Does encapsulation of DHA with heat-denatured whey proteins in Pickering emulsions improve its bioaccessibility? Jun Wang, Gwénaële Henry, Olivia Ménard, Jordane Ossemond, Yann Le Gouar, Sébastien Lê, Ashkan Madadlou, Didier Dupont, Frédérique F. Pédrono ## ▶ To cite this version: Jun Wang, Gwénaële Henry, Olivia Ménard, Jordane Ossemond, Yann Le Gouar, et al.. Does encapsulation of DHA with heat-denatured whey proteins in Pickering emulsions improve its bioaccessibility?. 12th NIZO Dairy Conference Innovations in Dairy Ingredients, Oct 2021, online, France. , 2021. hal-03564391 ## HAL Id: hal-03564391 https://hal.inrae.fr/hal-03564391 Submitted on 10 Feb 2022 **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Backgroun - DHA is the most important n-3 polyunsaturated fatty acids (PUFAs), mainly known for its health benefits on cognitive development and cardiovascular function. The current intake of DHA and EPA in the Western diet averages 150 mg per day, less than the recommended daily consumption from The French Food Safety Authority for adults, which is 500 mg. - Oxidation limits the enrichment of n-3 PUFAs in foods. Encapsulation is an effective strategy to strengthen food with n-3 PUFAs, and can also improve the oxidative status. Pickering emulsion has garnered exponentially increasing interest in recent years due to its excellent stability. - Omelets have the highest DHA bioavailability in various forms of DHA-rich foods (omelet, mousse, hard egg) (Pineda-Vadillo - In this study, encapsulated and unencapsulated DHA oil were added to omelets respectively to obtain DHA-rich foods. Then we measured the impact of encapsulation of the DHA oil on the digestion of DHA carried on triacylglycerol (TAG). We used an in vitro model of static digestion for adults (Infagest, (Minekus et al., 2014)). - At the final point of digestion, DHA-TAG was more hydrolyzed with EN-DHA-O than with UN-DHA-O. Consequently, DHA was significantly more released as DHA-FFA with EN-DHA-O than UN-DHA-O. - DHA was also minority present in PL from eggs so the digestion was DHA-TAG was only digested during the intestinal phase, leading to the sequential release of DHA as 1,2-DAG, 2-MAG or Free FA. equally performed during the intestinal phase for both groups. Our results showed that DHA-TAG was only digested in the intestinal phase as compared to the other TAG present in omelets Encapsulation of the DHA oil enhanced the lipolysis of DHA-TAG. The lipase activity was probably improved because of a higher oil-water interfacial area due to the smaller droplets observed in the EN-DHA-O group. INRAG l'institut Agro