
HAL Id: hal-03559786
https://hal.inrae.fr/hal-03559786

Submitted on 7 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evapotranspiration and Evaporation/Transpiration
retrieval using dual-source surface energy balance

models integrating VIS/NIR/TIR data with satellite
surface soil moisture information

G. Boulet, E. Delogu, W. Chebbi, Z. Rafi, V. Le Dantec, K. Mallick, B.
Mougenot, A. Olioso, M. Zribi, Z. Lili-Chabaane, et al.

To cite this version:
G. Boulet, E. Delogu, W. Chebbi, Z. Rafi, V. Le Dantec, et al.. Evapotranspiration and
Evaporation/Transpiration retrieval using dual-source surface energy balance models integrating
VIS/NIR/TIR data with satellite surface soil moisture information. ISPRS WG III/10, GEOGLAM,
ISRS Joint International Workshop on Earth Observations for Agricultural Monitoring, 2019, New
Delhi, India. pp. 9-12, �10.5194/isprs-archives-XLII-3-W6-9-2019�. �hal-03559786�

https://hal.inrae.fr/hal-03559786
https://hal.archives-ouvertes.fr


EVAPOTRANSPIRATION AND EVAPORATION/TRANSPIRATION RETRIEVAL 
USING DUAL-SOURCE SURFACE ENERGY BALANCE MODELS INTEGRATING 

VIS/NIR/TIR DATA WITH SATELLITE SURFACE SOIL MOISTURE INFORMATION 
 
 

Boulet, G. *1, Delogu, E. 1, Chebbi W. 1,2, Rafi, Z. 1,3, Le Dantec V. 1, Mallick K.4, Mougenot, B. 1, Olioso, A.5, Zribi, M. 1, Lili-
Chabaane, Z. 2, Er-Raki, S.3 and Merlin, O. 1 

 

 
1*CESBIO - Université de Toulouse, CNES/CNRS/IRD/UPS, Toulouse, France - gilles.boulet@ird.fr 

2 UCAR/INAT, Tunis, Tunisia 
3 UCAM, LP2M2E- FST, Marrakech, Morocco 

4 LIST/ERIN, Belvaux, Luxembourg 
5EMMAH – INRA UPAV, Avignon, France 

 
Commission III, WG III/10 

 
 
KEY WORDS: Evapotranspiration, Evaporation, Transpiration, Thermal Infrared, TRISHNA, Soil Moisture 
 
 
ABSTRACT: 
 
Evapotranspiration is an important component of the water cycle. For the agronomic management and ecosystem health monitoring, 
it is also important to provide an estimate of evapotranspiration components, i.e. transpiration and soil evaporation. To do so, 
Thermal InfraRed data can be used with dual-source surface energy balance models, because they solve separate energy budgets for 
the soil and the vegetation. But those models rely on specific assumptions on raw levels of plant water stress to get both components 
(evaporation and transpiration) out of a single source of information, namely the surface temperature. Additional information from 
remote sensing data are thus required. This works evaluates the ability of the SPARSE dual-source energy balance model to compute 
not only total evapotranspiration, but also water stress and transpiration/evaporation components, using either the sole surface 
temperature as a remote sensing driver, or a combination of surface temperature and soil moisture level derived from microwave 
data. Flux data at an experimental plot in semi-arid Morocco is used to assess this potentiality and shows the increased robustness of 
both the total evapotranspiration and partitioning retrieval performances. This work is realized within the frame of the Phase A 
activities for the TRISHNA CNES/ISRO Thermal Infra-Red satellite mission. 
 
 

1. INTRODUCTION 

There is an increasing need for spatially distributed estimates of 
agricultural water requirements and therefore evapotranspiration 
(ET). Estimating evapotranspiration, and, in turn, water stress, 
is important for irrigation monitoring and drought assessment. 
To do so, Remote Sensing provides an important array of data 
and solutions. Three spectral domains are concerned: solar 
(Visible/Near InfraRed spectrum, e.g. NDVI), thermal (Thermal 
InfraRed, e.g. surface temperature) and microwave (Radar data 
mostly). NDVI quantifies the amount of green vegetation, the 
largest water user in most areas since plants assess a larger 
fraction of the soil water through roots than what contributes to 
evaporation. Surface temperature is related to water stress 
through the energy budget, and gives a clue about the difference 
between actual and potential ET rates. Finally, radar data is 
related to surface soil moisture and thus evaporation. While 
NDVI and radar, on the one hand, and NDVI and surface 
temperature, on the other, are frequently used together to 
estimate ET, the three sources of information have rarely been 
combined together (Ait Hssaine et al. 2018).  
If total ET is interesting for water management, drought 
assessment and irrigation control (esp. for drip or 
complementary irrigation), one must also estimate separately its 
components, i.e. evaporation and transpiration (the later 
representing the plant water uptake and the eco-agro system 
health). An estimate of the separate contribution of E and T to 
ET can be deduced from dual-source energy balance models 
such as TSEB (Kustas et al., 1999) or SPARSE (Boulet et al., 
2015), but retrieving two unknowns (E and T) out of a single 

