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Abstract: A previous study identified differences in rind aspects between Cantal-type cheeses manu-
factured from the same skimmed milk, supplemented with cream derived either from pasture-raised
cows (P) or from cows fed with maize silage (M). Using an integrated analysis of multiomic data, the
present study aimed at investigating potential correlations between cream origin and metagenomic,
lipidomic and volatolomic profiles of these Cantal cheeses. Fungal and bacterial communities of
cheese cores and rinds were characterized using DNA metabarcoding at different ripening times.
Lipidome and volatolome were obtained from the previous study at the end of ripening. Rind
microbial communities, especially fungal communities, were influenced by cream origin. Among
bacteria, Brachybacterium were more abundant in P-derived cheeses than in M-derived cheeses after
90 and 150 days of ripening. Sporendonema casei, a yeast added as a ripening starter during Cantal
manufacture, which contributes to rind typical aspect, had a lower relative abundance in P-derived
cheeses after 150 days of ripening. Relative abundance of this fungus was highly negatively correlated
with concentrations of C18 polyunsaturated fatty acids and to concentrations of particular volatile
organic compounds, including 1-pentanol and 3-methyl-2-pentanol. Overall, these results evidenced
original interactions between milk fat composition and the development of fungal communities
in cheeses.

Keywords: cheese microbiota; bacteria; fungi; metabarcoding; lipidomics; volatolomics; dairy
cow; pasture

1. Introduction

Both biotic and abiotic factors govern the formation of cheese microbiota. Biotic factors
include inoculated microorganisms, i.e., starters used for manufacture or ripening, and
endogenous microbiota [1]. The assembly of cheese microbiota is influenced by abiotic
factors related to milk primary production conditions, such as the animal feeding sys-
tem [2]. Workers involved in cheese manufacture, as well as tools, surfaces and ingredients,
e.g., salt and water, contribute to its establishment [3]. The role of microorganisms in the
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development of cheese sensorial characteristics is well documented. Indeed, in combi-
nation with enzymes naturally found in raw milk, cheese microbiota are responsible for
sugar fermentation, proteolysis and lipolysis, releasing volatile organic compounds (VOCs)
associated with flavors. Consequently, raw milk cheeses show greater sensorial complexity
in comparison to similar varieties manufactured from pasteurized milk [4]. Notably, during
a study performed on Salers cheeses, [5] observed that sensorial characteristics differed
between cheeses manufactured from heat-treated milk inoculated with various microbial
consortia, supporting the hypothesis that milk/cheese microbial community structure
influences cheese sensorial profiles.

Besides the influence of milk heat treatment, the sensorial quality of cheese also de-
pends on milk biochemical composition, including milk fat concentration and composition.
The role of lipolysis and free fatty acids (FFA) in the development of cheese flavor is essen-
tial, as most flavoring molecules are more liposoluble than hydrophilic. Animal diet is an
easy way to modulate milk lipid content and profile. Grazing is, for instance, associated
with considerable variations in milk fatty acid (FA) composition in comparison to diets
based on maize silage and concentrates [6].

In Morbier cheese, similar sensory profiles were reported between cheeses made from
the milk of pasture-raised cows and from the milk of cows fed with hay [7]. The same
conclusion was reported for Cantal cheeses manufactured from the milk of grazing cows
and from cows fed with maize silage [4]. In contrast, the effect of milk FA profiles on texture
and rind aspect has already been demonstrated in Cantal cheeses made from pasture milk.
The latter cheeses had a smoother texture than those manufactured from milk produced
by cows fed with maize silage [4]. Rinds of Cantal cheeses from raw pasture milk were
thinner and with smaller spots in comparison to those made from milk of cows receiving a
maize-based diet [4]. These observations echo the feedbacks of cheese-makers who reported
occasional difficulties in controlling the formation of the rind without any clearly identified
explanatory factors. Frétin et al. [4] hypothesized that differences in the rind aspect could
be due to an influence of milk FA profiles on the development of rind microbiota.

Extensive literature is available regarding rind bacterial community structure, in-
cluding smear-ripened soft cheeses (Maroilles and Munster [8]), mold-ripened soft cheeses
(Saint-Marcellin [8]) and uncooked pressed cheeses (Cantal [2] and Saint-Nectaire [8]). Never-
theless, data on rind fungal populations are less abundant, especially using next-generation
sequencing (NGS) techniques [8–11].

In Cantal cheese, typical rind development involves the addition of fungal species as
ripening starters, namely Debaryomyces hansenii, Penicillium fuscoglaucum and Sporendonema
casei. The objective of this study was to investigate the influence of milk FA composition
on the dynamics of bacterial and fungal communities in the core and rind of Cantal-type
cheeses during ripening using metabarcoding. In order to identify potential explanatory
factors for the effects of fat, an integrative analysis of omics data was carried out to explore
relationships between the composition of the microbiota and concentrations of FA and
volatile compounds in ripened cheeses.

