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Short Title: Stomatal Control by Pavement Cell Turgor 25 
 26 
One sentence summary: Inactivation of the Arabidopsis K+ channel gene AtKC1 reveals that interactions 27 
and K+ shuttling between guard cells, pavement cells and trichomes contribute to the non-autonomous 28 
stomatal responses. 29 
 30 
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 35 
Abstract 36 
 37 
Stomata optimize land plants’ photosynthetic requirements and limit water vapor loss. So far, all of the 38 
molecular and electrical components identified as regulating stomatal aperture are produced and operate 39 
directly within the guard cells. However, a completely autonomous function of guard cells is inconsistent 40 
with anatomical and biophysical observations hinting at mechanical contributions of epidermal origins. 41 
Here, K+ assays, membrane potential measurements, microindentation and plasmolysis experiments 42 
provide evidence that disruption of the Arabidopsis thaliana K+ channel subunit gene AtKC1 reduces 43 
pavement cell turgor, due to decreased K+ accumulation, without affecting guard cell turgor. This results in 44 
an impaired back-pressure of pavement cells onto guard cells, leading to larger stomatal apertures. Poorly 45 
rectifying membrane conductances to K+ were consistently observed in pavement cells. This plasmalemma 46 
property is likely to play an essential role in K+ shuttling within the epidermis. Functional complementation 47 
reveals that restoration of the wild-type stomatal functioning requires the expression of the transgenic 48 
AtKC1 at least in the pavement cells and trichomes. Altogether, the data suggest that AtKC1 activity 49 
contributes to the building of the back-pressure that pavement cells exert onto guard cells by tuning K+ 50 
distribution throughout the leaf epidermis. 51 

 52 

 53 

© American Society of Plant Biologists 2022. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 
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 54 

 55 

 56 

INTRODUCTION 57 

 58 

In land plants, the epidermis is covered by a non-permeable waxy cuticle and diffusion of CO2 59 

from the atmosphere to inner photosynthetic tissues takes place through microscopic pores 60 

present on the leaf surface. Each of these pores is surrounded by a pair of osmocontractile cells, 61 

named guard cells, together forming a stoma. The physical continuum provided by the stomata 62 

between the leaf inner tissue and the atmosphere also enables transpiration, which has however 63 

to be tightly controlled to avoid desiccation.  64 

 The epidermis comprises three main types of clonally related cells: pavement cells, guard 65 

cells, and trichomes. Embedded within the epidermal cell layer, guard cells can be in direct contact 66 

with surrounding pavement cells (e.g., in Arabidopsis thaliana; Supplemental Figure S1, left photo 67 

column), or associated with subsidiary cells (Nguyen et al., 2017) to form a stomatal complex 68 

(Gray et al., 2020). The molecular and osmotic machinery responsible for the changes in guard 69 

cell turgor that either open (Tominaga et al., 2001; Jammes et al., 2014) or close the stomatal pore 70 

has been deeply investigated (Jezek and Blatt, 2017). All components regulating stomatal 71 

movements, even the cell-to-cell mobile abscisic acid (ABA) stress hormone (Bauer et al., 2013), 72 

are produced and act directly within the guard cells. For instance, in response to low atmospheric 73 

or soil humidity, ABA initiates stomatal closing by binding to a subfamily of cytosolic receptors 74 

within the guard cells to activate a phosphorylation-based signaling cascade leading to reduced 75 

cell turgor by modulating interdependent H+, K+ and anion fluxes (Hedrich, 2012; Jezek and Blatt, 76 

2017). In angiosperms, mature guard cells are thought to lack plasmodesmata with adjoining cells 77 

(Wille and Lucas, 1984; Palevitz and Hepler, 1985), reinforcing the notion of their self-sufficient 78 

functioning. Highly-purified guard cell protoplasts have been extensively used to characterize in 79 

detail the ABA-induced events that include changes in ion transport activities (Jezek and Blatt, 80 

2017) as well as transcriptomic (Leonhardt et al., 2004; Wang et al., 2011), proteomic (Zhao et al., 81 

2008) and metabolomic profiles (Jin et al., 2013; Misra et al., 2015; Zhu and Assmann, 2017). 82 

 Potassium (K+) is a major osmoticum in this machinery (Humble and Raschke, 1971; Talbott 83 

and Zeiger, 1996; Hedrich, 2012; Jezek and Blatt, 2017; Britto et al., 2021). K+ fluxes into, or out 84 

of, guard cells, resulting in stomatal opening or closure, respectively, involve voltage-gated K+ 85 

channels of the Shaker family (Blatt, 2000; Véry and Sentenac, 2003; Pandey et al., 2007; Kim et 86 

al., 2010; Hedrich, 2012; Véry et al., 2014). Gene expression studies, electrophysiological 87 

analyses and reverse genetics approaches carried out in Arabidopsis have revealed that K+ influx 88 
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into guard cells, leading to stomatal opening, is strongly dependent on expression of the inwardly 89 

rectifying hyperpolarization-activated Shaker K+ channels KAT1 and KAT2 (K+ channel in 90 

