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Abstract: In south-western France, sunflowers are usually grown in short rotations and after a long
fallow period during which soils are left bare. This practice can favour diseases, caused by soilborne
fungi, such as sunflower verticillium wilt (SVW), as well as nitrate leaching, both of which can
decrease yields. Growing cover crops during a fallow period is an agroecological practice that could
provide ecosystem services and mitigate SVW. A Brassicaceae cover crop that causes biofumigation
produces glucosinolates and liberate biocidal compounds that might regulate SVW biologically.
Moreover, the green manure effect of the Fabaceae might increase soil mineral nitrogen (SMN). To go
further, mixtures of Brassicaceae and Fabaceae might mutualise the benefits that each cover crop has
in sole crops. A four-year field study in south-western France tested Brassicaceae (brown mustard,
turnip rape and fodder radish) and Fabaceae (purple vetch) in sole crops or a mixture with two or
three species during the fallow period, followed by biofumigation, and sunflower crop. The cover
crops were characterised, SMN was measured, the SVW and yield were assessed and compared to
those of the crop grown on soils left bare during the fallow period. Purple vetch as a sole crop cover
crop significantly increased SMN before sunflower sowing but only in 2019. Fodder radish as a sole
crop reduced SVW severity significantly, overall, 80 days after sowing, except in 2019, when weather
conditions were unfavourable to biofumigation. Purple vetch as a sole crop also reduced significantly
SVW severity in 2017 and 2020. Finally, sunflower yields after cover crops were higher than those
after bare soils, only after purple vetch as a sole crop in 2020, with a mean increase of 0.77 t ha−1.
Mixtures of Brassicaceae and Fabaceae sowed at these densities resulted in an intermediate SMN
level between those in sole crops and the bare soil and they did not significantly decrease SVW or
increase yields. Our results suggest that cover crops, especially fodder radish or purple vetch, and
biofumigation can provide ecosystem services for sunflower, instead of leaving soils bare during the
fallow period. However, the extent of ecosystem services is markedly affected by soil and climatic
conditions as well as other management practices.

Keywords: agroecological protection; Helianthus annuus; Verticillium dahliae; Brassicaceae; Fabaceae;
glucosinolates; verticillium wilt

1. Introduction

Sunflower (Helianthus annuus L.) is one of the main oilseed crops grown worldwide,
reaching 57.1 million t of seed produced in 2019–2020 [1]. Mainly cultivated for its oil [2],
sunflower has many agroecological benefits [3]. Sunflower is considered a drought-tolerant
crop that uses limited water resources efficiently [4]. It readily captures soil nitrogen (N)
not taken up by the previous crop [5] and requires few chemical inputs, except for weed
control [3]. Although a sunflower crop is a favourable preceding crop for cereals [6], its
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productivity is reduced due to a variety of factors (e.g., birds, fungal diseases, low and
uneven plant populations) [7], drought [8,9] and high temperatures [10]. Global sunflower
production varies greatly from year to year [1], and mean yields in France have barely
exceeded 2 t ha−1 for the last 10 years [11].

Fungal diseases are often considered a severe constraint for the stability of sunflower
yield. The most widespread and detrimental diseases in sunflower production are downy
mildew (Plasmopara halstedii), verticillium wilt (Verticillium dahliae), phomopsis stem canker
(Phomopsis helianthi), phoma black stem (Phoma macdonaldii) and white mould (Sclerotinia
sclerotiorum) [3,12]. Growing sunflower frequently during a rotation favours the prolifer-
ation of these pathogens. In south-western France, one of France’s two main basins of
sunflower production [5,7], the crop is frequently grown in short rotations (mainly wheat-
sunflower) [6]. The limits of this system are that (i) bare soils during the fallow period
(9 months) lead to nutrient leaching and groundwater pollution [13], and (ii) reduce soil
tillage after sunflower harvest increases fungal inocula, as infected stubbles remain on the
soil surface [14].

In the past few years, sunflower verticillium wilt (SVW) has been observed widely
in France [3,15]. Verticillium wilt is caused by the soilborne ascomycete fungus Verti-
cillium dahliae. Typical symptoms are characterised by chlorosis and necrosis of leaves,
starting from the bottom of the sunflower [16], and can occur on only one side or the
entire plant [17]. These symptoms accelerate leaf senescence and decrease photosynthetic
area [18,19]. V. dahlia persists in the soil through microsclerotia for up to 14 years [20], even
without a susceptible host [21]. V. dahliae has a wide host range besides sunflower and
can survive on vegetable crops [22–24] and weeds including Chenopodium sp., dandelions
and white clover [25]. Experiments in south-western France estimated yield losses up to
0.25 t ha−1, or 50% in case of severe attacks [19].

In the past, the control of diseases caused by soilborne pathogens, including that of
verticillium wilt, was based on the use of chemical fumigants such as methyl bromide,
especially on high-value vegetable crops [26]. However, such chemical fumigants have
been banned from being used in the European Union since 2005 [27]. To limit SVW, the only
disease control method available to date relies on varietal resistance [19]. However, the
circumvention of genetic resistance commonly occurs in sunflowers [28], and alternative
crop protection methods are needed. To this aim, cover cropping and biofumigation, which
can provide ecosystem services such as a biological regulation of soilborne diseases, have
great potential [29]. Biofumigation is an alternative disinfection method to chemical fumi-
gation, with in situ production of biocidal molecules by plants [30]. This consists of a form
of bio-disinfection that derives from the suppressive effect of glucosinolates on soilborne
pathogens through the liberation of volatile compounds, mainly isothiocyanates [30,31].
The latter are released after hydrolysis of glucosinolates by the enzyme myrosinase dur-
ing tissue disruption and incorporation into the soil. Brassicaceae species have different
glucosinolates concentrations and profiles, whether aromatic, aliphatic or indolyl [32–35].
In vitro experiments using synthetic isothiocyanates and pot experiments using chopped
Brassicaceae tissues showed significant inhibition of V. dahliae germination or develop-
ment [36–38]. In the field, biofumigation to control V. dahliae has more contrasting effects.
It is expected to have a biocidal action on V. dahliae microsclerotia through the liberation of
isothiocyanates and other volatile compounds [39]. The direct biocidal activity is limited in
time as the molecules can be lost by volatilisation, sorption onto soil components, leaching
and microbial degradation [40]. For instance, the viability of microsclerotia and cauliflower
verticillium wilt decreased after incorporation of broccoli residues [41], whereas incor-
poration of brown mustard did not affect on microsclerotia in the short-term [39], or on
tomato verticillium wilt [23]. In the field, Brassicaceae residues need to be chopped and
quickly incorporated into the soil to liberate these biocidal compounds [40,42–44]. The
effectiveness of biofumigation depends greatly on many factors, such as the quantity of
biomass produced [45], destruction at flowering to obtain peak glucosinolates [44,46,47],
along with mild temperatures and water availability [29,40,44]. The complexity of these
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factors that influence successful biofumigation leads to high variability in the provision of
a biological regulation service against soilborne pathogens [48].