source of information (surface temperature Tsurf) means that an 
additional assumption is laid down. In TSEB or SPARSE, the 
initial guess on the plant water stress is that, in most cases, there 
is none, and Tsurf is used to estimate E while T is computed by 
solving the plant energy budget in potential (i.e. unstressed) 
conditions. If the vegetation is suffering from water stress, its 
temperature will be higher than what is deduced from the 
energy budget in potential conditions. Consequently, the soil 
temperature that corresponds to the observed surface 
temperature and the underestimated vegetation temperature will 
be overestimated, and at some point this leads to a negative E 
retrieval. In that case TSEB and SPARSE assume that, if the 
vegetation is suffering from stress, the soil surface is already 
long dry, and E is close to zero. Tsurf is thus used to retrieve T. 
But how robust is this ? Can we improve the robustness by 
forcing E and T by two RS data, Tsurf and a relative soil 
moisture level deduced from radar data ? This is the purpose of 
the present paper. It is organized in two main sections: the first 
summarizes the retrieval and prescribed algorithms of SPARSE 
as well as the dataset used to evaluate the various forcing 
configurations, while the second presents the comparison in the 
retrieval performance of total ET, total water stress and the 
T/ET ratio when using the sole surface temperature forcing or 
the combination of surface temperature and soil moisture 
forcing. 
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2. MATERIAL AND METHODS 

2.1 The SPARSE Model 

SPARSE solves the dual-source energy budget of the soil and 
the vegetation. The model can be run in two modes: a retrieval 
mode to simulate evaporation and transpiration from TIR data, 
and a prescribed mode which simulates evaporation and 
transpiration rates for known stress levels (from fully stressed, 
i.e. E=T=0 to fully potential). This enables to simulate not only 
fluxes in actual conditions but also surface and plant water 
stress since potential E and T are also computed. The prescribed 
(or direct) mode simulates fluxes and component (soil and 
vegetation) temperatures from known water stress conditions 
corresponding to relative levels between unstressed (potential 
rate) to fully stressed (minimum ET). The retrieval (or inverse) 
mode infer E and T from surface temperature observations 
using a decision tree (Figure 1). 
As said in introduction, SPARSE, like TSEB, assumes in a first 
place that the vegetation is unstressed and transpires at 
maximum (potential) conditions. The information on surface 
temperature is thus translated into the reduced evaporation rate. 
If this rate is negative, the unstressed transpiration rate is 
challenged. One assumes then that if the vegetation, which 
extracts water from the whole root zone, is starting to suffer 
from water stress, then the soil surface is already long dry and 
does not evaporate (E=0, meaning that the corresponding soil 
latent heat flux component LEs is also 0). The information 
contained in the surface temperature is thus passed on the 
transpiration reduction due to moisture limitation. If, in turn, 
transpiration drops below zero, then one assumes there is a 
mismatch between the surface temperature and the various 
potential energy status in the two previous configurations, and a 
new surface temperature is retrieved while LEs=LEv=0 are 
imposed. A critical assessment of this assumption is provided in 
Boulet et al., 2018. In particular, slightly stressed vegetation and 
evaporating bare soil conditions are rare but can coexist (i.e. 
after a very small rainfall event for instance). In complement to 
TSEB, SPARSE has a post-processing step that ensures 
consistency of outputs by imposing that all individual rates (soil 
and vegetation latent heat fluxes LEs and LEv) are below their 
corresponding maximum (potential) levels. A similar check is 
carried out for the sensible heat: the soil (Hs) and vegetation 
(Hv) sensible heat components must lie below their 
corresponding rates in fully stressed conditions. It is thus 
important to add an additional constraint on the relative 
importance of E and T within the energy budget forced by a 
single source of information. We propose here to constrain 
directly E by a fixed rate determined by the surface soil 
moisture available from, say, radar data. 
 

LEs=0

Input data = 
Observed

surface 
temperature

LEv=0
LEs=0

LEs<0

LEv<0

LEv=LEvpot
LEs=LEspot

LEv> 
LEvpot

or LEs> 
LEspot

Soil evaporation
& transpiration

in potential
conditions 

SPARSE modelSPARSE model

Unknowns:
Ts,Tv,Tsurf

Unknowns:
Ts,Tv,LEs

Unknowns:
Ts,Tv,LEv

SPARSE model

SPARSE model
Unknowns:

Ts,Tv,Trad

Soil evaporation
& transpiration

in actual
conditions

Prescribed conditions Retrieval conditions

Input data in 
potential

conditions: 
βs =βv=1 

yes

yes

yes

no

no

no

TsurfpoP, IEspoP & 
IEvpoP

Energy balance 
components in 
fully stressed

conditions

SPARSE model

Input data in 
fully stressed

conditions: 
βs =βv=0 

TsurfsPress, HssPress
& HvsPress

 
 Figure 1. Flowchart of the SPARSE model (T is the element 

skin temperature, Tsurf is the surface radiative temperature, LE is 
the latent heat flux and H the sensible heat flux, subscript “s” 

for soil and “v” for vegetation are used to characterize the 
component fluxes, subscripts “stress” for stressed and “pot” for 

potential are used to describe the water status; β is the 
efficiency, i.e. the ratio between actual and potential latent heat 

fluxes; from Saadi et al. (2018). 
 