Arabidopsis thaliana 1 and 2) (Lebaudy et al., 2008 and 2010), while the efflux of K+ from guard 91 

cells, allowing stomatal closure, involves expression of the outwardly rectifying depolarization-92 

activated Shaker K+ channel GORK (Hosy et al., 2003). 93 

 The large body of cellular and molecular information leads to the conclusion that guard cells 94 

possess all necessary molecular and electrical components in stomatal control. This 95 

understanding is, however, unmoored from the biophysical and anatomical approaches of 96 

stomatal regulation within its epidermal context, in which the embedded guard cells are subjected 97 

to mechanical and physiological exertions from their neighboring pavement/subsidiary cells (Jezek 98 

et al., 2019). For example, stomatal conductances can show considerable micro-heterogeneity in 99 

the leaf even when this organ is kept in a constant environment. This has been attributed to 100 

variable or unstable hydraulic interactions between guard cells with their surrounding pavement 101 

cells, usually within leaf sectors defined anatomically by vein patterns (Mott and Buckley, 2000). 102 

Also, at the cell level, when a series of reductions of turgor are experimentally imposed on both 103 

guard and pavement cells of epidermal strips, by increasing the concentration of an osmotically 104 

active solute in the external solution, the stomatal aperture does not narrow, as would be expected 105 

if guard cells responded independently of pavement cells. Rather, the pore aperture will widen in a 106 

first phase. When the concentration of the external solute is further increased, the stomatal 107 

aperture will then narrow in a more gradual second phase. In contrast, if the turgor of the 108 

pavement/subsidiary cell is selectively ablated, the stomatal aperture will simply narrow in a 109 

“monotonic” way with the increase in external solute concentration (MacRobbie, 1980). These 110 

observations suggest that, within an epidermal layer, the stomatal aperture is not autonomously 111 

regulated, but conjointly set by, at least, the relative turgor that opposes the guard cells with the 112 

surrounding pavement cells. Much is still unknown about the mechanisms that underlie the non-113 

autonomous stomatal response, such as the molecular, cellular and physiological bases of the 114 

interacting mechanisms, and the responsible epidermal cell types or their locations in the leaf. 115 

Here we show that the Shaker channel gene AtKC1 (Arabidopsis thaliana K+ channel 1) 116 

(accession number AT4G32650) contributes to these mechanisms.  117 

 Shaker channels, which dominate the plasma membrane conductance to K+ in most cell 118 

types, are encoded by a family of nine members in Arabidopsis (Véry et al., 2014). These 119 

channels are sensitive to voltage and activated by either membrane depolarization for K+ efflux 120 

(outwardly rectifying channels), or membrane hyperpolarization allowing K+ influx (inwardly 121 

rectifying channels). They are tetrameric proteins, and the four subunits that assemble to form a 122 

functional protein can be encoded by the same Shaker gene (giving rise to a homotetrameric 123 
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channel) or by different Shaker genes (heterotetrameric channel) (Daram et al., 1997; Urbach et 124 

al., 2000; Jegla et al., 2018). The Shaker subunit encoded by AtKC1 (At4G32650) has been 125 

termed a "silent" Shaker channel subunit (Reintanz et al., 2002) because it does not form 126 

functional channels on its own but only when in complex with other inwardly rectifying channel 127 

subunits to modulate the functional properties of the channel, including voltage sensitivity (Duby et 128 

al., 2008; Geiger et al., 2009; Honsbein et al., 2009; Jeanguenin et al., 2011; Zhang et al., 2015; 129 

Wang et al., 2016). 130 

 AtKC1 is expressed in roots and in leaves (Reintanz et al., 2002; Pilot et al., 2003). In the 131 

root, it is expressed in the periphery cells, where it associates with the AKT1 inward Shaker 132 

subunit and thereby plays a role in channel-dependent K+ uptake from the soil (Geiger et al. 2009; 133 

Honsbein et al. 2009). In leaves, AtKC1 is expressed in the whole epidermal tissue, i.e., in 134 

trichomes, hydathodes, pavement cells and guard cells (Pilot et al., 2003; Figure S1), in contrast 135 

to the two other well-studied inward Shaker channel genes KAT1 and KAT2 whose expression 136 

pattern in the leaf epidermis is restricted to guard cells (Nakamura et al., 1995; Pilot et al., 2001). 137 

In this report, we show that AtKC1 contributes to stomatal aperture regulation by modulating 138 

conflicting turgors of guard cells and surrounding pavement cells. 139 

 140 

RESULTS 141 

 142 

Disruption of AtKC1 Impairs the Control of Stomatal Aperture 143 

 144 

The role of AtKC1 in the leaf epidermis was investigated using a loss-of-function Arabidopsis line, 145 

atkc1-2, obtained in the Wassilewskija (Ws) ecotype (Jeanguenin et al., 2011). Leaves excised 146 

from atkc1-2 plants were found to lose more water than leaves excised from wild-type (WT) plants 147 