The utility of growing cover crops of Brassicaceae for their potential ecosystem service
of regulating soilborne diseases could be supported by other ecosystem services, such
as supporting services related to nutrient cycling. They provide catch-crop effects that
decrease nitrate leaching and groundwater pollution [13]. After the destruction, their
moderate C:N ratio releases nitrate into the soil slowly [49]. Thus, the duration between
the destruction of Brassicaceae cover crops and sunflower sowing determine the cover
crop’s green manure effect, or pre-emptive effect, due to immobilizing nitrate [50]. This
pre-emptive effect could be decreased by mixing Brassicaceae and Fabaceae. Fabaceae
increase soil mineral nitrogen (SMN) through N-fixing symbioses [51,52], and their low C:N
ratio allows for rapid mineralisation, which releases nitrate, and an effective-green manure
service [53]. An increase in SMN is favourable to sunflower development and yields [54].
Brassicaceae and Fabaceae mixtures can provide more benefits than sole cover crops [55].
Mixtures had higher effective N green-manure effects than Brassicaceae sole crops [13] and
maintained the production of glucosinolates in Brassicaceae [56]. On sunflower, the only
study available to date showed that crop yield increased more after Fabaceae mixtures than
after fallow in a reduced-tillage system and after Brassicaceae in a no-tillage system [57].

Despite a long fallow period between wheat harvest and sunflower sowing that would
be particularly suitable for cover cropping in south-western France, no field study has
assessed the potential of Brassicaceae and Fabaceae cover crops, as a sole crop or in mixtures,
in SVW control and sunflower productivity. Beyond characterising the performances of
Brassicaceae and/or Fabaceae cover crops in sole crops or in mixture of two or three species,
the main objectives of this four-year field study under conditions in south-western France
were to (i) estimate the ecosystem services of cover crops for SMN, (ii) evaluate effects of
cover crops and biofumigation on SVW, and (iii) assess benefits of cover crops for sunflower
productivity. We hypothesized that cover crops and biofumigation would increase SMN
after Fabaceae cover crops, reduce SVW severity, especially after Brassicaceae cover crops,
and therefore increase sunflower yields, compared to bare soils. We also expected the
Brassicaceae and Fabaceae mixtures to mutualise the benefits of each species.

2. Materials and Methods
2.1. Experimental Design and Crop-Management Systems

Field experiments were conducted at INRAE, Auzeville, near Toulouse, in south-
western France (43.528◦ N, 1.501◦ E) over four years with cover crops sown in 2015, 2016,
2018 and 2019 prior to sowing a sunflower in 2016, 2017, 2019 and 2020. The year of
the experiment are summarised in 2016, 2017, 2019 and 2020. Auzeville has a temperate
oceanic climate (cfb) according to the Köppen climate classification. The fields selected
were naturally infested with V. dahliae. The previous crop was wheat to follow the most
common rotation system in south-western France, except in 2020, when the previous crop
was sunflower. The previous crop, soil texture and soil organic matter content of each field
are resumed in Table 1.

The experimental design progressed over the four years, with one block in 2016, three
blocks of non-randomised design in 2017 and three blocks of completely randomised
design in 2019 and 2020. The factor tested in these experiments was the cover crops species
before sunflower. The control treatment involved leaving the soil bare during the fallow
period. Weeds and spontaneous emergence of the previous crop were negligible and left
unmanaged. Plots were 6 m wide to allow the sowing of 12 rows of sunflower. Plot length
varied from 12 m (2019 and 2020) to 50 m (2017), to 120 m (2016).



Agronomy 2022, 12, 120 4 of 24

Table 1. Field characteristics and crop management for the cover crops and the sunflower of the four-year experiment carried out at Auzeville, France. Cover crops
were sown after a previous crop in 2015, 2016, 2018 and 2019, and the destruction was performed close to the flowering of the Brassicaceae. Sunflower cultivar (cv. 1
or cv. 2) were sown after cover crops destruction in 2016, 2017, 2019 and 2020. Irrigation and N fertilisation are for the growing season measurements from the
sowing date to the date of cover crop destruction or sunflower harvest. DAS is for days after sowing.

Previous
Crop

Field Characteristics Cover Crop Management Sunflower Management

Soil Organic
Matter
(g kg−1)

Soil Texture Species Cultivars Sowing Date Densities
(Seeds m−2)

Irrigation
(mm)

Destruction
Date

Cultivar Sowing Date N
Fertilisation
(k ha−1)

Irrigation
(mm)

Harvest Date

Durum
wheat 12.3

Loamy-sandy
clay

Brown
mustard Etamine 08/09/2015 132

0 07/12/2015 cv.1 28/04/2016 0 0 19/09/2016Turnip rape Chicon 111
Fodder
radish Anaconda 102

Durum
wheat 9.76

Loamy-sandy
clay

Brown
mustard Etamine 05/09/2016 161

33 mm
(3 DAS) 07/12/2016 cv. 1 20/04/2017 110 0 07/09/2017Turnip rape Chicon 212

Fodder
radish Anaconda 100

Vetch Titane 86

Durum
wheat 8.57 Loamy clay

Brown
mustard Etamine 28/08/2018 100 30 mm

(8 DAS)
30 mm
(24 DAS)

07/01/2019 cv.2 13/05/2019 60
30 mm
(73 DAS) 18/09/2019Turnip rape Chicon 80

Fodder
radish Anaconda 80

Vetch Titane 80

Sunflower 8.57 Loamy clay

Brown
mustard Etamine 09/10/2019 100

54 mm
(1 DAS) 25/02/2020 cv.2 25/05/2020 40

20 mm
(3 DAS)
50 mm
(58 DAS)

19/10/2020Turnip rape Chicon 80
Fodder
radish Anaconda 80

Vetch Titane 80
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Cover crops treatments were Brassicaceae or Fabaceae commonly cultivated in south-
western France. Seeds were kindly provided by Cérience (Beaufort-en-Vallée, France). The
Brassicaceae species were brown mustard (Brassica juncea cv. Etamine), turnip rape (Brassica
rapa subsp. oleifera cv. Chicon) and fodder radish (Raphanus sativus cv. Anaconda) and
the Fabaceae species was purple vetch (Vicia benghalensis cv. Titane). The Brassicaceae
were selected from preliminary screening experiments in vitro that assessed their ability to
control V. dahliae, and the diversity of their glucosinolates profiles and concentrations [38,56].
Purple vetch was selected for its good green-manure effect in sole crops or mixtures
Brassicaceae [13] and minimises competition with Brassicaceae [58]. These cover crops
were grown in sole crops all four years, except the Fabaceae in 2016. In 2019 and 2020,
mixtures of two or three species were tested. A mixture of two species contained one
Brassicaceae and one Fabaceae, while a mixture of three species contained two Brassicaceae
and one Fabaceae, in a substitutive design. All cover crops were compared to bare soil.
Four treatments were tested in 2016, five in 2017, and ten each in 2019 and 2020.

