

Agents microbiens de biocontrôle contre les maladies des plantes

Marc Bardin

▶ To cite this version:

Marc Bardin. Agents microbiens de biocontrôle contre les maladies des plantes. Santé des Plantes : connaître pour protéger, Académie d'Agriculture de France, Nov 2021, Toulouse, France. hal-03572737

HAL Id: hal-03572737

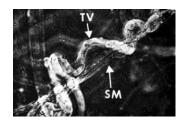
https://hal.inrae.fr/hal-03572737

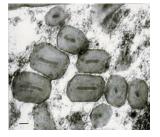
Submitted on 14 Feb 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

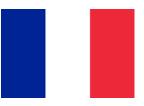
Agents microbiens de biocontrôle contre les maladies des plantes

Marc Bardin


UR Pathologie Végétale - Avignon



Agents microbiens de biocontrôle

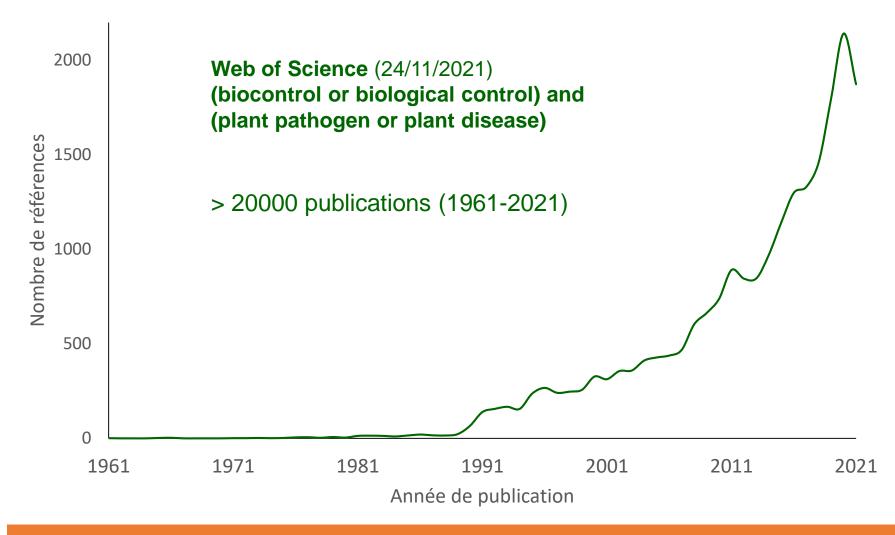

Produits phytopharmaceutiques

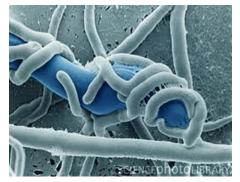
European Food Safety Authority

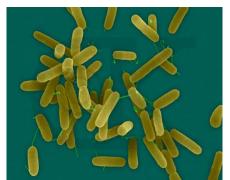
Approbation de la substance active

Loi d'avenir pour l'agriculture, l'alimentation et la forêt n°2014-1170, 2014 - Art 253-6

Autorisation de Mise sur le Marché spécialité commerciale


 Levier essentiel pour diminuer la dépendance aux pesticides chimiques contre les maladies des plantes


Domaine de recherche dynamique


Accélération des efforts de recherche

→ identification de nombreux microorganismes avec potentiel de biocontrôle

Agents microbiens commercialisés contre les maladies des plantes

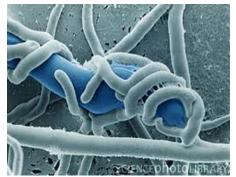
Monde

91 microorganismes commercialisés/utilisés
 49 champignons/levures/oomycètes + 37 bacteries/actinomycètes + 5 virus/phages

van Lenteren et al, 2018. BioControl

BioControl DOI 10.1007/s10526-017-9801-4

Biological control using invertebrates and microorganisms: plenty of new opportunities


Joop C. van Lenteren · Karel Bolckmans · Jürgen Köhl Willem J. Ravensberg · Alberto Urbaneja


• 120 microorganismes commercialisés/utilisés


Thomas Pressecq, 2021 (thèse en cours)

(Europe, USA, Chine, Russie, Océanie, Japon)

Agents microbiens commercialisés contre les maladies des plantes

Europe

'EU Pesticide Database' (15/11/2021) (http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/)