(Figure 1A). Furthermore, stomatal conductance measured in intact leaves (Figure 1B) and 148 

transpiration rates in whole-plant assays during both light and dark periods (Figure 1C) were larger 149 

in atkc1-2 than in WT plants. In agreement with these observations, in vitro measurements of 150 

stomatal aperture on leaf epidermal strips yielded larger values in atkc1-2 than in WT plants, 151 

regardless of dark or light conditions (stimuli of stomatal closure and opening, respectively) (Figure 152 

1D). Stomatal density was not affected by the atkc1-2 mutation (Figure S2). Transformation of the 153 

atkc1-2 mutant with a construct allowing expression of AtKC1 under the control of its own 154 

promoter region led to a wild-type phenotype in each of these experiments (Figures 1A-D), 155 

providing evidence that the stomatal defects of the atkc1-2 mutant plants resulted from the 156 

absence of AtKC1 functional expression. 157 

 158 
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Patch-clamp analyses of the membrane conductance to K+ in epidermal cells 159 

 160 

The patch-clamp technique was used to investigate the membrane conductance to K+ in 161 

protoplasts enzymatically obtained from wild-type and atkc1-2 epidermal strips. The 162 

electrophysiological recordings carried out in wild-type guard cell protoplasts yielded a classical 163 

current-voltage curve, displaying the typical strong rectification of both the inward and outward K+ 164 

currents (Figure 2) in agreement with literature data (Schroeder et al., 1987; Hosy et al., 2003; 165 

Lebaudy et al., 2008). This rectification results from the fact that the K+ channels mediating K+ 166 

transport across the guard cell membrane are either activated by membrane hyperpolarization and 167 

dedicated to K+ influx, or activated by membrane depolarization and then dedicated to K+ efflux. 168 

Within a large range of voltages, from ca. −150 to 0 mV in the experiment described by Figure 2, 169 

the two populations of channels are inactive and the membrane is almost impermeable to K+. 170 

Such channels are said to be "rectifiers": they mediate a K+ current in only one direction, either 171 

into or out from the cell. Very similar current-voltage curves were obtained in the WT and in the 172 

atkc1-2 mutant (Figure 2), which led to the conclusion that the absence of AtKC1 expression had 173 

no significant impact on the membrane conductance to K+ in guard cells.  174 

 No patch-clamp analysis of pavement cell protoplasts has been reported in Arabidopsis to 175 

our knowledge. Protoplasts from pavement cells were obtained by shorter enzymatic cell-wall 176 

digestion compared to guard cell protoplasts. Pavement cell protoplasts could be distinguished 177 

from guard cell protoplasts based on their larger size, and from contaminating mesophyll 178 

protoplasts (if any in the preparation) based on the absence of chloroplasts. 179 

 Different types of current traces could be distinguished in the WT pavement cell protoplasts 180 

(Figure 3 and Figure S3A-C). The recorded traces/protoplasts were operationally sorted into two 181 

major categories, according to the presence (Figure 3) or absence (see below, Figure S3A-C) of 182 

an inward current component displaying a time-dependent activation, reminiscent of a Shaker-type 183 

slowly activating conductance (Véry and Sentenac, 2002). 184 

 The membrane conductance to K+ of WT protoplasts displaying the Shaker-type slowly 185 

activating currents was analyzed in more detail. The current-voltage (I-V) curve obtained for this 186 

type of protoplast in the presence of 105 mM K+ in the external solution (Figure 3B and E, black 187 

symbols) crosses the x axis close to the K+ equilibrium potential, estimated to be close to -7 mV 188 

(the K+ concentration of the pipette solution and external bath being close to 140 and 105 mM, 189 

respectively), as expected since K+ was the single permeable ion present at a high concentration 190 

in these solutions. A major result is that these I-V curves reveal a rather low level of rectification 191 

(Figure 3B and E), when compared with that displayed by the guard cell I-V curve (Figure 2). 192 

Adding 10 mM Ba2+ (a classical K+ channel blocker: Schroeder et al., 1987; Wegner et al., 1994; 193 

D
ow

nloaded from
 https://academ

ic.oup.com
/plcell/advance-article/doi/10.1093/plcell/koac038/6528330 by IN

R
A Avignon user on 16 February 2022



 

 6 

Roelfsema and Prins, 1997; Pilot et al., 2001; Su et al., 2005; Rohaim et al., 2020) resulted in a 194 

strong inhibition of the recorded currents (Figure 3A-C), the magnitude of the inhibition appearing 195 

to be slightly voltage-dependent (Figure 3C). Decreasing the external concentration of K+ from 105 196 

mM to 15 mM shifted the current reversal potential by about −40 mV (Figure 3D-E; theoretical shift 197 

by ca. −49 mV expected for a membrane permeable to K+ only). Altogether, these results indicated 198 

that the currents were mainly channel mediated and carried by K+ ions. 199 

 Patch-clamp recordings were carried out in parallel experiments (alternating measurements 200 

on WT and mutant plants grown simultaneously) to compare the electrical properties of pavement 201 

cell protoplasts from WT and atkc1-2 plants. Among 28 protoplasts from WT pavement cells, 10 202 