The crops management was carried out by INRAE APC [59]. The cover crops were
sown using a cereal seed drill (Kuhn, Saverne, France) in late August to mid-October
depending upon the weather conditions each year. Species grown in sole crops were sown at
densities recommended by the cover crop seed distributor and breeder. In a mixture of two
or three species, the sowing density for each species was 1/2 or 1/3 of its corresponding sole-
crop density (Table 1). To ensure homogeneous development, cover crops were irrigated
at sowing by sprinkler except in 2016 (Table 1). Cover crops were not fertilised, and
pesticide was applied when needed with an application of ferric phosphate (Certis Europe,
Guyancourt, France) against slugs in 2016 and lambda-cyhalothrin (Syngenta France SAS,
Saint Sauveur, France) against sawfly in 2019. The biofumigation was performed close
to the flowering of the Brassicaceae. The cover crops were chopped using a flail mower
(Kverneland, Klepp, Norway) and quickly incorporated into the soil using a cultivator
(Agrisem International, Ancenis-Saint-Géréon, France). A roller-crimper (SEMAS & FERJU
GOURDIN, Selles, France) ensured good contact between the soil and the chopped cover
crops. In April or May, depending upon the weather conditions each year, a sunflower
cultivar susceptible to V. dahliae was sown. In 2016 and 2017, the cultivar was the same
(cv. 1). As it was no longer commercialised after 2018, another susceptible cultivar (cv. 2)
was sown in 2019 and 2020. Plant density was 7.5 plants m−2 after thinning. Sunflower
were cultivated following low-input management. N fertilisation was adjusted based on
soil analyses before sunflower sowing and was the same for all treatments (Table 1). The
quantity and timing of sprinkler irrigation were determined according to precipitation
and the soil water deficit (Table 1). Weather conditions (temperatures and precipitation)
during cover crop and sunflower development, as well as the day of biofumigation, varied
(Table 2).

Table 2. Climate conditions of the four-year experiment carried out at Auzeville, France. Cumulative
growing degree days and precipitation values are sums of growing season measurements from
the sowing date to the date of cover crop destruction, and sunflower harvest. Climate data at
biofumigation are the mean day temperature at cover crops destruction and the sum of precipitation
7 days from cover crops destruction. GDD is for growing degree days, Br is for Brassicaceae, and Fb
is for Fabaceae.

Year

Cover Crops Biofumigation Sunflower

GDD (◦C)
Br 1/Fb 2

Precipitation
(mm) Temperature (◦C)

Cumulative
Precipitation 7 Days

(mm)

GDD
(◦C) 3

Precipitation
(mm)

2015–2016 615|1033 100 13 2.5 2228 296
2016–2017 686|1119 119 7 1.5 2212 267
2018–2019 905|1489 191 2 3.5 2147 248
2019–2020 487|1112 400 10 50.0 2319 257

1 Brassicaceae base temperature of 6.9 ◦C. 2 Vicia benghalensis base temperature of 2.1 ◦C. 3 Sunflower base
temperature of 4.4 ◦C according to [60].
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2.2. Cover Crop and Soil Sampling
2.2.1. Cover Crop Sampling and Partial Land Equivalent Ratio Calculation

Before cover crop destruction and incorporation (biofumigation), samples of the shoot
and root biomass of Brassicaceae and Fabaceae (sole crops and mixtures) were collected
from 0.5 m2 replicates in each plot, except for the roots of vetch in 2017 (wet soils at the
date of sampling did not permit to properly sample the roots of vetch), and the turnip rape
in mixtures of three species in 2019 (no seedling of the turnip rape). Samples came from
the middle of the plots to avoid edge effects between different treatments. The number of
plants of each species in sole crops and mixtures was counted to calculate densities. Shoots
and roots were separated, and the root systems were washed with cold water to remove the
remaining soil. Fresh samples were weighed, then dried at 80 ◦C for 48 h and weighed to
estimate the total dry matter biomass produced per species. A sub-sample of each species
per plot was ground to estimate C and N content in the tissues via elemental analyses based
on the Dumas method (Elementar MicroVario Cube, Langenselbold, Germany).

In each plot, a sub-sample of Brassicaceae (4–5 plants) was cut into 2–3 cm pieces and
immediately frozen at −80 ◦C before lyophilisation for glucosinolates analysis. Glucosino-
late profiles and concentration analysis were performed in specialised laboratories (Institute
for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands, for
2016 and 2017 samples, and German Centre for Integrative Biodiversity Research for 2019
and 2020 samples). Both laboratories used the method detailed in [61]. The quantities of
glucosinolates produced by each Brassicaceae in sole crops and mixtures were calculated
by multiplying dry biomass by the concentration of each glucosinolate of each profile.

Land equivalent ratio (LER) is defined as the area of a sole crop required to reach the
same biomass as a mixture [62]. It has been used to compare the performance of sole crops
and mixtures for cash crops [63] and cover crops [13]. However, this index is based on the
theoretical density of each species in mixtures. As densities of the mixtures in 2019 and
2020 frequently differed from the desired densities at sowing (50:50 or 33:33:33), the partial
LER (LERp) for Brassicaceae or Fabaceae was calculated (1) and compared to the density
ratio (DR) between sole crops and mixtures (2):

LERp =
Mixture biomass

Sole crop biomass
(1)

DR =
Mixture density

Sole crop density
(2)

The performance of each of Brassicaceae and Fabaceae was compared (3):

Comparison of performance =
LERp

DR
(3)

If the comparison exceeded 1 (i.e., LERp > DR), then the mixtures performed better
than the sole crops, and vice-versa.

2.2.2. Soil Sampling

Before sunflower sowing, six soil cores were randomly taken at depths of 0–30, 30–60
and 60–90 cm with a hydraulic core drill within each treatment and each block. The six
cores for each depth were pooled, and SMN content of 12, 45 and 90 soil samples were
analysed in 2016, 2017 and both 2019 and 2020, respectively. The analysis was done using a
continuous flow auto-analyser (Skylar 51,000, Skalar Analytic, Erkelenz, Germany).
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2.3. Sunflower Sampling and Disease Assessment
2.3.1. Assessment of Sunflower Nutrition Status

At flowering, five sunflowers per treatment were sampled and pooled to estimate the
N nutrition status for each treatment. It was quantified using the Nitrogen Nutrition Index
(NNI), calculated according to [64]:

NNI =
Nm
Nc

(4)

where Nm is the total N concentration measured in aboveground tissues and Nc is the
critical total N concentration calculated for the mass of aerial dry matter (ADM) of sunflower
measured in situ (i.e., the minimum N concentration needed to obtain maximum dry matter
production by the crop).

Nc was calculated according to [65] using the critical N-dilution curve for sunflower:

Nc = 4.53 × ADM−0.42 (5)

2.3.2. Assessment of Sunflower Verticillium Wilt Severity

Before SVW appeared, 10 sunflowers (2019 and 2020), 15 (2017) and 25 (2016) were
tagged within each treatment (with three plots per treatment) for the three blocks in 2017,
2019 and 2020 and one block in 2016. Overall, 300 and 675 sunflowers were recorded in 2016
and 2017, respectively, and 900 sunflowers each in 2019 and 2020. At the first signs of SVW,
40–50 days after sowing (DAS), symptoms were assessed weekly. To describe the severity
of symptoms on leaves, a rating scale from 0–4 was used: 0 = healthy plant, 1 = [0–20%],
2 = [20–50%], 3 = [50–80%] and 4 = >80% of the plant displaying wilt symptoms. Disease
severity was assessed up to 96 DAS in 2016 and 2017, 91 DAS in 2019 and 92 DAS in 2020, 1
week before the onset of normal senescence. At least eight observations were made in 2016,
2019 and 2020, and nine in 2017.