2. Materials and Methods
2.1. Dairy Herd Management

The experiment was conducted at the experimental facility of INRAE Herbipôle in
Marcenat (45◦15′ N, 2◦55′ E; 1135–1215 m above sea level, Cantal, France). Two groups
of dairy cows were fed with different diets in order to modulate milk FA composition, as
previously described by Frétin et al. [4]. Briefly, the pasture (P) group was composed of
27 cows (14 Holstein and 13 Montbéliarde, i.e., dairy breeds most commonly found in farms
from the concerned geographical area (Auvergne Region)) grazed on mountain grassland
regrowths (69% grasses, 21% forbs and 10% legumes), with a daily supplement of 1.4 kg
(DM) of concentrate and 0.2 kg of minerals and vitamins premix. Twelve cows (6 Holstein
and 6 Montbéliarde) formed the maize (M) group and were kept indoors and fed daily
with 15 kg (DM) of maize silage, 2.5 kg (DM) of straw, and 5.6 kg (DM) of concentrate
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distributed twice a day (forage to concentrate ratio: 75.8:24.2). The animals were divided
into these 2 groups based on breed, parity (41 and 42% of primiparous cows in P and M
groups, respectively) and lactation stage (228 ± 121 and 223 ± 59 DIM (day in milk) in the
P and M groups, respectively). All cows were milked twice daily in the same herringbone
milking parlor.

2.2. Cheese Manufacture

This study is based on the same cheese batches as those previously considered by
Frétin et al. [4]. Briefly, on each production day, all cheeses were produced from the
same skimmed milk obtained from the P group cows, avoiding bias introduced by initial
differences in microbiota and biochemical composition between milks—except that from
cream fat matter. Skimmed milk was supplemented either with P- or M-derived pasteurized
cream to obtain the same final concentration of fat (39 g/L) in each vat (Figure 1). It was
thus hypothesized that, in this experiment, microbiota mainly originated from P skimmed
milk and that the addition of pasteurized cream did not introduce significant variations in
milk microbiota. For each cheese manufacturer, P and M morning milks were cooled down
to 4 ◦C, and pooled with the following evenings’ milk for overnight storage at 4 ◦C, before
being transported in airtight cans to the cheese-making pilot-scale facility (INRAE, UMR545,
Aurillac). After milk skimming, creams were pasteurized at 70 ◦C for 30 min. Cheese
manufacturing was repeated three times over one week with raw P skimmed milk and
three times on the following week with pasteurized P skimmed milk (78 ◦C for 10 s). For
each cheese manufacturing cycle, raw or pasteurized P skimmed milk was supplemented
with P or M pasteurized cream to reach a fat concentration of 38 g/L. Small-size Cantal
cheeses (10 kg) were manufactured simultaneously in distinct vats from 110 L of P- or
M-derived milk. Overall, all types of cheeses were manufactured in triplicate, for a total of
12 production cycles performed over a period of two consecutive weeks. Cheese-making
was performed according to Frétin et al. [2,12]. Briefly, milk was inoculated with Flora
Danica (i.e., Lactococcus lactis ssp. lactis, Lactococcus lactis ssp. cremoris, Lactococcus lactis
ssp. lactis biovar diacetylactis and Leuconostoc mesenteroides ssp. cremoris; CHR Hansen,
Saint-Germain-lès-Arpajon, France) at 0.05 g/100 kg, and Monilev (i.e., D. hansenii and
S. casei; Laboratoire Interprofessionnel de Production (LIP), Aurillac, France) and Penbac
(Brachybacterium tyrofermentans, Brevibacterium linens and P. fuscoglaucum; LIP, Aurillac,
France) as ripening starters. All cheeses considered during this work were manufactured
using the same batches of starter cultures in order to avoid any bias. Rennet Fabre 520 (LCP
Food Ingredients, Prat, France) was added at a concentration of 0.33 g/kg.
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Figure 1. Experimental design, performed in triplicate. The following samples were used for DNA
metabarcoding analyses: P- and M-derived raw milk, unripened P- and M-derived cheese (i.e., day
(D)3), P- and M-derived cheese rinds at D30 and D90 of ripening, P- and M-derived cheese rinds
at the end of ripening (i.e., D150) and P- and M-derived cheese cores at D150 (figure created using
BioRender.com, accessed on 4 November 2021)).
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2.3. DNA Metabarcoding