(ca. 36%) belonged to the first category, i.e., displaying a Shaker-type time-dependent activation 203 

of inward currents (as shown in Figure 3F). In agreement with the data shown by Figure 3B and E, 204 

the I-V curve obtained from these 10 protoplasts displays a low level of rectification (Figure 3H, 205 

black symbols). In the second category of protoplasts, i.e. characterized by the absence of an 206 

inward current component displaying a time-dependent activation (18 protoplasts out of the 28 207 

ones), at least three patterns of current traces could be identified (Figure S3A-C). The current-208 

voltage curves corresponding to these recordings also displayed a rather weak level of rectification 209 

(lower panels in Figure S3A-C), when compared with that observed in guard cell protoplasts 210 

(Figure 2). The current recordings obtained in the atkc1-2 mutant protoplasts could be sorted into 211 

the same categories as those defined for the WT protoplasts, according to the presence or 212 

absence of a detectable time-dependent inward Shaker-type component. From 32 protoplasts, 8 213 

(25%) displayed such a component (Figure 3G), which was also characterized by a low level of 214 

rectification (Figure 3H, open symbols), and 24 protoplasts belonged to the other category (Figure 215 

S3D-F). No significant impairment of the membrane conductance to K+ was detected in the 216 

atkc1-2 protoplasts classified as belonging to the former category, i.e., displaying the Shaker-type 217 

component, when compared with the corresponding WT protoplasts (Figure 3H). In the other 218 

category, each of the different types of current patterns that were recorded in the atkc1-2 219 

pavement cell protoplasts seemed to have a counterpart amongst the current patterns observed in 220 

the corresponding WT protoplasts (Figure S3). This whole set of data did not provide evidence 221 

that the atkc1-2 mutation affected the membrane conductance to K+ in every pavement cell.  222 

 223 

Loss of AtKC1 Expression in Guard Cells Does Not Underlie the atkc1-2 Mutant Stomatal 224 

Phenotype 225 

 226 

AtKC1 transcripts were found to be at higher levels, by about 5 times, in whole leaf extracts than in 227 

guard cells (Figure 4, A right panel). Furthermore, AtKC1 transcripts in guard cell protoplasts were 228 

D
ow

nloaded from
 https://academ

ic.oup.com
/plcell/advance-article/doi/10.1093/plcell/koac038/6528330 by IN

R
A Avignon user on 16 February 2022



 

 7 

at lower levels than those of KAT1 and KAT2 (Figure 4A, left panel), the major contributors to the 229 

Shaker inward conductance in guard cells (Lebaudy et al., 2008 and 2010; Hedrich, 2012). 230 

 In the epidermis, the KAT1 promoter (ProKAT1) is specifically active in guard cells 231 

(Nakamura et al., 1995). A ProKAT1:AtKC1 construct introduced into atkc1-2 mutant plants did not 232 

rescue the stomatal phenotype of atkc1-2 in the dark, in the light and after a treatment with the 233 

stress hormone ABA, well known to induce stomatal closure (Figure 4B). Detection of AtKC1 234 

transcripts in leaves of atkc1-2 mutant plants transformed with this ProKAT1:AtKC1 construct 235 

(Figure S4A) provided first evidence that the absence of complementation was not due to 236 

expression issues. A crucial objective was then to check whether the ProKAT1 promoter was 237 

actually active and allowed expression of AtKC1 subunits in guard cells of the atkc1-2 mutant in 238 

the experimental conditions that had previously allowed the defect in stomatal aperture control to 239 

be observed in the atkc1-2 mutant (Figure 1). In planta, we did not succeed in detecting the 240 

fluorescence of AtKC1-GFP translational fusions expressed under the control of the ProKAT1 241 

promoter (or under control of any of the promoters described below when stably expressed in 242 

Arabidopsis transgenic plants). So far, to our knowledge, translational AtKC1-GFP fluorescence in 243 

plant cells has only been observed with strong constitutive promoters such as that from the gene 244 

of an H+-ATPase (Duby et al., 2008; Jeanguenin et al., 2011; Nieves-Cordones et al., 2014) or 245 

35S (Honsbein et al., 2009). We thus developed an alternative strategy by taking advantage of the 246 

fact that AtKC1 can associate with the guard cell KAT1 and KAT2 inward Shaker channel subunits 247 

and thereby form heteromeric channels (Jeanguenin et al., 2011) to develop a dominant negative 248 

approach as described by Lebaudy et al. (2008). A dominant-negative form of AtKC1, AtKC1-DN, 249 

was substituted for AtKC1 in the previous ProKAT1:AtKC1 construct. AtKC1-DN encodes a 250 

mutated channel subunit (obtained by site-directed mutagenesis) in which large and positive 251 

residues (R) are present in the pore region (Jeanguenin et al., 2011). These residues plug the 252 

channel permeation pathway when AtKC1-DN subunits associate with other inwardly rectifying 253 

