Water isotope monitoring to study transpiration and tree drought responses on Mediterranean karst
Simon Carriere, Coffi-Belmys Capko, Nicolas Martin-Stpaul, Nicolas Patris, ; Milanka Babic, Konstantinos Chalikakis, A Olioso, Claude Doussan, ; Arnaud Jouineau, Guillaume Simioni, et al.

To cite this version:
Simon Carriere, Coffi-Belmys Capko, Nicolas Martin-Stpaul, Nicolas Patris, ; Milanka Babic, et al.. Water isotope monitoring to study transpiration and tree drought responses on Mediterranean karst. 46th IAH international congress, Sep 2019, Malaga, Spain. hal-03562322

HAL Id: hal-03562322
https://hal.inrae.fr/hal-03562322
Submitted on 8 Feb 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Groundwater Management and Governance

Coping with Uncertainty

Proceedings of IAH2019, the 46th Annual Congress of the International Association of Hydrogeologists, Málaga (Spain), September 22-27, 2019

Spanish Chapter of the International Association of Hydrogeologists (AIH-GE)

J. Jaime Gómez Hernández & Bartolomé Andreo Navarro
Water isotope monitoring to study transpiration and trees drought responses on Mediterranean karst

Simon Carrière1; Coffi-Belmys Cakpo2; Nicolas K. Martin-StPaul3; Nicolas Patris4; Milanka Babic1; Konstantinos Chalikakis1; Albert Olioso1; Claude Doussan1; Arnaud Jouineau3; Guillaume Simioni3; Hendrik Davi3

1 INRA UMR EMMAH
2 PSH
3 URFM
4 HSM

Corresponding Author(s): guillaume.simioni@avignon.inra.fr, hendrik.davi@avignon.inra.fr, albert.olioso@inra.fr, jouineau@avignon.inra.fr, coffi-belmys.cakpo@inra.fr, nicolas.patris@umontpellier.fr, milanka.babic@univ-avignon.fr, carrierehydro@gmail.com, konstantinos.chalikakis@univ-avignon.fr, claude.doussan@inra.fr, nicolas.martin@paca.inra.fr

Karst environments are questioning because although they have dry, stony soils seemingly unfavorable to vegetation, they are often covered with forests. How trees can survive in environments that are hostile to vegetation is a key issue for scientists. This study uses xylem water isotopes and midday and predawn water potentials of branches to assess the origin of transpired water. The monitoring was carried out during the summers 2014 and 2015 in two contrasted Mediterranean forest ecosystems. The results show that the three monitored tree species (Abies alba Mill, Fagus sylvatica L and Quercus ilex L.) have developed adaptation strategies against water stress including a more intense exploitation of groundwater reserve in the karst unsaturated zone (vadoze zone) during the driest years. Quercus ilex, a species well adapted to water stress and growing in the driest site uses the groundwater resource very early in the summer season. Conversely, the two other species less submitted to drought, exploit groundwater resource only during severe drought. These results open up new perspectives to better understand eco-hydrological equilibrium and improve water balance modeling in karst forest settings.