Disease severity index (DSI) was calculated from the rating scale up to maturity, for
each plot, according to [66]:

DSI =
100 × number of diseased plants in each score × value of the corresponding score

total number of plants scored × value of the maximum score
(6)

Disease development was also assessed by the area under disease progress curves
(AUDPC) of the severity. The AUDPC was calculated according to the equation of [67]:

AUDPC =
n−1

∑
i

[
yi + yi+1

2

]
× (ti+1 − ti) (7)

where n is the number of observations, y the rating scale of SVW and t is the DAS of each
observation. AUDPC was calculated for each tagged sunflower and averaged per plot.

2.3.3. Sunflower Yield Estimation

At maturity, sunflowers tagged for SVW monitoring were harvested by hand in each
plot and block for the four years of the experiment. The inflorescences were threshed,
cleaned with a densiometric column, dried at 80 ◦C for 48 h and then weighed to estimate
sunflower yield for each treatment.

2.4. Statistical Analysis

Within each year, mixed analyses of variance (ANOVA) were used to test the effects of
treatment (cover crops and bare soil) on SMN before sunflower sowing, DSI or AUDPC
of SVW at each DAS, and manual yields. Blocks were always used as random factors.
This model was also applied to characterise the cover crops (biomass produced and C:N
ratio). Arcsine and square root transformations were carried out on all percent data
prior to applying statistical analysis to improve the homogeneity of variance [68]. The
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assumptions of validity of the models were checked, and if not respected, square root or
log transformations were performed on the quantitative variables of the analysis. Post-
hoc multiple comparisons were performed to compare among all the different treatments.
Correlations of Spearman and regression models that combined data for all four years
were used to assess relationships between sunflower yield and DSI or sunflower NNI at
flowering. Cover crops were used pooled by botanical family or composition (i.e., bare
soil, Brassicaceae sole crop, Fabaceae sole crop, mixture of two or three species). For
all data analyses, differences among treatments were considered significant at α = 0.05.
Statistical analyses were performed using Rstudio software v4.0.0 (R Core Team, Boston,
MA, USA, 2020).

3. Results
3.1. Cover Crop Production and Characterisation
3.1.1. Cover Crop Biomass Production

Overall, Brassicaceae sole crops produced more total dry matter biomass (roots and
shoots) in 2016 than in the following years (Figure 1). Fodder radish was the most pro-
ductive Brassicaceae during the four years, whereas brown mustard was the least. Fodder
radish biomass reached 6.1 and 4.7 t ha−1 in 2016 and 2019, respectively when sown in
September (early sowing; Table 1). It produced less biomass the other years: 2.1 t ha−1

in 2017 (early sowing) and 2.2 t ha−1 in 2020 (late sowing, in October). Fodder radish
produced more biomass than the Fabaceae sole crops, except in 2020, when purple vetch
produced the most shoot biomass with 2.7 t ha−1 (Table A1).
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Figure 1. Shoot (above zero) and root (below zero) dry matter biomass (t ha−1) for each Brassicaceae
or Fabaceae species cover crops in sole crops or mixtures measured at the cover crop destruction in
2016 (A), 2017 (B), 2019 (C) and 2020 (D). In 2019, the turnip rape did not grow in a mixture of fodder
radish and purple vetch. Abbreviation letter refers to cover crop species with M for brown mustard,
T for turnip rape, R for fodder radish, and V for purple vetch. Error bars represent standard errors.

Overall, Brassicaceae or Fabaceae sole crops produced significantly (p < 0.05 or p < 0.01)
more biomass than mixtures per unit area (Figure 1C,D, Table A1), as mixtures were sown at
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1/2 or 1/3 of their sole-crop densities. Fodder radish always produced significantly (p < 0.05
or p < 0.01) more biomass in sole crops than in mixtures, but differences were inconsistent
for the other cover crops. With early sowing (2019), the total biomass of Brassicaceae sole
crops and mixtures was higher than those of Fabaceae (Figure 1). Conversely, with late
sowing (2020), the shoot biomass of Fabaceae sole crops and mixtures was higher than those
of Brassicaceae. For example, in 2019, fodder radish had highest biomass (3.83 t ha−1) when
associated with purple vetch (0.61 t ha−1) in mixtures of two species. Conversely, in 2020,
purple vetch had the highest biomass when associated with Brassicaceae in a mixture of
two or three species (Table A1). Based on the LERp, mixtures performed better overall than
sole crops in 2019, as the LERp:DR ratio exceeded 1, except for purple vetch cultivated with
fodder radish and brown mustard in a mixture of three species (ratio = 0.88). Conversely,
in 2020, all Brassicaceae performed better in sole crops than in mixtures (ratio < 1), whereas
purple vetch always performed better in mixtures (ratio > 1).

3.1.2. Cover Crop C:N Ratio

The C:N ratio of each cover crop species in sole crops and in mixtures varied among
years (Table A2). For the four sole crops, the three Brassicaceae had C:N ratios significantly
(p < 0.01) higher than that of purple vetch, regardless of the year. C:N ratios of the
Brassicaceae species in sole crops did not differ significantly. In mixtures, C:N ratios
of the Brassicaceae were always lower than those in sole crops, and this difference was
always significant (p < 0.05 or p < 0.01) in a mixture of two species (Table A2). Conversely,
purple vetch had an equivalent C:N ratio in sole crops or mixtures. In 2019, C:N ratios of
Brassicaceae in a mixture of two species were 57–67% of those in sole crops, and that of
purple vetch in mixtures was 94% of that in sole crops. Finally, in 2019 and 2020, the C:N
ratio of each species in a mixture of two or three species did not differ significantly, except
for brown mustard in a mixture of three species in 2020 (Table A2).

3.1.3. Glucosinolates Production of Brassicaceae Cover Crops

The quantities of glucosinolates produced by each species of Brassicaceae per m2 of
soil were calculated as the product of biomass and glucosinolates concentration in the
tissues in sole crops or mixtures in 2016 and 2017 (Figure 2) and 2019 and 2020 (Figure 3).
Total quantities of glucosinolates varied highly over the four years of the experimentation,
in accordance with dry matter biomass production (Figure 1) and the environment. In 2017,
the lyophilisation of the fodder radish samples, not totally achieved, may have induced
a volatilisation of the glucosinolates. The three species of Brassicaceae had contrasting
profiles and quantities of aliphatic, aromatic and indole glucosinolates. In sole crops, brown
mustard and fodder radish produced the most aliphatic glucosinolates, mainly sinigrin
and glucoraphasatin, respectively. Turnip rape produced less aliphatic glucosinolates
but more indole glucosinolates than the other species. Glucosinolates production also
differed between shoots and roots of the crops. Unlike fodder radish, which produced
more glucosinolates in the roots, the other Brassicaceae produced more glucosinolates in
the shoots. Brown mustard produced five times as many aliphatic glucosinolates in shoots
than in roots each year, unlike fodder radish.

