to real CPs also requires previous knowledge about the distributions 572 

of the model parameters. The choice of prior distributions will be crucial because when the prior 573 

distributions deviate too much from the true parameter values, this may lead to convergence issues or 574 

bias in the posterior distributions. In this simulation study, true parameter values were known, 575 

allowing prior distributions to be centred on the true parameter values. In the context of real CPs, test 576 

characteristics are almost always assessed before designing the CP. However, even if information is 577 

often available, its interpretation must be made in relation to the targeted latent status which may 578 

differ from the definition used in the literature and can be challenging (Duncan et al., 2016). Test 579 

characteristics may change depending on the latent status of interest. Information on risk factor of 580 
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introduction is often available as controlling them is a key measure in CPs to reduce the spread of 581 

infection between herds (Lindberg and Houe, 2005). Quantitative data can be derived from the 582 

literature (e.g. risk factor study, meta-analysis) but are highly variable between territories and not 583 

always available for a specific territory (van Roon et al., 2020a). The model makes it possible to use 584 

more or less precise priors according to the available information in the population of interest. 585 

Within a CP, the dynamics of the infection (incidence and clearance of infection) as well as the 586 

contribution of risk factors are expected to change over time given that the majority of CPs generally 587 

act on both preventing new infections and eliminating the pathogen from infected herds. Depending 588 

on the CP, these changes may be observed over different periods of time. Example of CPs against 589 

BVDV have shown that the decrease in prevalence and incidence in European countries occurred 590 

over different time lapses (Houe et al., 2014; Joly et al., 2001; Presi et al., 2011). Risk factor 591 

contribution (frequency and strength) may also change during a CP. For example, neighbourhood 592 

risk of introduction is linked to infection prevalence in the area. When the prevalence decreases in the 593 

territory, the strength of association between having contact with neighbouring herds and becoming 594 

infected will decrease, while the frequency of contacts between herds remains the same. In our study, 595 

infection dynamics and the contribution of the risk factors remained stable over time to simplify 596 

parameter estimations. The changes in infection dynamics and contribution of RFs to new infections 597 

could be accommodated by running the model over short time periods (e.g. 1 to 3 years), using the 598 

parameter posterior distributions for one period as the prior distributions for the next one. 599 

The decrease of infection prevalence and incidence with time during a CP can influence 600 

performances of the STOC free model. Here, the cost index was higher when incidence and 601 

prevalence were low, reflecting a lower positive predictive value, when the number of true positive 602 

herds decreases in a population (similarly to surveillance based on tests only).  Therefore, we 603 

speculate that the use of the STOC free model will be more interesting with disease present at an 604 
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endemic level in a population rather than when CP results in decreased prevalence close to 605 

eradication.   606 

6 Conclusion  607 

This simulation study demonstrated the capacity of a Hidden Markov Model using disease dynamics 608 

and risk factor information from surveillance programmes to detect more infected herds and newly 609 

infected herd than test results alone. The added value of the model depends on the context in which a 610 

control programme is conducted. It was greatest in situations with low sensitivity tests. However, 611 

these situations were also the ones in which the convergence of the model was the most difficult. The 612 

added value of the model did not depend on the strength and frequency of the risk factor. The use of 613 

the model is likely to be beneficial especially in the early stages of a control programme (when 614 

prevalence and incidence are at moderate level) rather than close to eradication.  615 
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Table 1: Parameter values for scenario simulation. 699 

Parameter Description Value Condition1 

Eℎ-D]_ Number of herds 5000 - 

E+-_3_ Number of test times 

per herd 

6 - 

�- Herd-level sensitivity 0.4, 0.7, 0.9 - 

�, Herd-level specificity 0.8, 0.95 - 

� Prevalence of 

infection 

0.1, 0.3 - 

�� Probability of 

remaining infected 

0.75, 0.9 - 

�� Probability of 

becoming infected 

0.011, 0.028, 0.043, 0.107 Depends on 

�� and � 

values 

� Relative risk 

associated with � 

1.5, 2, 5 - 

� Frequency of � 0.1, 0.25, 0.5 - 

� Probability of new 

infection for an 

uninfected herd 

without � 

0.004, 0.005, 0.007, 0.008, 0.009, 0.010, 
0.014, 0.019, 0.020, 0.021, 0.022, 0.025, 
0.027, 0.029, 0.031 0.034, 0.036, 0.038, 
0.039, 0.041, 0.054, 0.071, 0.076, 0.086, 
0.086, 0.095, 0.097, 0.102 

 

Depends on 

��, � and � 

value 

1 The condition column details the dependencies between parameters, for parameters whose values 700 
are derived from the combination of values of other parameters. 701 

Table 2: Prior distribution for the model parameters. 702 

Parameter Description Distribution Mean Variance 

�-N Herd-level test sensitivity C-3c True value 0.0025 

�,N  Herd-level test specificity C-3c True value 0.0025 

��:  Probability for an infected herd not to 

eliminate the infection 

C-3c True value 0.0025 

=�N Intercept (risk factor) mFDbcH True value 1 

=�N Coefficient (risk factor) mFDbcH True value 1 

��,��  Probability of being infected at time 1 C-3c Prevalence true 

value 

0.0225 
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 704 

 705 

Table 3: Number of scenarios that converged depending on each value of the simulated parameters. 706 

Parameter Value Initial number of 

scenarios 

Number of scenarios 

that converged 

Se 

0.4 72 34 

0.7 72 66 

0.9 72 72 

Sp 0.8 108 74 

0.95 108 98 

P 0.1 108 91 

0.3 108 81 

τ1 

0.0111 54 45 

0.0278 54 46 

0.0429 54 38 

0.1071 54 43 

τ2 
0.75 108 89 

0.9 108 83 

F 

0.1 72 62 

0.25 72 57 

0.5 72 53 

γ 

1.5 72 61 

2 72 59 

5 72 52 

 707 
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Figure captions 

Figure 1: Representation of the design strategy. Variables in rectangles represent 

observational data (risk factor and test results). Variables in circles represent herd infection 

statuses: true simulated status in solid line and latent estimated/predicted status in dashed line. 