44 microorganismes approuvés contre les maladies des plantes

+ 14 souches microbiennes "en attente"

Agents microbiens commercialisés contre les maladies des plantes

France

Liste des produits phytopharmaceutiques de biocontrôle

Information

Direction générale de l'alimentation Sous-direction de la santé et de la protection des végétaux Bureau des intrants et du biocontrôle 251 rue de Vaugirard 75 732 PARIS CEDEX 15

Note de service

DGAL/SDSPV/2021-852

15/11/2021

https://ephy.anses.fr/ (15/11/2021)

31 microorganismes

17 champignons, 1 oomycète, 10 bactéries, 3 virus

Date de mise en application : Immédiate

Diffusion: Tout public

0149554955

Cette instruction abroge:

DGAL/SDSPV/2021-756 du 14/10/2021 : Liste des produits phytopharmaceutiques de biocontrôle, au titre des articles L.253-5 et L.253-7 du code rural et de la pêche maritime.

Cette instruction ne modifie aucune instruction.

Nombre d'annexes: 1

Objet : Liste des produits phytopharmaceutiques de biocontrôle, au titre des articles L.253-5 et L.253-7 du code rural et de la pêche maritime.

Les besoins sont-ils satisfaits?

France

https://ephy.anses.fr/, 15/11/2021

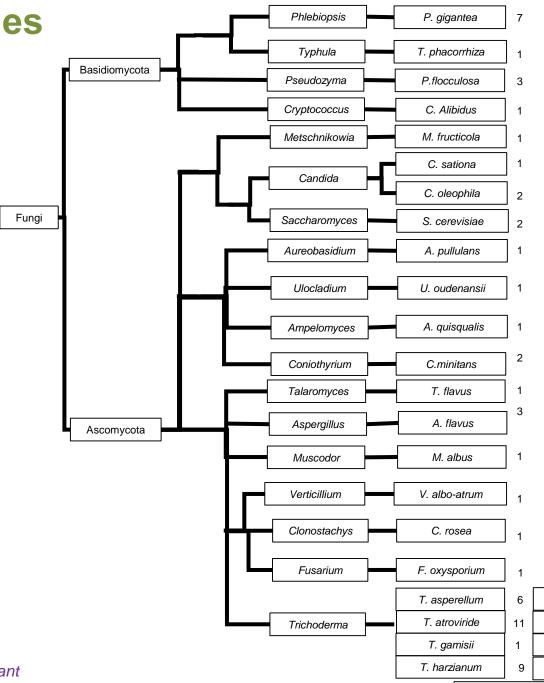
	Culture	Agents de biocontrôle microbiens
	Tomate	22
	Laitue	15
	Vigne	14
No.	Pomme de terre	5
	Céréales à paille	1

Disparités entre cultures

Les besoins sont-ils satisfaits?

France

https://ephy.anses.fr/, 15/11/2021


	Culture	Agents de biocontrôle microbiens	Usages (culture x type traitement)	x cible)
	Tomate	22	12	155 produits 24 usages 'maladies'
	Laitue	15	10	
	Vigne	14	8	260 produits 15 usages 'maladies'
1	Pomme de terre	5	4	
	Céréales à paille	1	1	156 produits 11 usages 'maladies'