Total DNA from raw skimmed milks added with either P- or M-derived pasteurized
cream (10 mL), from cheese rinds (500 mg) at 30, 90 and 150 days of ripening (i.e., D30,
D90 and D150, corresponding to the onset, an intermediate point in the development of
the expected cheese rind and to an average ripening duration for Cantal cheese, respec-
tively), from cheese cores (500 mg) at the first day of ripening (i.e., D3) and at D150 was
extracted using phenol-chloroform extraction, as previously detailed by Frétin et al. [2].
These sampling times were selected based on a previous study performed on a simi-
lar cheese variety [5]. Regarding bacteria, V3-V4 regions of 16S rRNA gene (~510 bp)
were amplified using primers PCR1F_460 (5′-TACGGRAGGCAGCAG-3′) and PCR1R_460
(5′-TTACCAGGGTATCTAATCCT-3′). Each PCR was carried out with a final volume of
50 µL, corresponding to 1 µL of dNTP mixture (10 mM), 1.25 µL of each primer (20 µM),
5 µL of 10X buffer and 0.5 µL of 5 U MolTaq DNA polymerase (Médiane Diagnostics, Plaisir,
France). Fungal communities of cheese rinds were also explored through amplification
of ITS2 region (~350 bp) using the primers ITS3f (5′-GCATCGATGAAGAACGCAGC-3′)
and ITS4_KYO1 (5′-TCCTCCGCTTWTTGWTWTGC-3′), as detailed by Bokulich et al. [13].
Each PCR was carried out in a final volume of 25 µL, including 0.5 µL of dNTP mixture
(10 mM), 0.75 µL of each primer (20 µM), 2.5 µL of 10X buffer, and 0.25 µL of 5 U MolTaq
DNA polymerase. The PCR amplification was performed under the following conditions:
94 ◦C for 1 min followed by 30 cycles of 94 ◦C for 1 min, 65 ◦C (bacteria) or 55 ◦C (fungi)
for 1 min and 72 ◦C for 1 min, followed by a final elongation at 72 ◦C for 10 min. Bacterial
and fungal amplicons were sequenced using Illumina MiSeq (Waltham, San Diego, CA,
USA) by an INRAE GeT-PLaGE platform (Castanet-Tolosan, France), generating 250 bp
paired-end reads. Raw sequence data were deposited at the Sequence Read Archive of the
National Center for Biotechnology Information under the BioProject number PRJEB50379.

Sequence data were processed and analyzed using the rANOMALY package [14].
Briefly, the processing of raw reads in this package is based on the dada2 R package, looking
for potential sequencing errors resulting from the Illumina process, correcting these errors
and defining amplicon sequence variants (ASVs) [15]. Taxonomic assignment of bacterial
sequences was based on two databases, namely DAIRYdb v2.0 and SILVA 138, keeping
the assignment with the highest confidence or the deepest taxonomic rank [16,17]. Fungal
taxonomic assignment was based on the UNITE v8.2 Fungi database [18]. The output file
was a phyloseq R object, which was used for all subsequent statistical analyses [14].

2.4. Lipidomics and Volatolomics

Lipidomic and volatolomic data were acquired from the study published by
Frétin et al. [4]. Briefly, lipidome was determined from 100 mg of lyophilized and ground
cheese at D150. After an extraction methylation procedure (methanol/boron trifluoride
95:5 v/v), FA were identified by gas chromatography, as described by Lerch et al. [19].
Purge-and-trap extraction was used in association with GC-MS to acquire volatolomic data
on 10 mL of an ultraturraxed 10% w/w suspension of grated cheese in ultra-high quality
water [20].

2.5. Statistical Analyses

Barplots were built using Microsoft Excel, only considering ASVs with relative abun-
dance ≥1% in at least one type of sample (P- or M-derived milk, cheese core or cheese
rind). Plots were drawn by type of milk (raw vs. pasteurized) and type of animal feeding
(P-derived vs. M-derived milks and cheeses). All statistical analyses were performed
using the rANOMALY package [14]. α-diversity indices were calculated, namely the
number of observed ASVs and Chao1 for richness, and Shannon and Simpson indices for
diversity. Values were compared by ANOVA, and Tukey’s HSD tests were performed for
pairwise comparisons when necessary. Regarding β-diversity, Bray-Curtis dissimilarity ma-
trices were built, and results were plotted using canonical correspondence analysis (CCA).
PERMANOVA was performed to look for significant differences in microbial community
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structure between types of samples (i.e., cream origin, time of sampling and interaction
between both factors). P-values were adjusted using the FDR method. Differential analysis
was performed at the species taxonomic rank, merging results of three methods, namely
DESeq2, MetaGenomeSeq and MetaCoder [21–23].

