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 1 

Abstract:  2 

Climate change is one of the threats to the dairy supply chain as it may affect the 3 

microbiological quality of raw milk. In this context, a probabilistic model was developed to quantify 4 

the concentration of Escherichia coli in raw milk and explore what may happen to France under 5 

climate change conditions. It included four modules: initial contamination, packaging, retailing, and 6 

consumer refrigeration.   7 

The model was built in R using the 2nd order Monte Carlo mc2d package to propagate the 8 

uncertainty and analysed its impact independently of the variability. The initial microbial counts were 9 

obtained from a dairy farm located in Saudi Arabia to reflect the impact of hot weather conditions. 10 

This country was taken as representative of what might happen in Europe and therefore in France in 11 

the future due to climate change. A large dataset containing 622 data points was analysed. They were 12 

fitted by a Normal probability distribution using the fitdistrplus package. The microbial growth was 13 

determined across various scenarios of time and temperature storage reflecting the raw milk supply-14 

chain in France. Existing growth rate data from literature and ComBase were analysed by the 15 

Ratkowsky secondary model. Results were interpreted using the nlstools package. 16 

The mean E. coli initial concentration in raw milk was estimated to be 1.31 [1.27; 1.35] log 17 

CFU/ mL and was found to increase at the end of the supply chain as a function of various time and 18 

temperature conditions. The estimations varied from 1.73 [1.42; 2.28] log CFU/mL after 12 h, 2.11 19 

[1.46; 3.22] log CFU/mL after 36 h, and 2.41 [1.69;3.86] log CFU/mL after 60 h of consumer storage. 20 

The number of milk packages exceeding the 2-log French hygiene criterion for E. coli increased from 21 

10% [8;12%] to 53% [27;77%] during consumer storage. In addition, the most significant factors 22 

contributing to the uncertainty of the model outputs were identified by running a sensitivity analysis. 23 

The results showed that the uncertainty around the Ratkowsky model parameters contributed the most 24 

to the uncertainty of E. coli concentration estimates.  25 

Overall, the model and its outputs provide an insight on the possible microbial raw milk 26 

quality in the future in France due to higher temperatures conditions driven by climate change.  27 

 28 
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1. Introduction  32 

 33 

The global average temperature is forecasted to increase to more than 2.0 °C due to climate 34 

change, and this led to several international efforts be undertaken, to curb the greenhouse gas emission 35 

of world economies (Raftery, Zimmer, Frierson, Startz, & Liu, 2017). The change in temperature in 36 

Europe is dependent on the Representative Concentration Pathways (RCP) which is projected to be 1-37 

4.5 °C for RCP 4.5 and 2.5-5.5 °C for RCP 8.5 by 2071-2100 relative to 1971-2005 temperatures 38 

(European Environment Agency, 2017). In metropolitan France, the projected increase in temperatures 39 

range from 1.6 °C-2.7 °C (RCP 4.5) and 3.2-4.9 °C (RCP 8.5) by 2071-2100 with 1976-2005 as the 40 

reference period (Météo-France, 2021). The associated changes with these are the increase in 41 

precipitation levels and more frequent occurrence of extremely high-temperature periods during 42 

summer (European Environment Agency, 2017).  43 

These projected changes have implications on food systems in terms of food security and food 44 

safety (FAO, 2020; WHO, 2019). These include the dairy supply chain, especially its farming stage 45 

where higher average temperatures and occasional extreme hot conditions (e.g. heatwaves) influence 46 

the occurrence of heat stress in cows (for temperatures >25°C) (Kekana, Nherera-Chokuda, Muya, 47 

Manyama, & Lehloenya, 2018), reduction in cow milk production (Chari & Ngcamu, 2017; Mauger, 48 

Bauman, Nennich, & Salathé, 2015; St-Pierre, Cobanov, & Schnitkey, 2003), and increase in the 49 

microbial load of milk products (Summer, Lora, Formaggioni, & Gottardo, 2019; van der Spiegel, van 50 

der Fels-Klerx, & Marvin, 2012). This effect on the microbiological properties may pose challenges to 51 

the efficiency of existing food safety controls.  52 

Raw milk is currently consumed in several European countries (e.g. Italy, Slovakia, Austria, 53 

France and others) and is usually sold to consumers in packaged form or through vending machines 54 

while local cheesemakers use it to make artisanal raw milk cheeses. However, it is undeniable that raw 55 

milk poses a risk to human health. Several foodborne illnesses and outbreaks have been linked to the 56 

consumption of raw milk (EFSA, 2015) and artisanal cheeses due to Escherichia coli (Yoon, Lee, & 57 

Choi, 2016). Several studies have highlighted the contamination pathways of this pathogen in the early 58 

stages of raw milk production and its growth under favourable conditions throughout the milk supply 59 

chain (Perrin et al., 2015). 60 

Dairy milk farming in France is at present a mixture of small, medium, and large-scale dairy 61 

farming with small-scale being the most common whereas in hot climate countries such as in the 62 

Middle East, large-scale dairy farming is commonly used. In this latter system, husbandry conditions 63 

are characterized by the presence of highly mechanized equipment and a strict application of hygienic 64 

conditions. This set-up extends from cow rearing to the transportation of raw milk: application of good 65 

veterinary practices, control of milk quality, maintenance of cold chain, etc. This system is the reason 66 

for high milk productivity, safe milk, and steady supply of dairy products to the market especially in 67 

regions previously considered unsuitable for milk production (Alqaisi, Ndambi, Uddin, & Hemme, 68 



2010). Such countries with hot weather conditions might help understanding what might occur in the 69 

future for some of European countries currently undergoing temperature shifts due to climate change. 70 

In this respect, studies on the current microbiological status of foods from hot weather conditions can 71 

be used as a proxy or representative for the potential future impacts on food safety.  72 