Disparités entre cultures

Cibles non couvertes

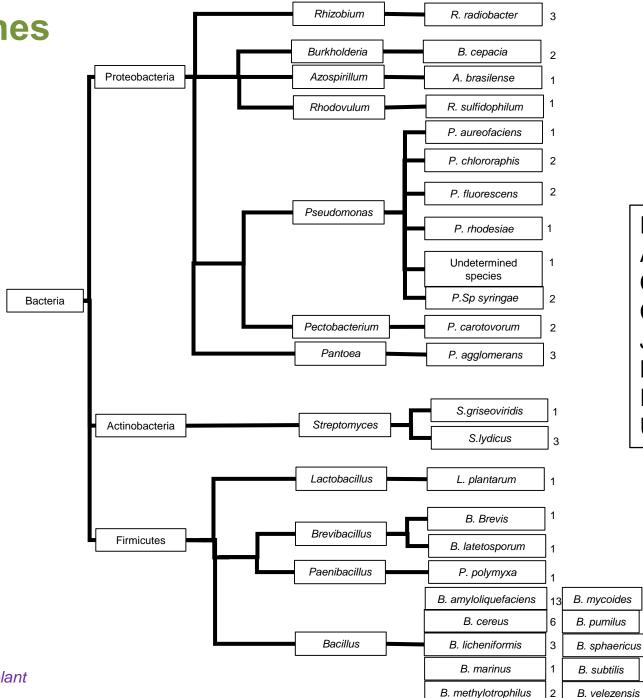
Peu d'espèces microbiennes représentées

Champignons

EU
Australia
Canada
China
Japan
New Zealand
Russia
USA

T. stromaticum

T. hamatum


T. polysparum

T. viride

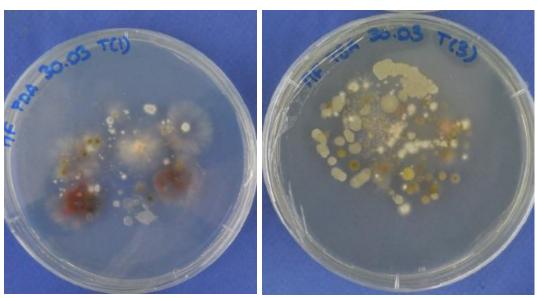
T. virens

Nicot, Pressecq, Bardin. Advances in bioprotectants for plant disease control in horticulture. Sous presse Peu d'espèces microbiennes représentées

Bactéries

EU
Australia
Canada
China
Japan
New Zealand
Russia
USA

13


Nicot, Pressecq, Bardin. Advances in bioprotectants for plant disease control in horticulture. Sous presse

Evolution du nombre d'agents de biocontrôle microbien

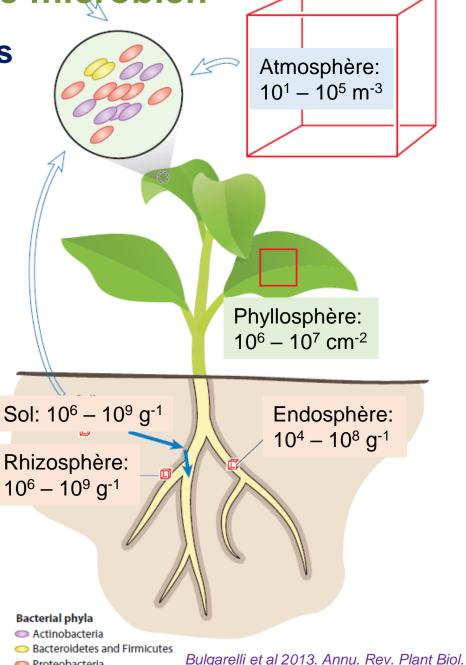
Augmenter le nombre de produits disponibles

Elargissement de l'approvisionnement en nouvelles souches microbiennes

Bénéficier de la recherche sur le microbiome (des plantes)

Forges et al, 2018. IOBC Bulletin

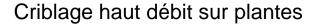
# espèces sur terre	Connues	Prédites
Champignons	43271	611 000

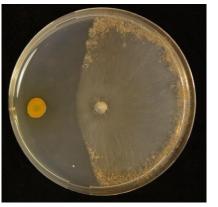

Mora et al. 2011. PLoS Biol.

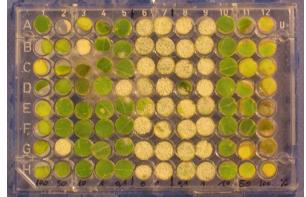
Bactéries

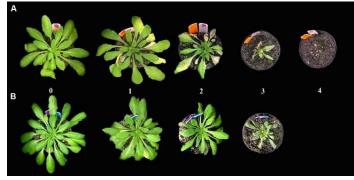
 $0.8-1.6.10^6$ OTUs

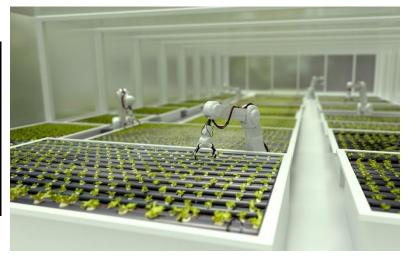
Louca et al, 2019. PLoS Biol.