Before looking for potential correlations between FA/VOCs profiles and rind micro-
biota, a pre-selection of variables was performed as follows. Regarding microbiota, only
species represented by at least five reads and at least two samples were considered. Regard-
ing FA and VOCs, only molecules previously identified by [4] as present at significantly
different concentrations between P- and M-derived cheese rinds were included in the
analysis. After normalization, Pearson correlation matrices were built between metabar-
coding data and conserved FA or VOCs, and the respective heatmaps were built using the
R package heatmaply with default parameters for clustering, also including α-diversity
indices [24]. For all analyses, p-values ≤ 0.05 were considered significant.

3. Results
3.1. Microbial Communities from Milk to Cantal Cheese

Bacterial and fungal communities of raw milk supplemented with either P- or M-
derived pasteurized cream and of derived Cantal cheeses were studied using DNA metabar-
coding. Regarding bacterial communities, a total of 2,279,767 reads were obtained. Overall,
Firmicutes was the dominant phylum in this analysis, representing more than 85% of
reads. A total of 167 ASVs was identified, belonging to 65 genera. Among these ASVs,
32 were common between all types of samples, i.e., raw milk, unripened cheeses, cheese
rinds and cheese cores. Forty ASVs were only found in rinds. For all results detailed here-
after, raw milk cheeses and pasteurized milk cheeses were considered separately. Figure 2
presents cumulative barplots of relative abundances of the major bacterial genera in all
types of samples.

Regarding raw milk, the dominant taxa were Hafnia, Lactococcus and Serratia. Hafnia
was still present in cheeses at D3, but its relative abundance was progressively reduced
during ripening. Unsurprisingly, the composition of rinds differentiated from that of
cores during ripening, with the emergence of bacterial genera such as Brevibacterium,
Brachybacterium, Yaniella and Serratia. The same trend was observed regarding samples
manufactured from pasteurized milk. No major effect of cream origin was observed on raw
milk bacterial profile at the genus rank. The influence of cream origin on other samples was
limited, with the exception of raw milk cheeses at D3 and raw milk cheese rinds at D150.

Overall, 30 fungal ASVs were identified using ITS metabarcoding from a total of
834,900 sequence reads. Figure 2 presents relative abundances of major fungal genera
in cheese rinds. The results detailed hereafter were observed for both pasteurized and
raw milk cheeses. At D30, the dominant fungal species on Cantal rinds were D. hansenii
and a Penicillium sp. Progressively, the relative abundances of both taxa were reduced
during ripening, concomitantly with an increase in that of S. casei. In P-derived cheese
rinds at D150, an undetermined Microascaceae was present at a sub-dominant level. At
all sampling times, the relative abundance of D. hansenii was higher in P-derived than in
M-derived rinds.

3.2. Diversity of Microbial Communities from Milk and Cantal Cheese during Ripening

Richness (number of ASVs and Chao1) and diversity (Simpson and Shannon indices)
parameters were calculated to characterize α-diversity (see Tables S1 and S2). Richness and
diversity were generally higher in rinds than in cores at D150 for both raw and pasteurized
milk cheeses. For raw milk cheeses, the only significant effect of cream origin on bacterial
communities was observed with Simpson indices for cores at D150, with greater diversity
in M-derived cheeses (p-values = 0.033). For pasteurized milk cheese cores at D150, a
significant difference in bacterial richness was observed depending on cream origin. A
strong influence of cream origin on Shannon (p-value = 0.044) and Simpson (p-value = 0.048)
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indices were identified at D150, regarding fungal communities, with a higher diversity in
P-derived cheese rinds.
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Potential differences in community structure were assessed through CCA (Figure 3).
As results for raw and pasteurized milks were similar, only raw milk cheese samples
were displayed. Ripening time significantly impacted bacterial (Figure 3A) and fun-
gal (Figure 3B) community structure. When considering all samples independently of
ripening time, no effect of cream origin was identified (Figure 3C,D). However, inter-
action cream origin x ripening time had a significant influence on bacterial and fungal
communities (Figure 3E,F).
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Figure 3. CCA built from Bray-Curtis dissimilarity matrix and comparing bacterial (A,C,E) and fungal
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3.3. Differentially Abundant Bacterial and Fungal Taxa between P- and M-derived Cheese Rinds

Differential analyses were performed to look for differentially abundant fungal and
bacterial species between P- and M-derived cheese rinds at D30, D90 and D150. Species
were considered dominant in the case of relative abundance ≥ 1%, sub-dominant when
0.1% ≤ relative abundance < 1% and rare when relative abundance was <0.1%. Figure 4
presents results of differential analyses for bacterial and fungal communities, respectively.
Color intensity corresponds to the DESeqLFC value. Relative abundances of concerned taxa
are detailed in Tables S3 and S4. Globally, the number of differentially abundant bacterial
species between P- and M-derived cheese rinds increased during ripening but was lower
and more stable in pasteurized milk cheese rinds. The number of differentially abundant
fungal species was variable during ripening, independently of milk heat treatment.