Regarding sole crops and mixtures, the Brassicaceae produced more glucosinolates in
sole crops than in mixtures (Figure 3), as they produced more biomass in sole crops than
in mixtures (Figure 1). However, the quantities of glucosinolates produced in mixtures
were not 1/2 or 1/3 of those produced in sole crops, even though the mixtures were sown
at 1/2 or 1/3 of the densities of the sole crops. In a mixture of two species, fodder radish
produced up to 137% of the quantities produced in sole crops (glucosinolates in the shoots,
Figure 3A). In a mixture of three species, it always produced at least 43% of that produced
in sole crops. These trends were less consistent for brown mustard and turnip rape.
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in 2016 (A) and 2017 (B). Abbreviation letter refers to Brassicaceae cover crop with M for brown
mustard, T for turnip rape, R for fodder radish. Error bars represent standard errors.
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Figure 3. Mean shoot and root glucosinolates production function of the total dry matter biomass
of each species of Brassicaceae cover crop per square meter of soil (mmol m−2 of soil) in sole crops
and mixture with vetch in 2019 (A) and 2020 (B). In 2019, the turnip rape did not grow in the mixture
with fodder radish and purple vetch. Abbreviation letter refers to cover crop species with M for
brown mustard, T for turnip rape, R for fodder radish and V for purple vetch. Error bars represent
standard errors.
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3.2. Soil Mineral Nitrogen Available for Sunflower before Sowing

Cumulative SMN in 0–90 cm soil horizons varied among years (Figure 4), and SMN in
2016 was the highest, especially after bare soil and brown mustard (100 kg N ha−1). In the
following years, SMN was less than 70 kg N ha−1, regardless of the year and treatment,
with the lowest SMN in 2017 (<50 kg N ha−1). Within a year, soil after Brassicaceae
sole crops had less N overall than after bare soil, but the differences were not significant.
Conversely, soil after purple vetch in sole crops had more SMN than that after bare soil,
and the difference was significant (p < 0.01) in 2019 (Figure 4C), with a cumulative mean
increase of more than 50 kg N ha−1. After a mixture of two or three species (Figure 4C,D),
SMN was equal to or greater than to those after bare soil or Brassicaceae, but the differences
were not significant. Soils after purple vetch in mixtures had less SMN than in sole crops.
Thus, SMN after mixtures always lay between those of Brassicaceae and Fabaceae sole
crops (Figure 4).
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Figure 4. Soil mineral nitrogen (kg ha−1) in the three depth soil horizons (0–30, 30–60, and 60–90 cm)
measured at sunflower sowing in 2016 (A), 2017 (B), 2019 (C) and 2020 (D) after bare soil, Brassicaceae,
and Fabaceae cover crops sown in sole crops (A–D) or a mixture (C,D) with one Brassicaceae and one
Fabaceae, or two Brassicaceae and one Fabaceae. Abbreviation letter refers to BS for bare soil, M for
brown mustard, T for turnip rape, R for fodder radish and V for purple vetch. Error bars represent
standard errors. There were no blocks in 2016. Soil mineral nitrogen that differed significantly from
that of bare soil are indicated by * (p < 0.05).

3.3. Effects of Cover Crops and Biofumigation on Sunflower Verticillium Wilt

The disease severity index (DSI) measured on the sunflower cultivated after bare soils
reached a mean of 80% in 2016 (Figure 5A) but were only around 45% to 50% the following
years (Figure 5B–F, Table S1 in Supplemental Data). This highest severity may be due to
a high initial density of inoculum and the susceptibility of the cultivar (cv.1, in 2016 and
2017), which is presumably more sensitive than cv.2 in 2019 and 2020. The most effective
regulations were observed in 2016, the year when the cover crops produced the highest
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biomass (Figure 1). Sunflower cultivated after fodder radish in sole crop tended to have
lower DSI in 2016, 2017 and 2020 than that grown after bare soil, and differences were
significant (p < 0.01 or p < 0.05) at 52, 75 and 81 DAS in 2016, at 84 and 96 DAS in 2017,
and at 78 and 84 DAS in 2020 (Figure 5A,B,D). Sunflower cultivated after brown mustard
and turnip rape had lower DSI, but it was less consistent than that grown after fodder
radish. DSI was significantly lower (p < 0.01 or p < 0.05) on sunflowers following turnip
rape or brown mustard in 2016 (from 52 to 81 DAS). In 2017, DSI was significantly lower
following turnip rape (at 84 DAS), compared with that after bare soil. Finally, sunflowers
cultivated after purple vetch also showed significantly lower DSI in 2020 at 64, 71 and
84 DAS, compared to sunflower cultivated after bare soils. Overall, sunflowers cultivated
after a mixture of two or three species did not have significantly lower DSI.
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Figure 5. Annual disease severity index (%) progress curves of sunflower verticillium wilt in 2016 (A),
2017 (B), 2019 (C,D) and 2020 (E,F). Sunflower cultivar cv. 1 (A,B) and cv. 2 (C–F) were cultivated
after a bare soil, a Brassicaceae or a Fabaceae cover crop in sole crops (A–C,E), or in a mixture with
one Brassicaceae and one Fabaceae, or two Brassicaceae and one Fabaceae (D,F). In 2019, the turnip
rape did not grow in the mixture with fodder radish and purple vetch. The number of sunflowers
recorded was 300 in 2016 (A), 675 in 2017 (B), and 900 in 2019 (C,D) and 2020 (E,F). Abbreviation
letter refers to the treatments with BS for bare soil, M for brown mustard, T for turnip rape, R for
fodder radish and V for purple vetch. Error bars represent standard errors.
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The AUDPC values calculated from sowing to 80 to 85 DAS (following the year)
ranged from 30.3 (2019) to 91.7 (2016) on sunflowers cultivated after bare soil and that were
overall consistent with the DSI (Table A3). The AUDPC value was significantly (p < 0.01)
lower following Brassicaceae compared to bare soil in 2016, and in 2017 after turnip rape
(p < 0.05) and fodder radish (p < 0.01). After purple vetch, the AUDPC was significantly
(p < 0.01) lower compared to the bare soil in 2020, whereas the AUDPC was higher in
2019. Overall, sunflowers cultivated after a mixture of two or three species did not have
significantly lower AUDPC.

3.4. Effects of Individual Factors on Sunflower Yield
3.4.1. Previous Cover Crop

Regardless of the treatment (bare soil or cover crop), mean sunflower yields ranged
from 2.24 t ha−1 and 3.8 t ha−1 (Figure 6). Overall, no significant increase in yields due to
cover cropping before sunflower occurred, compared to those after bare soil. In 2016, the
mean increase in sunflower yield was 0.9 t ha−1 following fodder radish cover cropping,
but this increase was not observed in the following years (Figure 6A). In 2019, sunflower
yield following turnip rape in sole crops or a mixture with purple vetch was significantly
lower (p < 0.05) compared with that after bare soil or after other cover crops (Figure 6C). In
2020, a significant (p = 0.01) increase in sunflower yield (+0.77 t ha−1) after purple vetch in
sole crops was observed compared to that after bare soil (Figure 6D).
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3.4.2. Nitrogen Nutrient index at Flowering and Yields 
The relationship between the yield and the NNI is presented in Figure 7, with mean 
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Figure 6. Manual sunflower yields (t ha−1) from the sunflowers monitored for sunflower verticillium
wilt severity after bare soil, Brassicaceae or Fabaceae cover crop in 2016 (A), 2017 (B), 2019 (C) and
2020 (D). The yield after a bare soil is in black, blue after Brassicaceae (B) sole crops, green after
Fabaceae (F) sole crops, red for a mixture with one Brassicaceae and one Fabaceae (MIX2), and orange
for a mixture with two Brassicaceae and one Fabaceae (MIX3). In 2019, the turnip rape did not grow
in the mixture with fodder radish and purple vetch. Abbreviation letters refer to the treatment with
BS for bare soil, B for Brassicaceae, F for Fabaceae, M for brown mustard, T for turnip rape, R for
fodder radish and V for purple vetch. Dashed lines indicate the mean bare soil yield for the year.
Error bars represent standard errors. Treatments with yields that differ significantly from that of bare
soil are indicated by * (p < 0.05).
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3.4.2. Nitrogen Nutrient index at Flowering and Yields