Proteobacteria




Evolution du nombre d'agents de biocontrôle microbien


Augmenter le nombre de produits disponibles


- Elargissement de l'approvisionnement en nouvelles souches microbiennes
 Bénéficier de la recherche sur le microbiome (des plantes)
- Amélioration les méthodes de criblage pour la sélection des candidats

Favoriser l'homologation des produits

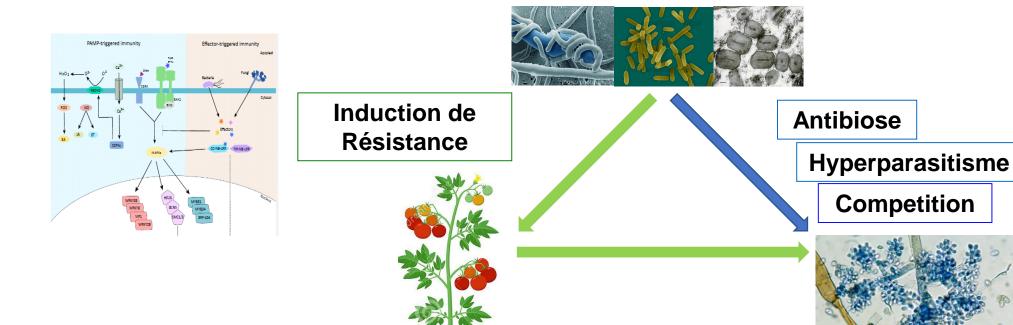
Évolution réglementaire en cours des textes européens sur les microorganismes de biocontrôle

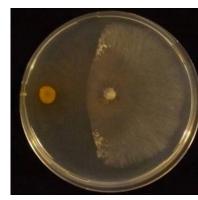
Efficacité au champ

- Souvent inférieur à l'efficacité en conditions contrôlées
- Souvent variable et peu prévisible

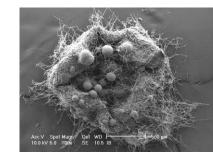
Perception des utilisateurs (enquêtes 2020-21, thèse T. Pressecq)

- ✓ Perception d'une faible efficacité (note moyenne de 8/20)
- ✓ Regret d'une insuffisance d'informations sur presque tous les produits

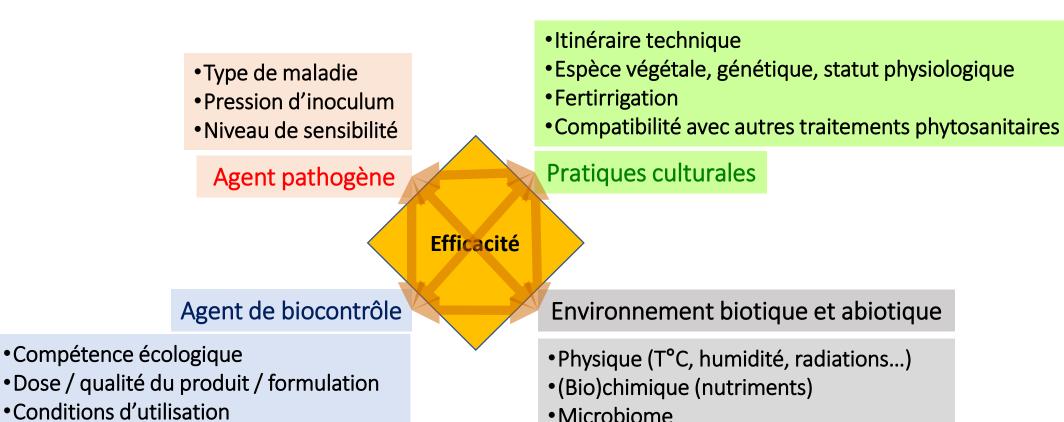

- Interview d'utilisateurs de biocontrôle (50):
 - ✓ Accès à des références techniques fiables sur l'efficacité du biocontrôle sur le terrain
 - ✓ Conseils pour choisir le bon produit en fonction de la situation (données sur les facteurs d'efficacité)


Améliorer les connaissances sur les déterminants de l'efficacité protectrice du biocontrôle microbien



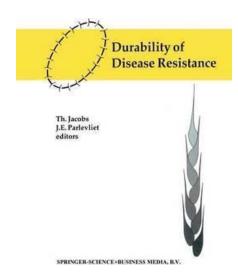

Améliorer les connaissances sur les déterminants de l'efficacité protectrice du biocontrôle microbien

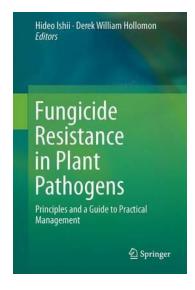
• Élucider les mécanismes d'action (Köhl et al, 2019; Legein et al. 2020 Front. Microbiol.)