In raw milk cheese rinds at D30, only two dominant species assigned to Brevibacterium
spp. and Enterobacter spp. contributed to differentially defining M- and P-derived bac-
terial communities, respectively. At D90, P-derived cheese rinds were characterized by
significantly higher abundances of Brevibacterium spp., Brachybacterium spp. and Yaniella
halotolerans. Finally, at D150, Brachybacterium spp. were more abundant in P-derived rinds,
while it was the case of Lactococcus spp. in M-derived rinds. At the same sampling time,
some sub-dominant taxa were also allowed to differentiate P-derived cheese rinds, includ-
ing Nocardiopsis sp., Stackebrandtia nassauensis, Ruania aldibiflava, Corynebacterium sp. and
Dietzia timorensis. Fungal communities were characterized by higher levels of D. hansenii
in P-derived rinds throughout ripening, while a higher abundance of Penicillium sp. was
observed in M-derived cheese rinds. Microascaceae family and S. casei were characteristic
of P- and M-derived rinds at D150, respectively. At a sub-dominant level, several Mucor
species were more abundant on P-derived rinds. Conversely, an unidentified species of the
genus Yamadazima had a higher relative abundance in M-derived rinds.
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Figure 4. Differential analysis for bacterial (A,B) and fungal (C,D) communities between M- and
P-derived cheese rinds during ripening; (A,C), raw milk cheese rinds; (B–D), pasteurized milk
cheese rinds; color intensity depends on DESeqLFC value; * means that abundance of the taxon is
significantly different (i.e., corrected p-value ≤ 0.05); taxa written in bold are likely to be associated
with starter cultures; dominant taxa have a relative abundance ≥ 1%; sub-dominant taxa have a
relative abundance between 0.1 and 1%; minor taxa have a relative abundance < 0.1%.

In pasteurized milk cheese rinds, P-derived samples were characterized by higher
levels of Enterobacter spp. throughout the whole ripening process. At D150, these rinds were
also characterized by higher levels of Brachybacterium spp. and of Hafnia alvei. Minor taxa,
including Flavobacterium sp. and Acinetobacter sp., also contributed to defining bacterial
profiles of the final P-derived rinds. M-derived rinds were characterized by higher levels of
Brevibacterium spp. during ripening (D30 and D90). At D150, only two minor taxa of the
genus Jeotgalicoccus characterized M-derived cheese rinds. Dominant fungal populations
according to cream origin were similar to what was observed for raw milk cheese rinds.
At a sub-dominant level, M-derived rinds were characterized by a higher abundance of
Yarrowia lipolytica and Kluyveromyces sp.
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3.4. Potential Correlations between Final Rind Microbial Communities and Profiles of FA
and VOCs

Heatmaps of correlations between metabarcoding data and FA (Figure 5) or VOCs
(Figure 6) were plotted. Both heatmaps were clearly vertically cleaved into two parts, FA
and VOCs being clustered according to cream origin. Since no differences in the gross
chemical composition of the cheese, pH and mineralization were associated with the ori-
gin of the cream, regardless of the treatment of the milk (Table S5), these data were not
considered in the integrative analysis. In contrast, the inclusion of α-diversity indices for
bacterial and fungal communities within the matrices allowed a more global interpretation
of the results. Regarding bacteria, Simpson and Shannon indices were correlated with
the concentration of C18:1 cis13 (p-values = 0.008 and 0.010, respectively). Concentra-
tions of 2-propanol, 2-pentanol, 2-heptanol and methylhexanoate were correlated with
bacterial richness (all p-values < 0.050), whereas concentrations of 1-pentanol, 2-pentanol,
2-heptanol and 3-methyl-2-pentanol were impacted by bacterial diversity (p-values < 0.05).
While focusing more on bacterial species, the concentration of C18:1 cis13 was correlated
with Brachybacterium spp. (p-value = 0.042) and Nocardiopsis sp. (p-value = 0.029), the
latter one also being correlated with CLA concentration (p-value = 0.044). No significant
correlations were identified between species significantly more abundant in M-derived
cheese rinds, i.e., Lactococcus spp., Y. halotolerans, S. equorum and Lactobacillus sp., and FA
concentrations. Regarding VOCs, concentrations of 1-pentanol and 3-methyl-2-pentanol
(all p-values < 0.050) were correlated with most species identified as more abundant in
P-derived cheese rinds. Among species more abundant in M-derived cheese rinds, Lactococ-
cus spp. were significantly correlated with 2-propanone (p-value = 0.042), while Lactobacillus
sp. was correlated with methylbutanoate, methylhexanoate, 2-propanol, 2-pentanol and
2-heptanol (all p-values < 0.050).
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coefficient; point size is proportional to –log10 of p-value; colors in column margin indicate whether
the concentration of the concerned FA was significantly higher in P- (green) or M- (yellow) derived
cheese rinds; colors in line margin indicate whether the concerned taxon is a bacterium (blue) or
fungi (red) and whether taxon was more abundant in P- (green) or M- (yellow) derived cheese rinds
or with a similar abundance between both rinds (grey).
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Figure 6. Correlations between metabarcoding data and volatiles identified by [4] as significantly
different between P- and M- derived cheese rinds; blue to red scale indicates the value of correlation
coefficient; point size is proportional to –log10 of p-value; colors in column margin indicate whether
concentration of the concerned FA was significantly higher in P- (green) or M- (yellow) derived
cheese rinds; colors in line margin indicate whether the concerned taxon is a bacterium (blue) or
fungi (red) and whether taxon was more abundant in P- (green) or M- (yellow) derived cheese rinds
or with a similar abundance between both rinds (grey).