In France, raw milk intended for human consumption is currently regulated by the French 73 

Ministry of Agriculture through an administrative order (Ministère de l’agriculture de 74 

l’agroalimentaire et de la foret, 2012). This decree specifies the product form in which raw milk may 75 

be sold, the time frame from milking to consumption, and how the cold chain must be maintained. In 76 

France, raw milk is available to consumers in packaged form or sold through vending machines. These 77 

rules are designed to meet the hygiene criteria for raw milk against microbial hazards such as E. coli 78 

which is among the most common contaminant in raw milk and widely used indicator of hygiene 79 

criteria (EFSA, 2015; Martin, Trmčić, Hsieh, Boor, & Wiedmann, 2016). The seasonal effect on E. 80 

coli in cattle has been reported in several studies including Fairbrother & Nadeau (2006); Hussein & 81 

Sakuma (2005) and Ranjbar, Safarpoor Dehkordi, Sakhaei Shahreza, & Rahimi (2018). Moreover, in 82 

their longitudinal risk factor analysis conducted on multiple ranches located on the California Central 83 

Coast, Benjamin, Jay-Russell, Atwill, Cooley, Carychao, Larsen, & Mandrell, (2015) observed a 84 

positive increase of E. coli O157 with the soil temperature (from 21°C to 26·1°C). According to the 85 

hygiene criteria, based on three class attribute sampling plans, E. coli concentration in raw milk cannot 86 

exceed 2 log CFU/mL  (Ministère de l’agriculture de l’agroalimentaire et de la foret, 2012). In 87 

addition to this, an internal hygiene criterion is observed by French dairy farmers selling raw milk at 88 

local markets, where the E. coli concentration in raw milk is limited to 1 log CFU/mL prior to retailing 89 

(information provided by a French raw milk farming Expert). 90 

In this context, the aim of this paper was to build a probabilistic model to quantify the 91 

concentration of E. coli in raw milk and explore what may happen to raw milk sold in France under 92 

climate change conditions. Probabilistic modelling approaches are highly valuable because they allow 93 

the modelling of scenarios, taking uncertainty and variability into account (Koutsoumanis & Aspridou, 94 

2016; Nauta, 2000). Probabilistic modelling has been applied in pasteurized milk to assess safety from 95 

spoilage organisms (Schaffner, Mcentire, Duffy, Montville, & Smith, 2003) and E.coli O157:H7 96 

(Clough, Clancy, & French, 2006). In raw milk this modelling approach has been used to assess safety 97 

from microbiological hazards such as Listeria monocytogenes (Latorre et al., 2011) and chemical 98 

hazards such as SEA toxin (Crotta et al., 2016; Heidinger, Winter, & Cullor, 2009). Risk assessments 99 

of E. coli O157:H7 in raw milk were performed to determine the infections after the consumption of 100 

raw milk using probabilistic modelling techniques (Giacometti et al., 2012; Grace et al., 2008). These 101 

studies reflect two different retailing scenarios: Giacometti et al. (2012) have performed a risk 102 

assessment on vended raw milk while Grace et al. (2008) evaluated the informally marketed raw milk. 103 

Therefore, the first novelty of the study presented here lies in having built a farm-to fork 104 

probabilistic assessment model to evaluate the E. coli concentration under hot weather conditions. For 105 



this purpose, an original dataset from a large-scale farm in Kingdom of Saudi Arabia have been 106 

collected and analysed. Next, the current raw milk handling practices in France has been introduced in 107 

the model to run realistic scenario. The second novelty of this study is to present a 2nd order Monte 108 

Carlo model, separating uncertainty and variability, applied to raw milk consumption and the 109 

interpretation of its outputs by sensitivity analysis.  110 

 111 

2. Materials and Methods 112 

 113 

2.1. Model description  114 

The model describes the level of contamination of packaged raw milk from dairy farms up to 115 

consumer place in France. The sale of raw milk on local market within few hours after milking is 116 

allowed under French regulation (Ministère de l’agriculture de l’agroalimentaire et de la foret, 2012) 117 

considering the followings conditions: storage temperature lower than 8°C along the whole supply-118 

chain and a consumption within 72 hours maximum (information provided by a French raw milk 119 

farming Expert). 120 

The current steps that raw milk undergoes prior to the consumption were used to split the 121 

model into four modules (Table 1). For each module, inputs and latent variables (i.e. not directly 122 

observed or measured but used in the model) are also presented. As the total duration of time from 123 

milking until consumption was 72 h maximum, the duration of scenarios in each of the modules were 124 

set in order to meet this time frame.  125 

 126 

2.2. Module 1: Raw milk contamination level in bulk milk tanks at farm setting 127 

The initial contamination levels of E. coli in raw milk, as representative of hot weather 128 

conditions, were obtained from a set of data collected in bulk milk tank in 2019 at AlSafi-Danone, 129 

AlKharj, Kingdom of Saudi Arabia.  130 

The average temperature in Alkharj, where the farm was located, in 2019 varied between 131 

13.9°C (January, the coldest month) and 36.9°C (August, the hottest month). In comparison, in France 132 

(average values from 30 different locations), the temperature during summer reached 20.1°C (June 133 

2019), 23°C (July 2019) and 21.8°C (August 2019). This average temperature included daily 134 

fluctuations; during the hottest period of the day (midday and beginning of afternoon), the 135 

temperatures fluctuated between 25 to 27°C with several peaks above 30°C observed in France during 136 

July 2019. 137 

The E. coli counts in raw milk were obtained by performing the colony count method based on 138 

the norm NF ISO 4832 (updated in 2006). An undiluted 1 mL of raw milk sample were transferred to 139 