The relationship between the yield and the NNI is presented in Figure 7, with mean
values per block after bare soil, Brassicaceae sole crops, Fabaceae sole crops, and mixtures
of two or three species, for the four years of experiment. Mean values of the yield ranged
from 2.3 t ha−1 to 4.1 t ha−1 and the NNI from 0.38 to 1.1. When all the 4-year data are
considered, independent of cover crop treatments and bare soil, a significant positive
Spearman’s correlation (rho = 0.54, p < 0.01) was found between sunflower yield and NNI.
The linear regression between yield and NNI was also significant (p < 0.01). The yields
increased with NNI increasing. However, no clear trend or consistent response was found
between the treatment used and NNI values.
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Figure 7. The causal relationship between manual sunflower yield (t ha−1) and nitrogen nutrition in-
dex at sunflower flowering cultivated after bare soil (BS), Brassicaceae (B) sole crops, Fabaceae (F) sole
crops, a mixture with one Brassicaceae and one Fabaceae (MIX2), and a mixture with two Brassicaceae
and one Fabaceae (MIX3) in 2016, 2017, 2019 and 2020. Each point represents the mean values of the
yield and the NNI of the composition of each year and each block. In 2019, the turnip rape did not
grow in the mixture with fodder radish and purple vetch.

3.4.3. Disease Severity Index at Maturity and Yields

The relationship between the yield and the DSI is presented in Figure 8, after bare soil,
Brassicaceae sole crops pooled, and Fabaceae sole crops, in 2016, 2017 and 2020. Values
in 2019 and in mixtures were removed due to a lack of significance of SVW regulation.
Regardless of the year or the treatment, yields mean values ranged from 1.89 t ha−1

to 4.76 t ha−1 and DSI severity from 11.66% to 70%. A significant negative Spearman’s
correlation (rho = −0.67, p < 0.01) was found between sunflower yields and DSI. Linear
regression between yield and DSI severity was also significant (p < 0.01). The yields
decreased with DSI increasing, and the DSI tended to be higher on sunflower after bare
soils, whereas sunflower following cover crops tended to have lower DSI and higher yields.
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Figure 8. Causal relationship between manual sunflower yield (t ha−1) and disease severity index (%)
at sunflower maturity, for sunflowers cultivated after bare soil (BS), Brassicaceae (B) sole crops pooled
per year, and Fabaceae (F) sole crops in 2016, 2017 and 2020. Each point represents the values (per
blocks and plots) of the yield and the DSI of the cover crop composition per year. Data in 2019 and
a mixture of two or three species in 2020 were removed from this regression because no significant
regulation of SVW was observed.

4. Discussion

This study aimed to assess ecosystem services provided by Brassicaceae and Fabaceae
cover crops in sole crops or a mixture of two or three species, and biofumigation, on
sunflower verticillium wilt and yield, during four field experiments. Overall, no significant
effect of cover crops was observed on SMN compared to that after bare soils except for
purple vetch in 2019. Mixtures with Brassicaceae and a Fabaceae, tested in 2019 and 2020,
did not increase significantly SMN compared to bare soil. Brassicaceae in sole crops reduced
significantly the AUDPC on cv.1, in 2016 and 2017, except after brown mustard in 2017.
This result was not confirmed on cv. 2, in 2019 and 2020. Sunflower cultivated after fodder
radish in sole crop tended to have lower DSI in 2016, 2017 and 2020 than that grown after
bare soil, and differences were significant at some monitoring dates. The inconsistent effects
of cover crops either in sole crops or mixtures could be due to soil and climate conditions as
well as management practices including the previous crops in the rotation and sunflower
genotypes that differed among the four experimental years.

4.1. Cover Crop Effects on Soil Mineral Nitrogen Available for Sunflower

Cumulative SMN at 0–90 cm slightly varied among years due to contrasting residual
N left after the previous crop in the rotation, and the cover crops that differed in biomass
and C:N ratio. Soils cultivated with Fabaceae sole crops tended to have higher SMN than
those grown with Brassicaceae sole crops, mixtures, and bare soil. This result agrees with a
previous study [69], which highlighted higher SMN in spring in soils cropped with vetch
than in bare soils. Vetch’s ability to take up nitrate from the soil and fix atmospheric N, and
its low C:N ratio, favours rapid mineralisation of its residues after destruction [13,70]. Soils
cultivated with mixtures always had an intermediate level of SMN between those grown
with sole cover crops and bare soil as previously reported for Fabaceae and Brassicaceae



Agronomy 2022, 12, 120 16 of 24

mixtures [13] as well as legume and non-legume mixtures [58]. Brassicaceae in mixtures
with Fabaceae may have taken up as much or more N as in sole crops, through niche
complementarity with Fabaceae [13] or reduction in intraspecific competition. The level of
N uptake reached by Fabaceae may have increased the N concentration of residues of the
entire mixture, as already hypothesised [13], resulting in more rapid decomposition and
availability of SMN for sunflower. Results of our study suggest that cover cropping with
Brassicaceae, and Fabaceae mixtures may be a promising practice because SMN are at least
equivalent to those after sole crop.

4.2. Cover Crops and Biofumigation Effects on Sunflower Verticillium Wilt

SVW occurred in all the experimental fields but the severity of SVW varied among
years. Besides the effects of the cover crops and biofumigation, other factors may have
affected the severity of the disease including previous crops in the rotation, the density of
inoculum of V. dahliae in the soil and the susceptibility of the sunflower cultivar. Indeed, the
incidence and severity of SVW are often related to the initial density inoculum of V. dahliae
in the soil [71,72], which in turn may have shaped the disease development, in interaction
with the crop genotype. Although seed companies classify both cultivars (cv. 1 in 2016 and
2017, and cv. 2 in 2019 and 2020) as “susceptible” to SVW, differences may occur. Moreover,
other soil and climatic factor may have influenced the severity of SVW.