The number of fungal ASVs as well as Shannon and Simpson indices were clearly
correlated with C18 FA (C18:0, C18:1 cis9, C18:1 cis13, C18:2n-6, C18:3n-3 and CLA) and neg-
atively correlated with both medium-chain saturated and unsaturated FA, including C10:0,
C12:0, C14:0 and C16:0. Concentrations of 1-pentanol, 3-methyl-2-pentanol and methylben-
zene were correlated to Shannon and Simpson indices. Regarding unidentified Microas-
caceae, D. hansenii and Mucor circinelloides, correlations similar to what we reported here-
above for Simpson and Shannon indices were revealed (all p-values < 0.050). In M-derived
cheese rinds, S. casei was only correlated with concentrations of iso C16 (p-value = 0.046),
but highly negatively correlated with C18:1 cis13 (correlation coefficient = −0.91;
p-value < 0.001). Generally, concentrations of 1-pentanol, 3-methyl-2-pentanol and methyl-
benzene were correlated with species more abundant in P-derived rinds. Regarding VOCs,
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a significant negative correlation was observed between relative abundance of S. casei and
concentrations of 1-pentanol (p-value = 0.016) and 3-methyl-2-pentanol (p-value = 0.004).

4. Discussion

Cheese is a complex matrix whose biochemical and microbial composition is influ-
enced by the conditions in which it is produced. Cow feeding is one of these factors, as it
influences milk and cheese FA and VOC profiles [2,6,25]. In this study, we integrated multi-
omic data to investigate the influence of cream origin on bacterial and fungal communities
of Cantal cheeses. Firstly, DNA barcoding was used to characterize microbial communities
based on ITS and 16S sequences for fungi and bacteria, respectively. Various ripening times
were considered, including cheese cores at D3 and D150 and cheese rinds at D30, D90 and
D150. Metabarcoding data were related to lipidomics and volatolomics data previously
acquired from the same cheese samples [4].

Cheese rinds, influenced by the development and dynamics of fungal and bacterial
communities, contribute intensively to cheese sensorial properties [11]. Although remain-
ing dominant in rinds, the relative abundance of Lactococcus progressively decreased during
ripening, simultaneously with the increasing proportion of Brevibacterium and Brachybac-
terium. Both genera include species that were used as ripening starters, namely B. linens
and B. tyrofermentans, and are typically found in cheese rinds [1].

Some influence of cream origin on the cheese-dominant bacterial community was
identified. Overall, ripening bacteria, including Brevibacterium spp. and Brachybacterium
spp., had a significantly higher relative abundance in P-derived cheeses, while M-derived
cheeses promoted the maintenance of higher Lactococcus levels. P-derived raw milk cheese
rinds were also characterized by higher abundances of some sub-dominant taxa in com-
parison to M-derived cheeses rinds. Among these, Nocardiopsis spp., a species commonly
observed on cheese rinds since the emergence of NGS, was already identified as prevalent
in pasture-derived Cantal cheeses [2]. Corynebacterium sp., Dietzia psychralcaliphila and
Dietzia timorensis were also more abundant in P-derived cheese rinds at D150. The presence
of Dietzia spp. was already mentioned in milk primary production environment [2] and in
final cheese rinds [26]. Corynebacterium and Dietzia are responsible for the production of
carotenoids [26]. They could thus be associated with the yellower color observed during
sensorial analyses on P-derived cheeses [4].