Petri dishes while 10-12 mL of violet red bile agar (VRBA) (Oxoid, Ltd., UK) (cooled into 45 ± 1 °C) 140 

was also added and solidified as the initial layer. An overlay of 3-5 mL of VRBA was then 141 



subsequently added to the original basal-sample medium. The plates were then incubated at 37 ± 1 ° C 142 

for 24 h. Colonies showing purplish red color with a reddish zone of precipitated bile (≥ 0.5mm 143 

diameter) were enumerated. 144 

The E. coli counts represented 1695 data points taken from the operations for the year 2019 in 145 

different farm units. The dataset was checked and cleaned. Only the farm unit containing the most 146 

number of data (622 data points) was selected for further analysis since mixing data from the different 147 

farm units would have brought additional variability. The data were fitted to Normal, Gamma, and 148 

Lognormal distributions using the R package fitdistrplus. The final probability distribution was 149 

selected based on its fitting in the Cullen and Frey diagram and statistical performance in terms of 150 

Akaike Information Criterion (AIC). A bootstrap procedure was subsequently performed to quantify 151 

the uncertainty and build a confidence interval around the distribution parameter estimates.  152 

In this module, the temperature in the milk tank was assumed to follow the cold chain 153 

requirements of the French standard in raw milk production, i.e. ≤ 4°C. This assumption was 154 

confirmed by data (temperature probe in the tank). Therefore, significant microbial growth of E. coli 155 

was not considered in this module. 156 

 157 

2.3. Module 2: Packaging of raw milk 158 

The packaging of raw milk (in 1L-pack) is a partitioning process that follows the Poisson 159 

process as described by Nauta, (2005). The unit operations within this module (e.g. volumetric filling 160 

and packaging) were assumed to be in-compliance with the French standard of maintaining 161 

temperatures 2-4°C of raw milk during packaging (Ministère de l’agriculture de l’agroalimentaire et 162 

de la foret 2012). Therefore, during this procedure, any significant additional microbial contamination 163 

and growth was not considered.  164 

2.4. Module 3: Retailing 165 

Packs of raw milk were assumed to be sold in the farm or nearby markets and sold to 166 

consumers within the period of 12 h (i.e. maximal time between milking and selling raw milk 167 

allowable in France). The retailing temperature conditions should be between 2-4 °C but in practice it 168 

could reach 8°C (information provided by a French raw milk farming Expert). This value was then 169 

chosen as maximal and worst-case scenario. 170 

2.5. Determination of growth kinetic parameters 171 

The growth parameters of E. coli in milk were obtained from the literature and Combase. First, 172 

the literature search was done in Web of Science using the combination of the topic terms: growth and 173 

(raw and milk), and (Escherichia and coli) and (Temperature). These terms yielded 77 research 174 

articles and were filtered based on their titles to keep only milk as the suspending medium (i.e. raw 175 

milk cheese studies were discarded). Moreover, challenge test studies which included E. coli in the 176 



presence of antimicrobials were excluded. When the growth studies were done in one temperature 177 

value, the article was also discarded. Three research papers were retained from this search, all coming 178 

from one research laboratory (Ačai, Valík, Medved’Ová, & Rosskopf, 2016; Medveďová, Györiová, 179 

Lehotová, & Valík, 2020; Medveďová, Rosskopf, Liptáková, & Valík, 2018). These papers have 180 

utilized only one strain of E. coli which have been isolated from a raw milk cheese. Growth studies 181 

obtained from these papers were strictly below 30°C.  182 

Second, the results from Combase were also used to obtain the growth kinetics of E. coli in 183 

raw milk with the following search criteria: microorganism (E. coli), food (milk), Aw (0.95-1.00), 184 

Temperature (< 30°C). This yielded 24 records but four growth curves were discarded because E. coli 185 

was grown in fermented milk. This form of milk might contain metabolites produced by lactic acid 186 

bacteria (LABs) that could have exerted inhibitory properties during the growth of the other 187 

microorganisms. The 20 growth curves that were retained came from one research paper (Kauppi, 188 

Tatini, Harrell, & Feng, 1996). 189 

The list of E.coli strains obtained from both resources (i.e. literature and ComBase), its origins 190 

and the temperature conditions are presented in Table 2. 191 

The µmax obtained from the literature and Combase were all estimated by the researchers 192 

through the use of the Baranyi and Roberts model. Next, to take into account the strain variability, 193 

each strain dataset was analysed separately. The square root of the maximum growth rates (µmax) 194 

were fitted against temperature values. An equation derived from the Ratkowsky model (Eq. (1)) was 195 

used to estimate the parameters, as the temperature values were sub-optimal (<30°C) (Ratkowsky, 196 

Lowry, McMeekin, Stokes, & Chandler, 1983). The slope and the intercept of the straight line were 197 

estimated through linear regression in R using the lm function to finally obtain the Tmin, Eq. (2). 198 

√μmax = Slope ×  Temperature + Intercept                                   (1) 199 

Tmin= (-Intercept/Slope)                                                                  (2) 200 

To determine the potential growth of E. coli (∆ log N) after different storage time values in the 201 

retailing and consumer modules, the exponential model was used, considering no lag phase Eq. (3) 202 

(Nauta, Litman, Barker, & Carlin, 2003). 203 

∆ log N = µmax × Time                                                               (3) 204 

2.6. Module 4: Refrigeration before consumption 205 

The conditions during the consumer refrigeration stage were simulated in order to determine 206 

its influence on the microbial concentration in packaged raw milk products. The refrigeration 207 

temperatures obtained by Roccato et al. (2017) for countries located in Northern Europe (N: 6.1, 2.8), 208 

which France is part of, was used in the assessment model. The duration of refrigeration, chosen as 209 

realistic scenarios were 12, 36 and 60 h. These different scenarios complete the allowable period of 210 



time for human consumption set to a maximum of 72h in France (information provided by a French 211 

raw milk farming Expert). 212 

 213 

2.7 Modelling 214 

The exposure assessment model was implemented in R software (R Core Team, 2019). The 215 

bootstrap procedures were carried out using the bootdistcens package of the fitdistrplus (Delignette-216 