Cover crops biomass production could be involved in regulating SVW. Sole crop
total dry matter biomass production greater than 0.53 t ha−1 was identified as an effective
biofumigation threshold [45]. Below this threshold, biofumigation was predicted to be
ineffective against various soil-borne pathogens. In our study, fodder radish produced more
biomass each year in sole crops and mixtures than the other Brassicaceae, which could be
due to its rapid growth and deep taproot system [73,74]. This result is important for farmers
looking for cover crops that produce large quantities of biomass with low variability from
year to year [75]. In 2016 and 2017, Brassicaceae cover crop before sunflower cv. 1, and more
particularly fodder radish, reduced significantly the DSI (for some cover crops and overall
after 80 days after sowing) and the AUDPC (except after brown mustard in 2017). In 2019
and 2020, Brassicaceae cover cropping in sole crops or mixtures before sunflower cv.2 did
not significantly reduce the DSI or AUDPC compared to bare soil, except after fodder radish
in 2020. Turnip rape reduced significantly DSI and AUDPC in 2016 and 2017 as previously
reviewed [29]. The reduction in SVW achieved by fodder radish in our study agrees with
previous results [37], which showed a significant reduction in microsclerotia germination
or development following exposure to chopped fodder radish under laboratory conditions.
Unlike previous reports [36–39], we did not observe a consistent effect of brown mustard
on V. dahliae control, but this result corroborates the results of a previous study [23]. We
showed that cover crop mixtures did not seem to regulate SVW, conversely to occasional
DSI reduction following sole crops. This may be related to the reduction of Brassicaceae
biomass sown at 1

2 or 1/3 of their densities. The quantities of glucosinolates produced
in mixtures were therefore reduced, even though glucosinolates concentrations did not
decrease by the 1

2 or 1/3 of those measured in sole crops, as also observed in a previous
study [56].

Besides biomass production, the quantity and type of glucosinolates produced by
the cover crop determine the regulation service targeted. The high biomass production of
fodder radish produced relatively large quantities of glucosinolates, especially aliphatic pro-
files (mainly glucoraphasatin) in roots, which agrees with analyses of other studies [56,76].
Brown mustard produced the most aliphatic glucosinolates each year due to its high and
well-known sinigrin concentrations [56,77]. Lower quantities of sinigrin produced by
fodder radish than by brown mustard despite producing more biomass suggest poten-
tial biocidal effects of glucoraphasatin-hydrolysis products on V. dahliae. Nevertheless,
glucoraphasatin-hydrolysis products may not be the only glucosinolates involved in regu-
lating V. dahliae, as glucoraphasatin is not present in turnip rape tissues, which also reduced
SVW. Regarding the ineffective effect of brown mustard, the sinigrin produced and its
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hydrolysis products may be insufficient to achieve effective control of V. dahliae and SVW
in the field. This agrees with predictions suggesting that supplying at least 4 t ha−1 of
brown-mustard-seed meals (containing sinigrin) to reduce V. dahliae effectively in soils with
high organic carbon content [77]. In commercial fumigation, controlling V. dahliae requires
a large quantity of methyl-isothiocyanates, due mainly to the aggregated cell mass of its
microsclerotia, which protects the fungus from biocidal compounds [78].

Our study also showed that despite applying the same Brassicaceae cultivars, the
regulation of SVW differed over years. The lack of a significant decrease in SVW after
Brassicaceae in 2019 could be attributed to unfavourable weather conditions (2 ◦C at the
destruction and incorporation of cover crops) for optimal hydrolysis of glucosinolates into
isothiocyanates and other biocidal compounds. This enzymatic reaction depends on many
factors, such as temperature and moisture [29,39,40]. Thus, the quantities of glucosinolates
per m2 of soil calculated in our study may not be related to the presence or persistence of
its products of hydrolysis (e.g., isothiocyanates) in the soil. This hypothesis is supported by
studies that highlight the importance of mid to high temperatures (at least above 10 ◦C) for
isothiocyanates production [79,80].

Interestingly, purple vetch in sole crops led to contrasting effects following the year.
The AUDPC significantly increased on sunflower in 2019 but was significantly lower in 2020
compared to the bare soil. In 2019, symptoms of Phoma macdonaldii and premature ripening
were observed on sunflowers. A previous study showed a strong positive correlation
between high nitrogen supply and premature ripening caused by P. macdonaldii [81]. The
SMN measured after purple vetch in 2019 was significantly higher compared to bare soil
and may have led to an increase of P. macdonaldii development which caused overexpression
of V. dahliae symptoms. Conversely, a significant reduction of SVW after purple vetch was
measured in 2017 and 2020 and symptoms of P. macdonaldii were scarce. This is, to our
knowledge, the first study that reports a reduction of SVW after a Fabaceae cover crop.
Similar results were reported on potatoes cultivated after Austrian winter pea [82,83],
highlighting a significant reduction of V. dahliae inoculum density and verticillium wilt
incidence, compared to fallow controls. This result raises many hypotheses between
the SMN after Fabaceae, the N status of the plant and V. dahliae relationship, poorly
understood to date [84]. A previous study showed a strong negative correlation between
soil nitrates concentrations and V. dahliae inoculum density, after organic and inorganic soil
fertilisation [85]. The reduction of V. dahliae was enhanced with livestock manure-based
compost, which had the highest N composition. The authors hypothesised a direct toxic
effect of ammonia and nitric acid on the membranes of microsclerotia, as also showed
before [86]. In addition, the incorporation of green manure could stimulate antagonist
microbial communities [82,83]. This is supported by a study that highlighted a negative
correlation between the densities of Fusarium equiseti and V. dahliae, after cover crops
(including Austrian winter pea) incorporation in the soil [87]. Finally, the reduction of SVW
after purple vetch could also be explained by a better nutrition status of the sunflower,
leading to a better defence of the plant against some pathogens, as known for several crops
pathosystems [88].

4.3. Sunflower Production

Overall, no clear trend of sunflower yield increase was observed after cover crops (sole
crops or mixtures), over the four-year field experiment. However, in 2020, a significant
increase in sunflower yields was observed following purple vetch in sole crops. An increase
in cash crop yields following Fabaceae cover crops had already been observed like for
maize after hairy vetch [89]. Moreover, considering the four years of the field experiment,
a significant positive relationship was highlighted between yields and NNI (Figure 7).
The N supply after Fabaceae could support the positive causal relationship between NNI
at sunflower flowering and the yield, as an increase in SMN is favourable to sunflower
development and yields [54]. Yields after Brassicaceae sole crops did not differ significantly
from those after bare soils, except in 2019, when turnip rape (in sole crops and bispecific
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mixtures) had significantly lower sunflower yield. Results that show an increase in cash
crop yield after a Brassicaceae sole crop are inconsistent in other studies; no effects of
Brassicaceae on potato tuber yields, despite a significant reduction in verticillium wilt, were
reported [82,83]. Conversely, an increase in potato tuber yield after Brassicaceae, compared
to that after bare soils had also been observed [90]. Negative effects of brown mustard on
sunflower yield were reported [91], the authors hypothesised N immobilisation due to a
large quantity of residues with a high C:N ratio. Overall, our study identified no significant
increase in sunflower yields after cover crops in mixtures within a year. Finally, a negative
causal relationship was found between yields and DSI with mean values in sole crops in
2016, 2017 and 2020 (Figure 8), This result, to some extent, is similar to previous studies
on sunflower, potatoes and strawberry [19,92,93] suggesting that regulation of SVW is an
important factor for maintaining sunflower yields.