The dynamics of fungal communities during Cantal cheese ripening had never been
investigated before. Overall, 32 ASVs were identified in Cantal cheese rinds. This number
ranks among the highest values reported in previous works on uncooked pressed cheeses,
in which between 10 and 30 OTUs were identified [8,10]. Globally, rind fungal profiles
intensively evolved during ripening. At D30, D. hansenii was the most abundant taxon
in both P- and M-derived cheese rinds, followed by a Penicillium sp., D. hansenii and P.
fuscoglaucom were added as ripening starters for Cantal cheese manufacturing [2]. D. hansenii
was reported as the dominant fungal species in several cheese rinds, including Saint-Nectaire,
Maroilles, Munster, Raclette and Gruyère [27]. The third fungal starter, S. casei, had a limited
relative abundance at D30 (i.e., 3–5%), but its proportion was intensively increased at D90
(67%) and D150 (75–93%). This tendency was similar between raw and pasteurized milk
cheese rinds. The presence of Scopulariopsis brevicaulis as a dominant species was already
mentioned in semi-hard cheese from Austria and Denmark [11,28]. At first glance, this
taxon was not identified in Cantal using ITS DNA metabarcoding. Nevertheless, between
7 and 10% of sequence reads of raw and pasteurized P-derived cheese rinds were assigned
to members of the Microascaceae family, the latter one including Scopulariopsis spp. Using
NCBI Nucleotide BLAST [29], this ASV was assimilated to S. brevicaulis with sequence
identity and coverage of 100%. Interestingly, cream origin had a great influence on the
development of this species in cheese. The presence of organisms less frequently mentioned
on cheese rinds was observed during the present work, including Yamadazima spp. or Mucor
spp. Yamadazima spp. are highly halotolerant yeasts already isolated from dairies and
cheese-processing environments, including cheese brines [27]. Mucor spp. are molds
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described as responsible for defects in cheese, including unexpected flavors and colors, but
some species, like Mucor fuscus, could be desired in some cheeses for their technological
role through their proteolytic and lipolytic activities [27,30]. Mucor spp. and Yamadazima
spp. were differentially abundant between P- and M-derived cheeses.

The main hypothesis of this work was that cream origin, characterized by variations
in cheese rind lipidomic profiles, is responsible for modulation of cheese bacterial and
fungal communities, themselves associated with differential production of VOCs through
their metabolic activities. Thus, we decided to look for correlations between microbiota
and FA profile, with a focus on differentially abundant species between P- and M-derived
cheese rinds. Similarly, the influence of these species on VOC profiles was also investigated.
Figure 5 revealed a strong influence of cheese rind FA profile on microbial communities,
especially fungi. Previously, it was observed that concentrations of C18 FA were higher
in P-derived cheese rinds, while those of short- and medium-chain FA were higher in
M-derived cheese rinds [4]. Although their influence on bacteria seemed limited, monoun-
saturated FA (MUFA) and PUFA could play a potential role in the differentiation of fungal
communities between P- and M-derived cheese rinds. In particular, high concentrations
of MUFA and PUFA could have a negative effect on the development of the yeast S. casei.
This species is commonly added as a ripening starter during Cantal cheese manufacture
and contributes to the typical ochre color of rinds. During a sensorial evaluation, trained
panelists attributed significantly lower notes to P-derived rind spot salience and quan-
tity [4]. P-derived cheese rinds were also thinner than M-derived ones. Potentially, all these
observations could be associated with the lower abundance of S. casei, identified using DNA
metabarcoding and significantly negatively correlated with C18:1 cis9. A phenomenon
of pronounced oiling-off was already described as inhibitive on yeasts, e.g., Mucor sp. in
Saint-Nectaire cheese [19], but it was not the case in the present study. Indeed, Mucor sp.
had a significantly higher relative abundance in P-derived than in M-derived cheese rinds.
Contrary to S. casei, growth of S. brevicaulis was promoted in cheese rinds rich in MUFA
and PUFA, resulting in a final relative abundance of nearly 10%. Nevertheless, the link
between S. brevicaulis and FA profiles has never been described, and it should always be
reminded that a correlation does not necessarily involve a causal relationship.

Panelists who tasted P- and M-derived Cantal cheeses did not identify significant dif-
ferences in aromas and flavor [4]. Nevertheless, chemical analyses revealed significant dif-
ferences in the concentration of some alcohols, ketones, esters and aldehydes. Some of them
derived from FA, including butanal, pentanal, heptanal, 2-butanone and 2-propanol [4].
As a consequence, cream origin could have an influence on the final concentrations of
these VOCs. Among these molecules, ketones and related alcohols like 2-pentanol and
2-heptanol were more concentrated in M-derived cheese rinds, while aldehydes had higher
concentrations in P-derived cheese rinds. From Figure 6, several microbial species-VOC
pairs were significantly correlated. In studies published by [31,32] on Historic Rebel and
Pélardon cheeses, a strong correlation was observed between Lactococcus spp. and ketones.
It was also the case in the present study, and Lactococcus spp. were significantly more
abundant in M-derived cheeses, in which final concentrations of ketonic VOCs were higher.
Similarly, our work and previous studies converge on showing that the concentration of
secondary alcohols was correlated to the presence of Lactobacillus spp. [31,32].