Muller & Dutang, 2015). The second order Monte Carlo procedure was used to propagate uncertainty 217 

and variability separately using the mc2d package (Pouillot, Kelly, & Denis, 2016). The number of 218 

iterations performed for uncertainty was 1000 and for variability 100,000. 219 

 220 

2.8 Uncertainty analysis 221 

A sensitivity analysis was performed to evaluate the impact of uncertainty on the main model 222 

output, i.e. the microbial concentration at the consumer level (log N3). The tornadounc function of the 223 

mc2d package was used with the Spearman rank correlation method. The results obtained from this 224 

analysis determined the influence of the input uncertainties on the uncertainty around the 95th 225 

percentile of log N3. This percentile was chosen as representative of the upper tail of the distribution 226 

of E. coli concentration. 227 

 228 

3. Results 229 

 230 

3.1. Module 1: Initial microbial load in bulk milk tank 231 

The initial microbial concentration (namely, logN0) was obtained from the one-year operation 232 

in a dairy farm in Saudi Arabia. The data were fitted by normal, log normal, and, gamma distributions 233 

and the results were compared based on the AIC value (Table 3). The normal distribution provided the 234 

best fit (AIC=903). A bootstrap procedure was then performed to estimate the uncertainty around the 235 

normal distribution parameters (Fig.1a). This resulted in an estimated mean value of 1.31 log CFU/mL 236 

with a confidence interval of 1.27-1.35, and, a standard deviation of 0.53 with a confidence interval of 237 

0.50-0.57.  238 

The probability of the milk tanks exceeding the E. coli criteria was also determined (Table 4). 239 

In this assessment, the number of bulk milk tanks that exceed the 2-log was estimated to 10.0% with a 240 

confidence interval of 8.0-12.0% while probability to exceed 1-log was estimated to 72.0% with a 241 

confidence interval of 69.0 -75.0%. The impact of this initial microbial concentration on the final 242 

concentration prior to consumption is reflected in the next modules.  243 

 244 

3.2. Module 2: Packaging of raw milk 245 



The packaging of raw milk from bulk milk tank into a 1L pack is a partitioning process. This 246 

follows the Poisson distribution of the microbial counts across the packaged products per batch. The 247 

number of packaged products exceeding the two hygiene criteria for raw milk namely, 2-log limit 248 

(10.0%, CI: 8.0-12.0) and the 1-log limit (72.0%, CI: 69.0-75.0) were in high numbers (Table 4). 249 

These values were the same as the previous module, showing here that partitioning did not have effect 250 

on the concentration level, likely to be linked with the relatively high initial E. coli count in raw milk.  251 

 252 

3.3. Module 3: Retailing  253 

3.3.1. Determination of growth parameters 254 

The microbial growth rates extracted from the literature and Combase were from different 255 

strains of the pathogenic E. coli. For the literature search, we obtained three papers that have used the 256 

same strain which is isolated from a Slovakian cheese (Ačai et al., 2016; Medveďová et al., 2020, 257 

2018). These studies performed growth studies in milk with a total of 34 temperature data. As such, 258 

the growth parameters obtained from these were compiled into the E. coli BR strain (Table 2). The 259 

search in Combase has yielded records from four different strains of E. coli all from one study (Kauppi 260 

et al., 1996).  261 

The square root of the µmax was then plotted at function of temperatures, along with the 262 

adjusted model (Fig.2). The parameters namely, slope and intercept, determined from a linear 263 

regression using the Ratkowsky model are reported in Table 2. The slope and intercept estimates were 264 

used to determine the Tmin values obtained for each strain. The range of the Tmin value estimated from 265 

the literature and combase is also visible in Fig.2, it was between 4 to 6 °C. The strain variability was 266 

captured by building a uniform distribution from the strain having the highest Tmin up to the strain 267 

having the lowest Tmin values. These strains were E. coli O111-NM str 403 (5.60°C) and E. coli BR 268 

(4.07°C) for the highest and lowest Tmin value, respectively. The strain uncertainty was captured in a 269 

Normal distribution using the standard error around the slope estimates (and the intercept, 270 

respectively) of the strain having the highest and lowest Tmin: slopemax and slopemin (interceptmax 271 

and interceptmin, respectively). For instance, the lowest slope estimate was fitted by the Normal 272 

distribution N (0.039, 0.005).  273 

The results of the 2nd order Monte Carlo simulation analysing the uncertainty and variability of 274 

the Tmin is presented in Fig.3. The different strains of E. coli have a mean value of 4.7°C with a 95% 275 

confidence interval of [1.8; 7.6]°C. This large confidence interval around the mean value reflects the 276 

uncertainty in the estimation process due to lack of data and model misfit when applying the 277 

Ratkowsky secondary model. Its influence on the final output will be assessed by sensitivity analysis 278 

hereafter. Besides, Tmin variability is also large with variation from a 5th percentile estimated to 279 

3.4°C [-0.3; 6.5]°C up to a 95th percentile estimated to 6.1°C [3.2; 9.8]°C. 280 

 281 



3.3.2. Microbial growth during retailing period 282 

The growth parameters estimated by analysing data from both the literature and Combase were 283 

used to predict the growth rate of E. coli under specific temperature conditions and then to determine 284 

the microbial concentration during retailing (log N2). The microbial load during retailing depends on 285 

temperature but also on duration of retailing on local markets. The maximal duration was set to 12 286 

hours (i.e. maximal time between milking and selling raw milk allowable in France). 287 