Combinaisons de modes d'action

Améliorer les connaissances sur les déterminants de l'efficacité protectrice du biocontrôle microbien

Mode d'action


• Identifier les facteurs clés qui affectent l'efficacité protectrice


Outil de protection basé sur les régulations naturelles: efficacité dépend de variables biotiques et abiotiques

Améliorer les connaissances sur les déterminants de l'efficacité protectrice du biocontrôle microbien

• Prendre en compte la durabilité de l'efficacité de la protection

REVIEW published: 27 July 2015

Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides?

Marc Bardin 1*, Sakhr Ajouz 1, Morgane Comby 1, Miguel Lopez-Ferber 2, Benoît Graillot 23, Myriam Siegwart 4 and Philippe C. Nicot 1

¹ Plant Pathology Unit, Institut National de la Recherche Agronomique, UR407, Montfavet, France, ² Laboratoire de Génie de l'Environnement Industriel, Ecole des Mines d'Alès, Institut Mines-Telecom, Alès, France, ³ Natural Plant Protection, Arysta LifeScience Group, Pau, France, ⁴ Plantes et Systèmes de Culture Horticoles Unit, Institut National de la Recherche Agronomique, UR1115, Avignon, France

published: 19 June 201: dol: 10.3389/fpis.2015.0038

Resistance to bio-insecticides or how to enhance their sustainability: a review

Myriam Siegwart^{1*}, Benoit Graillot^{2,3}, Christine Blachere Lopez⁴, Samantha Besse³, Marc Bardin⁵, Philippe C. Nicot⁵ and Miguel Lopez-Ferber²

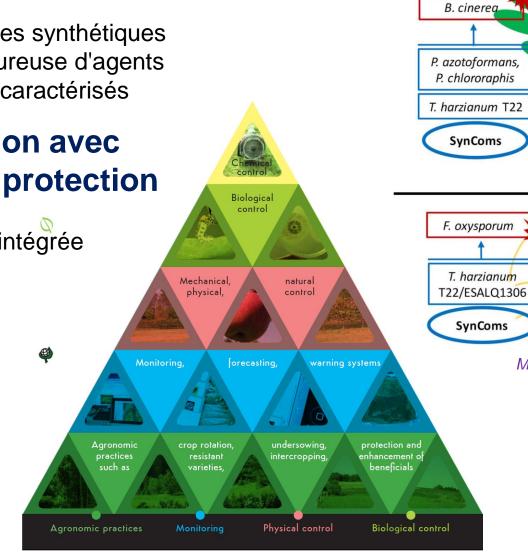
Institut National de la Recherche Agronomique, URT I 16, Plantie et Systémes de Culture Horticoles URI, Augron, Flance, 2 laboratore de Gérie de l'Environnement Industrie, Ecole des Mines d'Ale, Institut Mines ribecom et Université de Montpellier Sud de Flance, Ales, France, ² Naturai Planti Protection, Arysta LifeScience Group, Plau, France, ⁴ Institut National de la Recherche Agronomique, UR407, Plant Pathology Unit, Montfaler, Finance.

Résistance à Bacillus thuringiensis

Janmaat & Myers, 2003

Résistance au granulovirus anticarpocapse

Fritsch et al., 2005; Eberle and Jehle, 2006; Sauphanor et al., 2006; Berling et al., 2009


- Lien entre diversité de sensibilité et irrégularité d'efficacité au champ ?
- Probabilité d'apparition de résistance selon le mode d'action et l'agent pathogène ciblé ?