Shaker subunits, including KAT1 and KAT2 (Jeanguenin et al., 2011). After introduction into the 254 

atkc1-2 mutant, the new construct, ProKAT1:AtKC1-DN, was found to reduce stomatal aperture 255 

(Figure S4B), providing evidence that AtKC1-DN was expressed in atkc1-2 mutant guard cells, 256 

inhibiting inward channel activity, and thus that ProKAT1 was actually active in atkc1-2 guard cells 257 

under our experimental conditions. Altogether, these results provided the first indication that the 258 

absence of AtKC1 expression in guard cells alone could not be considered as the main cause of 259 

the atkc1-2 mutant stomatal phenotype. 260 

 261 

Disruption of AtKC1 Results in Decreased K+ Accumulation in Leaf Epidermis and Reduced 262 

Turgor Pressure in Pavement Cells 263 

D
ow

nloaded from
 https://academ

ic.oup.com
/plcell/advance-article/doi/10.1093/plcell/koac038/6528330 by IN

R
A Avignon user on 16 February 2022



 

 8 

 264 

K+ contents were measured in whole leaves, in leaf margins (isolated 2-mm-width strips) enriched 265 

with hydathodes and in epidermal strips. Compared to the WT, the overall K+ status of atkc1-2 was 266 

not substantially altered in whole leaves (Figure 5), in agreement with previous analyses 267 

(Jeanguenin et al., 2011), nor was it altered in leaf margins (Figure 5). In contrast, K+ contents in 268 

epidermal strips were significantly lower, by 42 mM, in the mutant than in wild-type plants, when 269 

compared on a fresh weight basis (from Figure 5, the FW/DW ratio being 9.3 ± 0.3, n = 12). Such 270 

a difference in K+ content between atkc1-2 and WT plants could hardly be ascribed to guard cells 271 

alone but rather to pavement cells, because of the relatively lower abundance and volume of 272 

guard cells in the leaf epidermis (see Figure S1). 273 

 The hypothesis that reduced K+ contents in atkc1-2 pavement cells would decrease the 274 

turgor of these cells was then checked via three independent experimental approaches. First, 275 

recent improvements in atomic force microscopy (AFM) allowed us to quantify turgor pressure in 276 

living plant cells (Beauzamy et al., 2015). Data obtained under similar conditions as those used for 277 

in vitro measurements of stomatal aperture in epidermal strips (under light and in the presence of 278 

stomatal aperture solution; Figure 1D and 4B) showed that the pavement cell turgor pressure was 279 

weaker (by ~0.15 MPa) in atkc1-2 than in WT plants (Figure 6, A left panel). In contrast, 280 

measurements performed in parallel on the same leaves in the same experimental conditions did 281 

not reveal any significant difference in guard cell turgor between the WT and atkc1-2 plants 282 

(Figure 6A, right panel), providing further support to the hypothesis that AtKC1 plays a role in 283 

regulating stomatal aperture from another cell type than guard cells. During these measurements, 284 

we have also noted that within the same wild-type leaf, the turgor pressure was higher, on average 285 

by about 2 times, in the guard cells than in the pavement cells (Figure 6A; note the difference in y 286 

axis scale between the left and right panels). 287 

 In a second series of experiments, we assessed the effects of increasing the concentration of 288 

mannitol in the solution bathing epidermal strips on pavement cell plasmolysis. Relative to the WT, 289 

40 to 60 mM less mannitol was needed to plasmolyze 50% of atkc1-2 pavement cells (Figure 6B), 290 

which indicated reduced osmotically active solute contents in atkc1-2 pavement cells.  291 

 The third series of experiments was inspired by classical analyses of the effects of external 292 

medium osmolarity on stomatal aperture. MacRobbie (1980) showed that stomatal aperture in 293 

epidermal strips responded differently to increasing the external osmolarity depending on whether 294 

the surrounding pavement cells were dead (killed by acid treatment) or alive (see Introduction). 295 

We investigated the relationship between stomatal aperture and external medium osmolarity, this 296 

time independently of the alive/dead status of the pavement cells, but rather in the presence or 297 

absence of AtKC1 expression. Stomatal aperture was measured in epidermal strips bathed in 298 
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standard medium (as in Figure 1D experiment) supplemented with mannitol at increasing 299 

concentrations in order to raise the external osmolarity. In atkc1-2 epidermal strips, the stomatal 300 

aperture decreased monotonically (Figure 6C). Conversely, in WT epidermal strips, the stomatal 301 

aperture displayed a slight increase in a first step, and then decreased when the mannitol 302 

concentration was further increased (Figure 6C). Such a non-monotonic relationship between 303 

extracellular osmotic potential and stomatal aperture is reminiscent of the results of MacRobbie 304 