The E. coli concentration (1.53 [CI:1.30; 2.11] and sd 0.55 [CI:0.51; 0.67] log CFU/mL) in 288 

raw milk after 12h at 8°C (Fig.1b) was greatly higher than the E. coli concentration in the farm just 289 

after milking (Fig.1a). The probability to exceed 1-log was estimated to be around 83.0 %, with a 290 

confidence interval of 71.0-97.0 and the probability to exceed 2-log was estimated to 19.0 %, with a 291 

confidence interval of 9.0-57.0 (Table 4).  292 

 293 

3.4. Module 4: Refrigeration before consumption 294 

Three refrigeration times during storage at consumer’s place were considered in the consumer 295 

module model. The refrigeration temperatures were those determined by (Roccato et al., 2017) for 296 

countries located in Northern Europe. The E. coli concentration in raw milk is provided in Table 4 297 

along with the probability to exceed the hygiene criteria.  298 

The consumer scenario of storage for 12 h resulted in a probability of 31.0 % with a 299 

confidence interval of 15.0-61.0% of exceeding the 2-log hygiene criterion while a much higher 300 

probability is achieved with the more stringent 1-log criterion (88.0% with a confidence interval of 301 

77.0-97.0%). The 1-log criterion was provided by a French raw milk farming Expert as the maximal 302 

acceptable limit for E. coli in milk foreseen to be consumed without any heating step. 303 

The changes with the microbial concentration from the initial microbial load in bulk milk 304 

tanks (logN0) to the end of consumer’s storage (logN3) are depicted in the cumulative distribution 305 

graphs (Fig.1c-e). In these figures, it can be seen that the changes in the distribution of values shift 306 

towards higher microbial counts while the uncertainties surrounding the predicted values also increase 307 

across the dairy supply chain. 308 

As indicated in Table 1 the inputs containing uncertainty namely, initial E. coli concentration 309 

(mean, LogN0_mean_U and standard deviation, LogN0_sd_U), slope (minimum value of slope, 310 

slopemin and maximum value of slope, slopemax) and the intercept (minimum value, interceptmin 311 

and maximum value, interceptmax) were presented. These uncertainties were then propagated in the 312 

model during the computation of the latent variables. The impact of uncertainty on the output (logN3) 313 

was then assessed using sensitivity analysis. The output of these were shown in the tornado plots that 314 

captured all the uncertainties and reflected their impact on the uncertainty of the estimates during 315 

consumer storage (Fig.4a-c).  316 

Unsurprisingly, as already highlighted when describing the Tmin estimated values, most of the 317 

uncertainty came from the characterisation of the intercept and slope associated with the strain growth 318 



parameters: the uncertainties generated to estimate interceptmin and interceptmax, slopemin and 319 

slopemax were the major source of uncertainty around the 95th percentile of logN3 probabilistic 320 

distribution. This result was observed across the three consumer refrigeration scenarios. On the other 321 

hand, uncertainties from logN0 parameters (i.e. logN0_mean_U and logN0_sd_U) had a limited 322 

contribution to the uncertainty around the 95th percentile of logN3 probabilistic distribution. A slight 323 

difference could be observed for the 60h-consumer-storage scenario (Fig.4c) where logN0_mean_U 324 

contributed more to the uncertainty of the output than logN0_sd_U, in contrast to what was observed 325 

in the previous two scenarios.  326 

 327 

4. Discussion 328 

 329 

4.1. The probabilistic assessment model 330 

The probabilistic modelling tools were demonstrated to be useful in estimating accurately the 331 

level of concentration of E. coli in raw milk at the time of consumption. The model was constructed to 332 

determine the possible impact of current raw milk practices in France under climate change 333 

conditions. To this end, the initial microbial load was obtained from a dairy farm located in a hot 334 

region to represent to a certain extent the effect of higher temperatures on the microbial load of raw 335 

milk. At the farm, it was assumed that the temperature of the milk cooling tank complied with the 336 

legislation (≤4°C). This assumption seemed realistic for a scenario in France because the farm 337 

facilities allow for a permanent and efficient refrigeration system. Nevertheless, if the temperature 338 

was higher than 4°C at (small) farms in France, the quality of the milk at the time of consumption 339 

would be even worse than estimated in this study. Therefore, it can be said that the "4°C-assumption” 340 

leads to an underestimation of the exposure level. 341 

Next, by modelling, the concentration of E. coli in raw milk at retail and after consumer 342 

refrigeration was estimated. The modelling method adopted here aimed to analyse uncertainty 343 

independently of variability; it was implemented with E coli but it is sufficiently generic and 344 

straightforward to be re-used for other spoilage or pathogenic bacteria in the dairy supply-chain.  345 

The distribution fit of E.coli observed in this study follows a normal distribution while it was 346 

not the case in several risk assessments where researchers described E. coli O157:H7 raw milk counts 347 

using different distributions such as uniform distribution (Clough, Clancy, & French, 2009), 348 

lognormal distribution (Giacometti et al., 2012), Poisson distribution (Perrin et al., 2015), or even 349 

Beta distribution to describe the prevalence in raw milk from vending machines in Northern Italy 350 

(Giacometti et al., 2013). The distribution fit we found is different from these studies because the 351 

model was built with E. coli counts from bulk milk tanks obtained as part of regular quality control 352 

monitoring of dairy farm while in these previous studies the pathogenic E.coli strains were described. 353 

The authors have not analysed an original set of data but derived their estimates from existing data 354 



such as prevalence of E. coli in the herd, lactating cows and the faeces contamination of the tank and 355 

contamination during milking (Clough et al., 2009), in-line filter counts (Perrin et al., 2015), and 356 

faecal contamination of raw milk and counts from raw milk in vending machines (Giacometti et al., 357 