Combiner des microorganismes dans des consortia

Communautés microbiennes synthétiques (SynComs): sélection rigoureuse d'agents microbiens de biocontrôle caractérisés

Combiner leur utilisation avec d'autres méthodes de protection

Perspective de protection intégrée

Direct effect

Indirect effect

B. cinerea

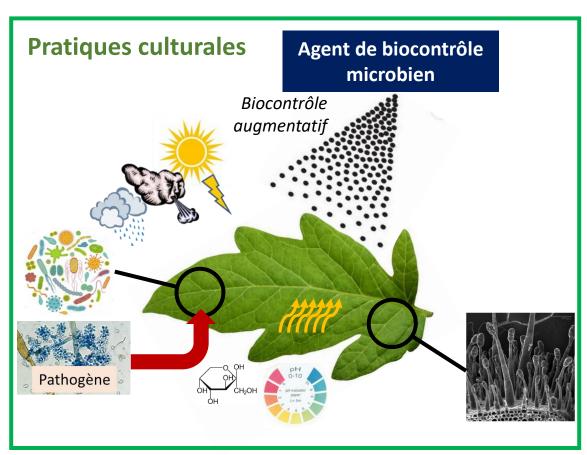
R. irregularis

B. amyloliquefaciens

CECT8238

SynComs

Minchev et al 2021, Front, Plant Sci.



brochure "Integrated Pest Management:
Working with nature"

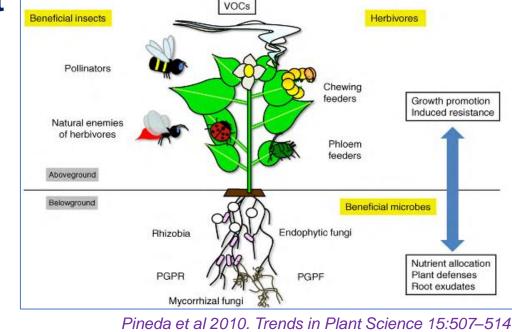
Favoriser l'adoption du biocontrôle microbien

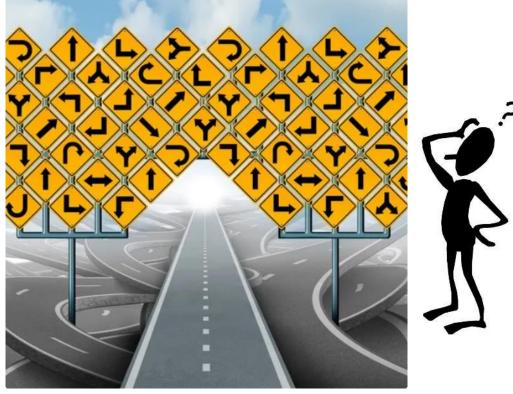
Faire face à la complexité du déploiement

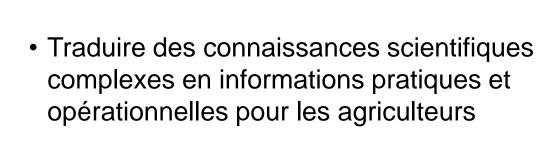
Améliorer les connaissances sur les interactions complexes en jeu à l'échelle de la plante

Conditions de survie, d'installation, de colonisation?

Modèles de prédiction des fluctuations populationnelles en fonction des principaux facteurs externes


Conditions d'activation du/des mode(s) d'action?


Modèles de prédiction de l'activation de(s) mécanisme(s) d'action en fonction des principaux facteurs externes


Favoriser l'adoption du biocontrôle microbien

Faire face à la complexité du déploiement

 Améliorer les connaissances sur les interactions complexes (éventuellement antagonistes) entre les méthodes de contrôle

Favoriser l'adoption du biocontrôle microbien

Faire face à la complexité du déploiement

- Manuel d'utilisation détaillé pour les produits de biocontrôle
- Outils d'aide à la décision "biocontrôle" (OAD)

Règles de décision "simples" (quand ?, comment ?, quantité ?, cadence ? ...)

Deci Control

http://ephytia.inra.fr/fr/P/175/Deci_Control

Merci

Claire TROULET

Jean-François BOURGEAY

Magali DUFFAUD

Sakhr AJOUZ

Yousra BOUAOUD

Sawai BOUKAEW

Marine FORGES

X. Fauvergue, A. Rusch, M. Barret, M. Bardin, E. Jacquin-Joly, T. Malausa,

Biocontrôle

Thomas PRESSECQ

Estelle TURC