(1980) discussed above. It can be classically explained as follows. Increasing the external 305 

osmolarity decreases the turgor of both the guard cells and the pavement cells by the same 306 

amount. The resulting turgor reduction in pavement cells tends to increase the stomatal aperture, 307 

while in guard cells it tends to reduce this aperture. The balance of these opposite effects 308 

determines the final stomatal aperture at a given external osmolarity. Thus, the relation between 309 

stomatal aperture and the external osmolarity can be non-monotonic. Reciprocally, such a non-310 

monotonic response provides evidence that guard cell turgor is not the only determinant of 311 

stomatal aperture and that the turgor of the surrounding pavement cells exerts a back-pressure 312 

onto guard cells, thereby playing a role in the control of stomatal aperture. The results displayed in 313 

Figure 6C therefore indicate that a back-pressure was exerted on guard cells by surrounding 314 

pavement cells in WT epidermal strips, but that this phenomenon did not occur in atkc1-2 315 

epidermal strips. 316 

 Altogether, these 3 series of experiments indicated that reduced K+ contents decreased the 317 

turgor in atkc1-2 pavement cells and thereby the back-pressure that these cells can exert onto 318 

guard cells. They thus provided evidence that AtKC1 contributes to control of stomatal aperture 319 

from the surrounding pavement cells. 320 

 321 

Membrane potential measurements in pavement cells 322 

Electrical consequences of the atkc1-2 mutation in pavement cells were looked for in planta by 323 

recording the resting membrane potentials (MP) successively at two different external K+ 324 

concentrations, 0.1 mM and 10 mM, using the microelectrode impalement technique. Significantly 325 

less negative MP values were recorded in atkc1-2 mutant plants, when compared with WT control 326 

plants, by ca. 20 mV and 48 mV at 0.1 mM and 10 mM K+, respectively (Figure 7A). The 327 

observation of less negative membrane potentials in pavement cells of the mutant plants is 328 

consistent with the lower K+ content of the epidermis displayed by these plants, when compared to 329 

the WT control plants (Figure 5 and 6B). In such experiments, the magnitude of the membrane 330 

depolarization induced by an increase in external K+ is classically interpreted as reflecting the 331 

relative K+ permeability of the membrane (Spalding et al., 1999). The depolarization induced in 332 

pavement cells by the increase in K+ concentration from 0.1 to 10 mM was significantly smaller in 333 
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the WT than in atkc1-2 pavement cells (Figure 7B-D), revealing a higher relative K+ permeability in 334 

the atkc1-2 mutant cells, which is consistent with the role of AtKC1 as a negative regulator of 335 

Shaker inward K+ channels (Jeanguenin et al. 2011; see Discussion). 336 

 337 

Expression of AtKC1 in Several Epidermal Cell Types is Required to Complement the 338 

atkc1-2 Mutant Stomatal Phenotype 339 

 340 

AtKC1 was expressed in atkc1-2 mutant plants using different promoters with overlapping 341 

epidermal cell-specificity to determine further cell types, besides pavement cells, in which AtKC1 342 

would affect stomatal aperture control: ProCER5 (At1G51500) (Pighin et al., 2004), ProOCT3 343 

(At1G16390) (Kufner and Koch, 2008), ProGL2 (At1G79840) (Szymanski et al., 1998), promoter of 344 

the Uncharacterized Protein Kinase gene At1G66460 (Jakoby et al., 2008), ProFMO1 345 

(At1G19250) (Olszak et al., 2006), ProCYP96A4 (At5G52320) and ProKCS19 (At5G04530). The 346 

expression patterns of these promoters were experimentally confirmed in transgenic Arabidopsis 347 

by fusing them to the GUS reporter gene. These observed patterns (Figure S1 and Table 1; see 348 

description below) were entirely consistent with the eFP Browser data (Table S1). 349 

 Each of these 7 promoters was used to direct transgenic expression of AtKC1 in the atkc1-2 350 

mutant tissues. The capacity of the transgenes to complement the mutant phenotype was checked 351 

in a first series of experiments by measuring stomatal aperture in the transformed plants (T3 352 

homozygous transgenic lines) in light conditions as previously performed for the complementing 353 

construct ProAtKC1:AtKC1 and the non-complementing one ProKAT1:AtKC1 (Figure 4B). 354 

 Five of the seven constructs were found not to complement the mutant stomatal phenotype 355 

(Figure 8, panel A, and Table 1). These were ProKCS19:AtKC1, ProOCT3:AtKC1, ProGL2:AtKC1, 356 

ProAt1G66460:AtKC1 and ProFMO1:AtKC1 (Figure 8A). The results in Figure S1 indicate that 357 

ProKCS19 and ProOCT3 are active in both guard cells and pavement cells, and for the latter, in 358 

hydathodes as well. ProGL2 and ProAt1G66460 are active only in trichomes, and ProFMO1 is 359 

active only in hydathodes (Figure S1). 360 

 In contrast to the above, two constructs complemented the phenotype as efficiently as 361 