2013). 358 

The packaging phase which is a partitioning process was described using the Poisson 359 

distribution as recommended by Nauta, (2005). It should be noted that the possible variation of the 360 

conditioning volume (depending on the type of equipment available on the farm) has not been taken 361 

into account; this could have had an influence if the contamination had been much lower. Nonetheless, 362 

more generally, partitioning is an important step to keep in mind when building a farm-to-fork model.  363 

During retailing and consumer storage, some E. coli strains have the ability to continue 364 

growing in raw milk even within the cold chain as the temperature is not strictly kept at values lower 365 

than 4°C and a tolerance up to 8°C is accepted for selling raw milk in French local markets 366 

(information provided by a French raw milk farming Expert). The current conditions during the 367 

retailing have shown that the difference in the estimated mean concentration between packaging and 368 

after retailing of 12 h resulted to a 0.22 log CFU/mL growth (0.23 log CFU/mL at 95th percentile) 369 

(∆log N retail). This shows the importance of the French policy on maintaining the cold chain during 370 

the retailing of raw milk (8°C maximum, 12h maximum) in controlling the E. coli concentration 371 

levels.  372 

On the opposite the model outputs showed further increase of E. coli during the different 373 

consumer refrigeration scenarios (∆log N consumer) where the estimated mean concentration grew to 374 

0.2 log (12 h), 0.58 (36h) and 0.88 (60h) log CFU/mL. Since a probabilistic assessment was 375 

performed, it is also possible to interpret the result considering the 95th percentile of the distribution: in 376 

that case, the growth reached up to 0.35 (12 h), 1.45 (36h) and 2.75 (60h) log CFU/mL. Regarding the 377 

domestic temperature variation, there are two distinct phenomena: the variation in refrigerator 378 

temperature, from home to home (Roccato et al. 2017) and for a given home refrigerator, the variation 379 

of temperature during the day (Evans & Redmond, 2016) if for instance the consumer opens the 380 

refrigerator to serve himself/herself a glass of milk. The first source of variability was integrated in the 381 

model but not the second due to a lack of data to build a dynamic fluctuation of temperature without 382 

introducing too much uncertainty. It can be assumed that the daily temperature fluctuation would have 383 

a negative effect on the final contamination level, leading here to an underestimation of the exposure 384 

level. 385 

Overall, if the E. coli concentration observed in hot weather conditions became the norm in 386 

the future for metropolitan France, raw milk consumption might be of concern. This is mainly 387 

because, as shown by the current probabilistic model, the initial E. coli contamination level will lead 388 

to non-compliance of packaged raw milk to the 2-log limit even if the cold chain was maintained. 389 

Having said that, the maximum storage of 72h might be questioned in the future as it brings an 390 

additional burden to the final contamination. 391 



The model developed was also able to show that the influence of uncertainty and variability in 392 

the predicted outcomes. Using 2nd order Monte Carlo technique, uncertainty from the inputs should be 393 

propagated across the model independently of variability to make the output estimate more accurate 394 

(Duqué, Canon, Haddad, Guillou, & Membré, 2021). As a result, the estimates of the model (i.e. the 395 

probability distribution descriptors such mean, 95th percentile, probability to exceed 1 or 2 log 396 

CFU/mL) are presented with their confidence intervals reflecting uncertainty. Also, it was 397 

demonstrated here that the separation of uncertainty and variability is relatively easy to implement. 398 

However, this comes at the cost of requiring more details about the data. It is hoped that this will lead 399 

to more exposure assessment papers implementing the separation of uncertainty and variability in their 400 

models in the future. Nonetheless, it was shown here that Tmin had both a large variability and 401 

uncertainty range. The large variability range reflected the fact that E.coli strains were capable of 402 

growing within a wide temperature range. In this respect, our assessment model is on the safe-side as 403 

it covers pathogenic and non-pathogenic E.coli strains; indeed it has been reported that pathogenic E. 404 

coli strains have the ability to grow and survive lower temperatures better than the non-pathogenic 405 

ones (Farrokh et al., 2013; Vidovic, Mangalappalli-Illathu, & Korber, 2011).   406 

Although our model was a farm-to-fork model, it is important to keep in mind that climate 407 

change is a multi-faceted phenomenon that can affect the other parts of the dairy supply chain. As such 408 

other possible effects of climate change may also be seen (e.g. higher temperature during 409 

transportation, disruption of the supply chain due to flooding). These events may have consequential 410 

impact on food safety and quality such as allowing or supporting E. coli growth. Therefore, once these 411 

are determined, ways on how to incorporate these in the probabilistic model developed can be further 412 

explored in the future.  413 

4.2. The use of hot weather conditions and E. coli as test organism in understanding the future of raw 414 

milk consumption   415 

The current probabilistic model has shown that raw milk consumption might pose microbial 416 

food quality concerns in the future under hot weather conditions brought by climate change. In order 417 

to understand the possible impact of hot weather conditions on raw milk, data from a dairy farm in 418 

Saudi Arabia was obtained. These were considered to be representative of what initial microbial 419 

counts might look in the future for countries undergoing shifts in high temperature due to climate 420 

change. The selection of this farm allowed an insight to a certain extent on what microbial quality 421 

might look like in the future under hot weather conditions. The comparison with the farms in France is 422 

possible because in the farm selected in our study, Holstein breed cows (a very common breed in 423 

France for milk production) are raised. Also, the best practices in dairy farming such as good 424 

veterinary practices (GVP) and good hygiene practices (GHP) applied at the farm are comparable with 425 

the ones being applied elsewhere with the difference only in its location and hot weather conditions. 426 