In Pélardon, D. hansenii was not correlated with particular VOCs and was thus consid-
ered as a poorly aromatic strain. In the present work, D. hansenii and other Debaryomyces
spp. were more abundant in P-derived rinds and were correlated with concentrations
of methylbenzene. The presence of S. brevicaulis was identified at a dominant level after
the extended ripening of Pélardon cheese [32]. This relative abundance was negatively
correlated to the concentration of ketonic VOCs. Similar tendencies were observed in Cantal
cheese rinds. In these cheeses, a significant positive correlation was also identified between
S. brevicaulis and concentrations of aldehydes, methylbenzene and 1-pentanol. S. brevicaulis
is a mold known for its intense proteolytic activity and should potentially be considered as
a cheese spoiler when found in the dominant position [32]. Nevertheless, at the extent of
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P-derived Cantal cheese rinds (i.e., a relative abundance < 10%), no perceptible deleterious
effects on cheese sensorial properties were reported by the trained panelists [4].

In addition to the already observed correlations, the present study identified novel
microbial species-VOC correlations. For instance, a lot of bacterial species that were more
abundant in P-derived rinds, including Corynebacterium sp. and Dietzia spp., were correlated
to 1-pentanol. Interestingly, this VOC was strongly negatively correlated to levels of S. casei,
suggesting that P-derived cheese lipidome and volatolome could create a less favorable
environment for the optimal growth of this yeast.

It is difficult to certify that VOCs correlated with given taxa effectively result from the
metabolic activities of these microorganisms without performing specific investigations.
Furthermore, if the volatolomic profile is effectively influenced by cheese microbiota, it
can also be associated with the lipidomic profile. The inhibitory activity of some VOCs on
specific microbial species also adds complexity in the understanding of the relationships
between microbial, FA and VOC profiles. As an example, VOCs produced by the secondary
metabolism of G. geotrichum could inhibit the growth of Brachybacterium spp. and promote
the growth of Vibrio spp. and Psychrobacter spp. [33]. Finally, it is important to mention that
the identified VOCs were not necessarily produced by surface microbiota. Indeed, due to
VOC volatility, molecules liberated in the cheese core could diffuse to the upper layers.

5. Conclusions

Several studies have already used multiomic approaches to relate cheese microbial,
FA and/or VOC profiles but, to our knowledge, the present work is the first to focus on the
influence of milk FA composition that derived from pasture-based (P) or maize silage-based
(M) animal diet, on all these parameters. Additionally, Cantal cheese rind microbial com-
munities were characterized for the first time by using NGS technologies. We showed that,
in addition to a different cheese lipidome, cream origin modulates cheese microbiota and
especially fungal communities. Similarly, correlations can be established between cheese
VOC profiles and microbiota. Nevertheless, a comprehensive understanding of interactions
among all these factors remains a challenge and requires more specific investigations. In
particular, the differential relative abundance of several fungal taxa such as S. casei between
P-derived and M-derived cheese rinds, regardless of the milk treatment (pasteurized or
raw), is a topic of prior interest. Indeed, this yeast has been historically added as a starter
for Cantal cheese ripening and contributes to the expected typical rind aspect. These results
raised questions about the tripartite match between milk primary production conditions,
expected cheese rind appearance and characteristics of added ripening starters. Thus, it
would be worthwhile in future work to evaluate the effects of fat composition on different
strains of the species used as starter cultures. In addition to the fatty acid composition, the
concentration of certain molecules, including carotenes, vitamins A and E, is known to be
influenced by animal diet and may vary according to the season. Their potential influence
on cheese microbiota could deserve more attention.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms10020334/s1, Table S1: α-diversity indices for
bacterial communities. Significant p-values between P- and M-derived samples are written in italic
bold. For each index, values not sharing the same superscript letter by line are significantly different;
Table S2: α-diversity indices for fungal communities. Significant p-values between P- and M-derived
samples are written in italic bold. For each index, values not sharing the same superscript letter
by line are significantly different; Table S3: Relative abundance of differential bacterial taxa found
differentially abundant between P- and M-derived cheese rinds; Table S4: Relative abundance
of differential fungal taxa found differentially abundant between P- and M-derived cheese rinds;
Table S5: Gross composition and physicochemical characteristics of P- and M-derived cheeses
manufactured from raw or pasteurized milk.
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