ProAtKC1:AtKC1 (Figure 4B). These were ProCER5:AtKC1 and ProCYP96A4:AtKC1 (Figure 8A). 362 

The GUS staining data displayed in Figure S1 indicate that ProCER5 (shown to be epidermis-363 

specific; Pighin et al., 2004) is active in guard cells, pavement cells, hydathodes and trichomes 364 

(abaxial and adaxial sides). ProCYP96A4 (also leaf epidermis-specific as shown by Mustroph et 365 

al., 2009) is active in guard cells, pavement cells and trichomes (abaxial and adaxial sides) but not 366 

in hydathodes. It should be noted that leaves of Wassilewskija ecotype plants harbor trichomes at 367 
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both the abaxial and adaxial faces (Telfer et al., 1997) (Figure S5) and that the atkc1-2 mutation 368 

did not affect trichome density on either face (Figure S6). 369 

 In a second series of experiments, both the ProCER5:AtKC1 and ProCYP96A4:AtKC1 370 

constructs were found to also restore the stomatal aperture to the wild-type non-monotonic mode 371 

in responding to rising external mannitol concentration – in contrast to ProKAT1:AtKC1 (Figure 8B 372 

compared with Figure 6C) - and the level of K+ accumulation in leaf epidermis (Figure 8C 373 

compared with Figure 5). 374 

 By cross-comparing these data, complementation of the defect in stomatal aperture control of 375 

atkc1-2 plants required AtKC1 expression not only in surrounding pavement cells but, 376 

unexpectedly, also in trichomes. However, targeted transgenic expression in only trichomes by 377 

two different specific promoters (ProGL2 and ProAt1G66460) did not rescue the atkc1-2 378 

phenotype. 379 

 380 

DISCUSSION 381 

 382 

Relative to autonomous stomatal control, the non-autonomous regulatory mechanism is 383 

conceptually more abstract, as there had been a paucity of functionally defined genetic or 384 

molecular components. Neither had there been detailed knowledge on the precise cell types from 385 

which these components operated, nor their physiological modes of action. We report here that 386 

the inactivation of AtKC1 results in larger stomatal apertures and increased transpirational water 387 

loss. AtKC1 encodes a silent Shaker channel subunit because it does not form functional K+ 388 

channels on its own (see below). The atkc1-2 mutation was not compensated by transgenic 389 

expression of AtKC1 only in guard cells within the leaf epidermis using the promoter of the Shaker 390 

channel gene KAT1 (Figure 4B). The dominant-negative approach by expressing ProKAT1:AtKC1-391 

DN (Figure S4) proved that ProKAT1 remained active in the guard cells throughout our 392 

experiment. Altogether, these results suggested that AtKC1 does not control stomatal aperture 393 

from within the guard cells, but that it contributes to the non-autonomous mechanism that opposes 394 

the guard cells’ outward push.  395 

 Turgor pressures of the guard cell and surrounding pavement cells have rarely been directly 396 

measured. Due to their small size, Arabidopsis guard cells are not easily amenable to 397 

investigations using the classical pressure probe methodology (Franks et al., 1995; Franks et al., 398 

1998; Franks et al., 2001). We have therefore used an atomic force microscope (Beauzamy et al., 399 

2015) to assess the amount of hydrostatic pressure required to cause indentation on guard cells 400 

and pavement cells. This methodology, which is not destructive, basically applies a non-401 

penetrative indentation with an elastic probe on the sample surface (Beauzamy et al., 2015). The 402 
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applied force can be linearly deduced from the measured probe deformation, while the mechanical 403 

properties of the sample can be deduced from the applied force and sample surface deformation 404 

due to indentation. Turgor pressure is further deduced using established continuum mechanics 405 

equations of the inflated shell model (Beauzamy et al., 2015). This approach has been applied to 406 

epidermal cells in cotyledon (Verger et al., 2018), a system histologically similar to leaves, and in 407 

shoot apical meristem (Long et al., 2020). Following these two studies, we deduced turgor 408 

pressure using forces at depth ranges that minimize the influence of neighboring cells and of 409 

underlying cell layers or cavities (Malgat et al., 2016; Long et al., 2020). 410 

 The turgor pressure values deduced in the present study for wild-type Arabidopsis guard 411 

cells and pavement cells (close to 2 MPa and 1 MPa, respectively, in open stomata; Figure 6A), 412 

are within the range of values previously obtained by pressure probe applied to Vicia faba and 413 