The data used are E. coli counts from bulk milk tanks, collected and analysed as part of routine 427 

operations. These were used to assess the raw milk contamination just after the milking step. This 428 

approach supports the notion that the contamination pathway of E. coli in the dairy supply-chain starts 429 

in the early stages of raw milk supply chain (Perrin et al., 2015). E. coli was used in this study because 430 

aside from being a microbial hazard commonly linked with raw milk consumption it is also a 431 

microorganism that is foreseen to pose a concern in the future for the raw milk produced under hot 432 

weather conditions (Fairbrother & Nadeau, 2006). E. coli has been widely reported to survive and 433 

proliferate in hot weather conditions and during summer season (Hussein & Sakuma, 2005; Ranjbar, 434 

Safarpoor Dehkordi, Sakhaei Shahreza, & Rahimi, 2018). In addition, it is known for its prevalence 435 

within farms that is facilitated by increased cow shedding and growth in feeds which are both highly 436 

occur during hot weather conditions (Fairbrother & Nadeau, 2006).  437 

As such, the results of the model built here have shown that the current practice of drinking 438 

raw milk in France might need to be revisited since the current hygiene criteria for packaged raw milk 439 

might be difficult to meet in the future if hotter conditions become the standard. Indeed, the estimated 440 

mean value at the initial concentration (log N0) was estimated to 1.33 log CFU/mL, however the 95th 441 

percentile reached 2.19 log CFU/mL. This is not in line with the hygiene criterion of 2-log limit for the 442 

E. coli in France (Ministère de l’agriculture de l’agroalimentaire et de la foret, 2012): it was estimated 443 

that 10% of the raw milk package exceed the criterion. Nevertheless, this estimated value seems to be 444 

consistent with the results in other places such as in New York state (23% of the milk producers had 445 

more than 2-log) (Boor, Brown, Murphy, Kozlowski, & Bandler, 1998). It is important to keep in 446 

mind that these results do not represent a safety concern but a hygienic concern. The presence of high 447 

amounts of E. coli signifies faecal contamination, which is an indicator of hygiene and associated 448 

veterinary practices at the farm level (Martin et al., 2016). It was reported that the pathogenic strains 449 

Shiga-toxin producing E. coli was isolated in 0.4-1.7% in raw milk from the EU (during 2005-2008) 450 

while in France the isolates were around 3.4-15 % of the samples (Farrokh et al., 2013).  451 

The dairy farming systems such as the one used in this study are raising Holstein breed cows 452 

that are kept inside large, naturally ventilated farm buildings, where they do not go outside or for very 453 

limited time during the day because cows suffer from heat stress when they are exposed to temperature 454 

above 25°C (information provided by a French veterinary expert). Although these systems can be seen 455 

in European countries, adoption to these farming conditions varies. This is particularly true in France 456 

where the dairy farms are medium-scale farms and with the widespread use of production machinery 457 

(Poczta, Średzińska, & Chenczke, 2020). Nevertheless, the shift to this system is taking place in 458 

southern France, where its adoption has been accelerated by the regular occurrence of heat waves 459 

during the summer period (information provided by a French veterinary expert). Another challenge to 460 

its widespread adoption is the shift towards sustainability with efficient use of resources, 461 

implementation of recovery mechanisms and pressure from consumers to devolve to localized farms 462 

(Thorpe, Schmalzried, & Fallon, 2010). These barriers to acceptance may hinder present adoption but 463 



may not completely prevent it given the intensification of climate change effects. Overall, it is hoped 464 

that the implication of the results obtained in this study may be useful in understanding the impact of 465 

climate change driven hot weather conditions on the microbial quality of raw milk which is expected 466 

to be more apparent in the future.  467 
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Table 1. Model inputs and latent variables implemented in the model. When the input is deterministic, the value is given. When it is pure variability, 
the distribution is given. However, when the inputs included both uncertainty and variability, its structure is more complex, it is given in the core 
document but not in this Table. 

Name Abbreviation Description Unit Uncertainty Variability Determinsitic Latent/input 

        Module 1: Bulk milk tank  

Bulk milk tank concentration logN0 Normal distribution + Bootstrap to assess uncertainty log CFU/mL x x  Input  

Module 2: Packaging of raw milk  

Volume per pack Vp Deterministic mL   1000 Input 

Concentration of microorganisms per 

pack 
N1 Poisson (10logN0 × Vp) 

 
 CFU/ pack  x x  Latent  

Concentration of microorganisms per 

mL 

logN1 log10 (N1/pack) log CFU/mL    Latent  

Module 3: Growth at Retailing  

Secondary model Ratkowsky Slope  Slope Uniform in the Variability dimension, Normal in the Uncertainty 
dimension  

h-1/2.°C-1 x x  Input 

Secondary model Ratkowsky Intercept Intercept Uniform in the Variability dimension, Normal in the Uncertainty 
dimension 

h-1/2 x x  Input 

Secondary model Ratkowsky Tmin Tmin Probabilistic as result of calculation (i.e.  -  Intercept/Slope) °C x x  Latent 

Temperature at retail (local market) TemperatureR Deterministic °C   8.0 Input 

Square root of growth rate  
(square root of µmaxR) 

 Probabilistic as result of calculation 
 (i.e. Slope × (TemperatureR-Tmin)) 

h-1/2 x x  Latent 

Time at retail  
(between milking and selling at local 

market) 

TimeR Deterministic h   12 Input 

Concentration after retailing logN2 Probabilistic as result of calculation  
(i.e. log N1 + µmaxR× TimeR) 

logCFU/mL x x  Latent 

Module 4: Growth during consumer storage   

Temperature of consumer refrigerators TemperatureC Normal °C  N (6.1, 2.8)  Input 

Square root of growth rate 
 (square root of µmaxC) 

 Probabilistic as result of calculation  
(i.e. Slope×(TemperatureC-Tmin)) 

h-1/2 x x  Latent 

Time before consumption scenarios TimeC Deterministic h   12, 36, 60 Input 

Concentration at consumption logN3 Probabilistic as result of calculation  
(i.e. logN2 + µmaxC × TimeC) 

logCFU/mL x x  Output  

  