5. Conclusions

This four-year field study provides some evidence that cover cropping and biofumi-
gation could provide ecosystem services for sunflower, instead of leaving the soils bare
during the fallow period. Fodder radish or purple vetch seems to be the most suitable
species to provide services (increase in SMN or decrease in SVW). However, the suscep-
tibility of the sunflower cultivar, soil and climate conditions seem to shape largely the
potential of cover crops in providing the desired ecosystems services, as shown by the
inconsistency of the results obtained over the years. Further studies are needed to fill
the current knowledge gap concerning the mechanisms that drive the control of SVW by
these cover crops. While, in general, the benefits of cover crops mixtures did not confirm
the hypothesis of mutualisation, each sole crop species provided ecosystem services that
support the utility of mixing species during the fallow period. To maximise these services
in mixtures, future experiments are needed to determine optimal densities to be sown
in mixtures. The contrasting weather conditions throughout the four-year experiment,
especially at cover crop destruction, highlight the importance of maximising the biomass of
the cover crop and performing biofumigation at mild temperatures to foster the expected
regulation service and obtain a significant reduction in SVW.
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Appendix A

Table A1. Dry matter biomass (t ha−1) of each cover crops species in sole crops and in a mixture
of two or three species measured at the destruction of the cover crop, in 2016, 2017, 2019 and 2020.
SE represents the standard error. Abbreviations ns, *, **, *** indicate non-significant, or significant
differences at p < 0.05, 0.01 or 0.001, respectively. NA indicate non applicable (no data available to
test this interaction).

Year Cover Crops Biomass (t ha−1) SE

Significance of the
Comparison between
the Biomass of the
Cover Crop in Sole
Crop and in a Mixture

AUZ16 Brown mustard 4.17 0.29 /
Turnip rape 4.96 0.19 /
Fodder radish 6.06 0.30 /

AUZ17 Brown mustard 1.38 0.19 /
Turnip rape 1.50 0.19 /
Fodder radish 2.11 0.29 /
Vetch 1.88 0.31

AUZ19 Brown mustard 3.58 0.13 /
Turnip rape 3.12 0.32 /
Fodder radish 4.74 0.22 /
Vetch 2.14 0.27 /
Brown mustard * Vetch 2.02/0.96 0.12/0.05 **/**
Turnip rape * Vetch 0.94/0.98 0.38/0.17 ***/**
Fodder radish * Vetch 3.83/0.61 0.21/0.17 ns/***
Brown mustard * Fodder radish * Vetch 0.76/1.93/0.45 0.12/0.28/0.09 ***/***/***
Turnip rape * Fodder radish * Vetch NA/3.72/0.38 NA/0.77 /0.13 NA/ns/***

AUZ20 Brown mustard 1.39 0.17 /
Turnip rape 1.60 0.10 /
Fodder radish 2.17 0.09 /
Vetch 2.71 0.20 /
Brown mustard * Vetch 0.80/1.54 0.08/0.12 **/***
Turnip rape * Vetch 0.95/1.22 0.10/0.18 **/***
Fodder radish * Vetch 1.31/1.37 0.19/0.25 **/***
Brown mustard * Fodder radish * Vetch 0.49/0.81/0.82 0.06/0.10/0.14 ***/***/***
Turnip rape * Fodder radish * Vetch 0.69/0.53/1.06 0.10/0.08/0.21 ***/***/***
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Table A2. C:N ratios of each cover crops species in sole crops and in a mixture of two or three
species calculated from C and N contents at the destruction of the cover crop, in 2016, 2017, 2019 and
2020. SE represents the standard error. Abbreviations ns, *, **, indicate non-significant, or significant
differences at p < 0.05 or p < 0.01, respectively. NA indicate non applicable (no data available to test
this interaction).

Year Cover Crops C:N Ratio SE

Significance of the
Comparison of the
C:N Ratios between
Sole Crop and a
Mixture

2016 Brown mustard 14.64 0.88 /
Turnip rape 14.43 1.11 /
Fodder radish 13.47 0.97 /

2017 Brown mustard 19.61 1.52 /
Turnip rape 19.83 0.51 /
Fodder radish 20.89 1.35 /
Vetch 10.79 0.26 /

2019 Brown mustard 28.31 1.4 /
Turnip rape 24.43 1.26 /
Fodder radish 26.8 0.43 /
Vetch 12.9 0.69 /
Brown mustard * Vetch 16.25/12.13 2.26/0.19 */ns
Turnip rape * Vetch 16.34/12.09 0.48/0.06 */ns
Fodder radish * Vetch 17.83/11.98 1.97/0.11 */ns
Brown mustard * Fodder radish * Vetch 18.54/19.75/12.58 3.30/2.96/0.25 **/ns/ns
Turnip rape * Fodder radish * Vetch NA/21.14/11.8 NA/1.98/0.26 NA/ns/ns

2020 Brown mustard 22.62 0.7 /
Turnip rape 24.35 0.83 /
Fodder radish 24.14 0.42 /
Vetch 13.58 0.25 /
Brown mustard * Vetch 19.78/13.89 0.47/0.19 **/ns
Turnip rape * Vetch 21.78/14.15 0.55/0.24 */ns
Fodder radish * Vetch 20.35/14.47 0.76/0.17 **/ns
Brown mustard * Fodder radish * Vetch 22.81/22.3/14.24 0.54/0.51/0.27 ns/ns/ns
Turnip rape * Fodder radish * Vetch 21.70/20.81/14.09 0.45/0.63/0.17 **/**/ns

Table A3. Area under disease progression curve (AUDPC) of sunflower verticillium wilt severity,
calculated from the appearance of symptoms up to 80–85 days after sowing, after bare soil, cover
crops in sole crop and in a mixture of two or three species in 2016, 2017, 2019 and 2020. SE represents
the standard error. Abbreviations ns, *, **, indicate non-significant, or significant differences at p <
0.05, 0.01, respectively between the bare soil and the cover crop.

Year Treatment AUDPC SE

Significance of the
Comparison of the
AUDPC of the Cover
Crop to That of the
Bare Soil

2016 Bare soil 91.74 40.62 /
Brown mustard 30.72 32.27 **
Turnip rape 24.78 29.66 **
Fodder radish 25.07 33.84 **

2017 Bare soil 44.72 32.11 /
Brown mustard 39.82 30.21 ns
Turnip rape 31.72 29.24 *
Fodder radish 25.62 26.39 **
Vetch 32.77 26.24 ns
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Table A3. Cont.

Year Treatment AUDPC SE

Significance of the
Comparison of the
AUDPC of the Cover
Crop to That of the
Bare Soil

2019 Bare soil 30.31 21.24 /
Brown mustard 43.12 26.60 **
Turnip rape 28.00 20.41 ns
Fodder radish 35.08 22.19 ns
Vetch 44.06 29.26 **
Brown mustard * Vetch 40.78 27.42 ns
Turnip rape * Vetch 39.73 22.96 ns
Fodder radish * Vetch 34.46 22.96 ns
Brown mustard * Fodder radish * Vetch 29.53 17.28 ns
Turnip rape * Fodder radish * Vetch 34.18 23.13 ns

2020 Bare soil 73.38 30.89 /
Brown mustard 69.18 26.13 ns
Turnip rape 67.11 29.77 ns
Fodder radish 60.05 33.75 ns
Vetch 53.67 38.64 **
Brown mustard * Vetch 66.02 30.91 ns
Turnip rape * Vetch 67.65 25.49 ns
Fodder radish * Vetch 62.77 33.18 ns
Brown mustard * Fodder radish * Vetch 75.31 26.40 ns
Turnip rape * Fodder radish * Vetch 65.43 27.62 ns
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