Observational data simulated using the simulation model are used as input for the STOC free 

model. Herd statuses predicted by the STOC free model on the 6th time-step are compared to 

the corresponding simulated statuses, considered as the gold standard. 

Figure 2: Representation of the STOC free model prediction performance analysis. At first 

stage posterior herd probability of being infected are summarized using the median value. 

Then, categorization of herds is done by applying a cut-off to the distribution of posterior 

median. Cut-off determination is based on two different indexes. Finally, the performance of 

the STOC free model is obtained by comparing the number of true positives using the STOC 

free model and the number of true positives obtained using test information alone.   

Figure 3: Proportion of scenarios that converged for each simulation parameter value. Six of 

the seven simulated parameters are represented : �� (test sensitivity), �� (test specificity), � 

(prevalence), �� (probability of remaining infected), � (frequency of the risk factor) and � 

(relative risk associated with the risk factor). 

Figure 4 : Proportion of scenarios that converged for all combinations of �� (test sensitivity) 

and �� (test specificity) values. 

Figure 5: Difference between the number of herds accurately classified by the STOC free 

model and the number of herds accurately classified using test results for infected herds only, 

for uninfected herds and for all herds. Dark blue diamond represents the mean of each 



distribution. At the dashed grey line, the STOC free model and test results accurately 

classified the same numbers of herds. 

Figure 6: Additional proportion of infected herds accurately classified by the STOC free 

model relative to test results, among the total number of infected herds, depending on 

simulated parameter values, using cut-off found applying Youden index. The seven simulated 

parameters are represented : �� (test sensitivity), �� (test specificity), � (frequency of the risk 

factor), � (relative risk associated with the risk factor), � (prevalence), �	 (probability of 

being newly infected) and �� (probability of remaining infected). Dark blue diamond 

represents the mean of each distribution. At the dashed grey line, the STOC free model and 

test results accurately classified the same numbers of herds. 

Figure 7: Difference between the number of herds accurately classified by the STOC free 

model and the number of herds accurately classified using test results only for herds which 

were candidates for new infection at the final time-step (i.e. herds that were uninfected at the 

previous step time) for newly infected herds, uninfected herds and all herds, using cut-off 

found applying Youden index. Dark blue diamond represents the mean of each distribution. 

At the dashed grey line, the STOC free model and test results accurately classified the same 

numbers of herds. 

Figure 8: Additional proportion of newly infected herds detected by the STOC free model 

relative to test results, among the total number of newly infected herds, depending on 

simulated parameter values, using cut-off found applying Youden index. The seven simulated 

parameters are represented : �� (test sensitivity), �� (test specificity), � (frequency of the risk 

factor), � (relative risk associated with the risk factor), � (prevalence), �	 (probability of 

being newly infected) and �� (probability of remaining infected). Dark blue diamond 



represents the mean of each distribution. At the dashed grey line, the STOC free model and 

test results accurately classified the same numbers of herds. 

Figure 9: Additional proportion of newly infected herds detected by STOC free model relative 

to test results, among the total number of newly infected herds, depending on simulated 

parameter values, using cut-off found applying NewI cost index. The seven simulated 

parameters are represented : �� (test sensitivity), �� (test specificity), � (frequency of the risk 

factor), � (relative risk associated with the risk factor), � (prevalence), �	 (probability of 

being newly infected) and �� (probability of remaining infected). Dark blue diamond 

represents the mean of distribution. At the dashed grey line, the STOC free model and test 

results accurately classified the same numbers of herds. 

Figure 10: Cost index value, i.e. the number of additional false positive herds for each 

additional true positive herds by the STOC free model relative to test results, depending on 

simulated parameter values, using cut-off found applying NewI cost index. The seven 

simulated parameters are represented : �� (test sensitivity), �� (test specificity), � (frequency 

of the risk factor), � (relative risk associated with the risk factor), � (prevalence), �	 

(probability of being newly infected) and �� (probability of remaining infected). Dark blue 

diamond represents the mean of distribution. Under the dashed grey line cost is negative 

meaning that STOC free model do detect more newly infected for less false positive herds 

compared to test results. 

 Figure 11: Cost index value, i.e. the ratio of additional false positive herds on the additional 

true positive herds, using cut-off found applying NewI cost index, depending on  the 

proportion of additional newly infected herds detected (A) and the number of newly infected 

herds which depend on the four possible values of the probability of become infected (�	). 



Figure 12: Distribution of cut-off values for herd status classification depending on the index 

used. “NewI” criterion is based on a trade-off between the additional number of true positive 

herds and the additional number of false positive herds. “Youden” criterion is based on 

maximizing sensitivity and specificity based on classification of all herds. Dark blue diamond 

represents the mean of the distribution. 
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1 + Ŝh,(t−1)τ̂2

logit(τ̂h,t1 ) = θ̂1 + θ̂2Xh,t−1

Th,t ∼Bernoulli(p(T+
h,t))

p(T+
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Evaluation of model parameter estimation
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