Table 2. E.coli strains, temperature conditions used in the growth studies on milk and estimated growth kinetic parameters from linear regression 

 Information collected from literature or ComBase Estimated growth kinetic parameters generated in this present study 

Strain Origins Temperature (°C)  Reference Slope Sd slope Intercept 
sd 

Intercept 
Tmin 

Escherichia coli BR 
Isolated from Slovakian 

Brydzna cheese 
8,10,12,15,18,21,25,30 °C 

Medvedova et 

al., 2018 

0.0392* 0.005 -0.1598¤ 0.088 4.07 Escherichia coli BR 
Isolated from Slovakian 

Brydzna cheese 
6,12,15,18,21,25,30 °C 

Medvedova et 

al., 2020 

Escherichia coli BR 
Isolated from Slovakian 

Brydzna cheese 
10,12,15,18,21,25,30 °C Acai et al., 2015 

Escherichia coli 

O104:H21 str 13A 
USFDA collection 6.5,7.5,8.5,9.5 °C 

Kauppi et 

al.1996 
0.028 0.003 -0.121 0.028 4.25 

Escherichia coli 

O111-NM str 403 
USFDA collection 6.5,7.5,8.5,9.5 °C 

Kauppi et 

al.1996 
0.0388** 0.007 -0.2176¤¤ 0.055 5.60 

Escherichia coli 

O157:H7  
USFDA collection 6.5,9.5,12.0 °C 

Kauppi et 

al.1996 
0.035 0.000 -0.171 0.003 4.82 

Escherichia coli 

O157:H7 str.22 
USFDA collection 6.5,7.5,8.5,9.5 °C 

Kauppi et 

al.1996 
0.032 0.008 -0.147 0.060 4.53 

Escherichia coli  

O22:H8 str.406 
USFDA collection 6.5,7.5,8.5,9.5 °C 

Kauppi et 

al.1996 
0.031 0.004 -0.143 0.036 4.64 

* and ** values used to build the probability distribution regarding the slope 
¤ and ¤¤ values used to build the probability distribution regarding the intercept 

 



Table 3. Results of the initial microbiological concentration (logN0 in log CFU/mL ) 
distribution fitting. 

Normal Log Normal Gamma distribution 

AIC: 903.13 

Mean: 1.31 [1.26,1.35] 

Sd: 0.53 [0.50, 0.57] 

AIC: 975.19 

Meanlog: 0.17 [0.13; 0.21] 

Sdlog: 0.48 [0.45; 0.51] 

AIC: 907.95 

Shape: 5.21 [4.67; 5.81] 

Rate: 3.98 [3.53; 4.48] 

  



 
Table 4. E. coli concentration in bulk milk tank and packaged raw milk: mean value, standard 
deviation, 95th percentile of the distribution; probability of exceeding the 2-log and 1-log limit at 
different stages across the dairy supply chain. Results are provided with the median estimate and its 
uncertainty interval.  
Time  Mean concentration Standard 

deviation 

95th percentile of 

the concentration 

Exceeding 2-log 

CFU/mL  

Exceeding 1-log 

CFU/mL  

Bulk milk tank 

- 1.31 [1.27; 1.35] 0.53 [0.50; 0.57] 2.19 [2.12; 2.26] 0.10 [0.08; 0.12] 0.72 [0.69; 0.75] 

Packaging 

- 1.31 [1.27; 1.35] 0.53 [0.50; 0.56] 2.19 [2.11; 2.25] 0.10 [0.08; 0.12] 
 

0.72 [0.69; 0.75] 
 

Retailing 

12 h 1.53 [1.30; 2.11] 0.55 [0.51; 0.67] 2.42 [2.17; 3.16] 0.19 [0.09; 0.57] 
 

0.83 [0.71; 0.97] 
 

Consumer refrigeration scenarios 

12 h 1.73 [1.42; 2.28] 0.62 [0.54; 0.83] 2.77 [2.36; 3.73] 0.31 [0.15; 0.61] 
 

0.88 [0.77; 0.97] 
 

36 h 2.11 [1.46; 3.22] 1.00 [0.58; 2.06] 3.87 [2.50; 7.33] 0.45 [0.18; 0.78] 
 

0.91 [0.78; 0.99] 
 

60 h 2.41 [1.69; 3.86] 1.46 [0.76; 2.89] 5.17 [2.85; 9.76] 0.53 [0.27; 0.77] 
 

0.91 [0.81; 0.98] 
 

  



Figures 

 
Fig.1. Cumulative probability distribution of E. coli concentration in raw milk across the different 
modules. (a) Initial microbial concentration and after partitioning, (b) after 12h of retailing, (c) after 
12h of consumer refrigeration, (d) after 36 h of consumer refrigeration, (e) after 60 h of consumer 
refrigeration. The light grey corresponds to the lower and upper limits of the 95% uncertainty 
interval, the dark grey corresponds to the 25th and 75th percentiles of the uncertainty. 

 
Fig. 2. The square root of the µmax of the different E.coli strain (markers), collected at various 
temperature values, with the adjusted values of square root of the µmax (line).  

 
Fig. 3. The cumulative probability distribution of the Tmin (°C) estimate, reflecting strain variability 
and uncertainty including in the estimate. The light grey corresponds to the lower and upper limits of 
the 95% uncertainty interval, the dark grey corresponds to the 25th and 75th percentiles of the 
uncertainty. 

 
Fig.4. Tornado plot illustrating the sensitivity analysis results: correlation between inputs’ 
uncertainty and uncertainty around the 95th percentile of E.coli concentration (log N3) during 
consumer refrigeration module. (a) 12 h, (b) 36 h and (c) 60h refrigeration times. 
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