2.2 The dataset 

ET, T and E data have been acquired over a drip irrigated wheat 
field in the Haouz plain in Morocco during the 2016-2017 
growing season. The study field has been stressed voluntarily 
during 3 periods. ET was estimated with a standard eddy-
covariance tower (CSAT3 sonic anemometer and KH20 krypton 
hygrometer) completed by a CNR1 net radiometer and HFT3 
soil hat flux plates buried at 5 cm. Surface temperature was 
measured by using an infrared thermoradiometer (IRTS-P) and 
surface soil moisture by CS615 TDR probes at 5 cm. EC data 
were corrected by forcing the Bowen ratio closure. T was 
measured with the SHB micro-sap flow method using 
Dynagage SF sensors. E was estimated by a SFL lysimeter at a 
30 cm depth with special treatment to prevent plant 
transpiration while capturing plant shadowing effect on the 
ground. The complete dataset, including the E/T partitioning, 
has been fully presented and analysed in Rafi et al. (2019) and 
Hssaine et al. (2018). 
 
2.3 Additional constrain on E using observed surface soil 
moisture 

An estimate of E (or its latent heat flux equivalent LEs) is 
derived from the observed topsoil volumetric surface soil 
moisture and the formulation from Merlin et al. (2011): 
 

  (1) 

 
where θ0-5cm and θsat are the measured topsoil (0-5cm) and the 
saturation soil moisture respectively; LEspot is the potential 
evaporation rate computed by SPARSE in potential conditions 
(cf. Figure 1). SPARSE can thus be run in two configurations: 
in the classic mode when only the surface temperature is 
imposed, and in a new mode when both the surface temperature 
and the surface soil moisture are imposed (i.e. no initial guess is 
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made on the water stress level of the vegetation, unlike the 
classic mode). In this new mode, the decision tree is directly 
entered into the second configuration (LEv, i.e. T is retrieved 
while LEs, ie. E, is imposed), but instead of imposing LEs=0, 
the constrained rate derived from Eq. (1) is imposed. 
 

3. SIMULATION PERFORMANCE WITH OR 
WITHOUT E(θ) FORCING 

3.1 Total LE retrieval performance 

SPARSE is run with default parameters for herbaceous 
vegetation in both modes. Table 1 displays the RMSE values at 
midday, and shows a very large improvement when the new 
mode is used. In fact, as can be observed in Figure 2, at most 
times both modes show satisfying performances, but the classic 
mode has many outliers that decrease a lot the overall 
performance statistics. It turns out that these outliers correspond 
mostly to situations when both LEs and LEv are first set to 0, as 
well as situations when LEs is very large. Overall, there is a 
tendency to underestimate LE, as shown in Figure 3 for a subset 
corresponding to midday values. 
What happens mostly is that in the new version the mode 
LEs=LEv=0 is rarely reached, meaning that the intermediate 
mode with an intermediate level of LEs is already good whereas 
in the classic mode when LEs=0 is imposed (see Figure 1) the 
results in negative values of LEv and a subsequent correction. 
 

RMSE (W/m2) 
at midday 

Tsurf only Tsurf and θ0 -5cm 

LE 125 64 
H 131 60 
G 43 34 
Rn 114 36 

Table 1. RMSE of the energy balance components at midday  
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Figure 2. Scatter plot of simulated versus observed half hourly 
latent heat flux in both configurations 
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Figure 3. Same as Figure 2 for midday values  
 
3.2 Total stress  

Stress is computed by using the simulated potential latent heat. 
Figure 4 shows midday stress values. Overall tendencies, 
including dates of stress onset or stress removal, are reasonably 
well reproduced by both modes, except for the late season (from 
DOY 115). Stress is overestimated in mid-season (DOY 70 till 
90) with values going up to 0.95, but order of magnitudes are 
well simulated in the later stages. Only the new mode is able to 
reproduce satisfactorily the late season, with very good 
performances for both drydowns DOY 110-122 and DOY 122-
140. 
 
3.3 Partitioning : T/ET 

Lysimeter data (through ET-T) and sap flow data allow to 
compute the transpiration partitioning ratio T/ET. Figure 5 
shows the evolution of T/ET during the period when 
measurements are available. As for the stress, the ratio is 
overestimated in mid-season (DOY 70-90). After this period,  
both models are consistent with the measurements, even though 
the classic mode predicts a decreasing trend of T/ET in advance 
of what is measured, while the new mode follows more closely 
the observations, with a small delay however. 
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Figure 4. Time series of observed vs simulated total stress 
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Figure 5. Time series of observed vs simulated T/ET ratios  
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