Tradescantia virginiana, which ranged from 1 to 5 MPa for guard cells, and from 0.6 to 1 MPa for 414 

pavement cells (Franks et al., 1995; Franks et al., 1998). In all of these studies, pavement cells 415 

exhibited lower turgor pressure than guard cells. In Arabidopsis, the difference in turgor between 416 

guard cells and pavement cells observed in our experimental conditions is close to 0.8 MPa, which 417 

indicates that the osmolyte content of pavement cells was significantly lower than that of guard 418 

cells, by about ~330 mOsm.L-1. 419 

 The AFM data did not reveal any significant difference in guard cell turgor between the wild-420 

type and atkc1-2. In contrast, the turgor pressure of pavement cells was weaker in atkc1-2 than in 421 

the wild-type, by about 0.15 MPa, i.e., by ca. 20% (Figure 6A). This decrease in turgor 422 

corresponds to a decrease in osmoticum concentration by about 60 mOsm.L-1. Such a difference 423 

is supported by the 40-60 mOsm.L-1 difference in mannitol concentration required to induce 424 

epidermal cell plasmolysis in WT and atkc1-2 plants as deduced from Figure 6B (the curves of the 425 

WT and atkc1-2 mutant plants being shifted from each other by about 40-60 mOsm.L-1). Such 426 

differences are also consistent with the observation that the internal concentration of K+ in 427 

epidermal strips was about 42 mM to 58 mM lower in the mutant plants (as computed from 428 

Figure 5 and Figure 8C, respectively, FW/DW ratio = 9). Thus, the decrease in pavement cell 429 

turgor revealed by microindentation in the atkc1-2 mutant can be mainly ascribed to lower K+ 430 

accumulation in these cells. 431 

 Because AtKC1 is a member of the Shaker K+ channel family, its absence may disturb the 432 

steady-state accumulation of K+ in diverse tissue types. The atkc1-2 mutation has been found to 433 

affect neither whole root, whole shoot nor whole leaf K+ contents (Jeanguenin et al., 2011) (Figure 434 

5). Thus, the decrease in leaf epidermal strip K+ contents resulting from this mutation appears to 435 

be limited to this tissue. The observation that the ProCER5:AtKC1 and ProCYP96A4:AtKC1 436 

constructs complemented the mutant defect in epidermal strip K+ content (Figure 8C) and in 437 
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stomatal aperture control (Figure 8A-B) while the promoters ProCER5 and ProCYP96A4 are 438 

known to be essentially active in leaf epidermis (Pighin et al. 2004; Mustroph et al., 2009) (Figure 439 

S1) provides further evidence that both defects have their origin in the leaf epidermis and not in 440 

another plant tissue.  441 

 Membrane potential measurements indicated that the atkc1-2 mutation resulted in a 442 

significant depolarization of pavement cells, by about 20 mV or 48 mV when the external solution 443 

contained 0.1 mM K+ or 10 mM K+, respectively (Figure 7A). The magnitude of the depolarization 444 

induced by the 100-fold increase in the external K+ concentration was thus much larger in the 445 

mutant than in the WT pavement cells (Figure 7B-D). Altogether, these results provide evidence 446 

that the absence of AtKC1 functional expression impacted electrical features within the leaf 447 

epidermis. The decrease in membrane polarization resulting from the atkc1-2 mutation is 448 

consistent with - and could result from or contribute to - the lower K+ content of mutant pavement 449 

cells (Figures 5, 6 and 8C). The increase in the sensitivity of the membrane potential to K+ external 450 

concentration, which indicates an increase in the membrane conductance to K+ in the mutant, 451 

when compared with the WT, is consistent with the fact that AtKC1 behaves as a negative 452 

regulator of inward Shaker channels (Jeanguenin et al., 2011). Indeed, AtKC1 does not form 453 

homotetrameric channels on its own, as indicated above, but can form heteromeric channels upon 454 

interaction with co-expressed inwardly rectifying Shaker channel subunits, leading to increased 455 

diversity in channel functional properties (Reintanz et al., 2002; Duby et al., 2008; Geiger et al., 456 

2009; Honsbein et al., 2009; Jeanguenin et al., 2011; Zhang et al., 2015; Wang et al., 2016). The 457 

activation potential of heteromeric channels associating AtKC1 to KAT1, KAT2 or AKT2 is shifted 458 

towards more negative values, when compared with KAT1, KAT2 or AKT2 homomeric channels 459 

(Duby et al., 2008; Jeanguenin et al., 2011). Such negative regulation has been proposed to 460 

prevent K+ efflux (loss) when the membrane potential is less negative than the K+ equilibrium 461 

potential (EK) but more negative than the (homomeric) channel activation potential (Duby et al., 462 

2008; Jeanguenin et al., 2011). 463 

 Patch-clamp analysis revealed different types of current patterns amongst protoplasts 464 

derived from pavement cells recognizable by their size and shape, and in particular the fact that 465 

they did not possess chloroplasts. Thus, this analysis provides evidence that, within the leaf 466 

epidermis, cells that are neither guard cells nor trichomes (the latter cells being not digested by the 467 

enzyme cocktail in our experimental conditions) do not form a homogeneous tissue in terms of 468 

plasma membrane electrical properties. Evidence is available at the molecular level that the 469 

generic term of “pavement cells” actually belies a functionally heterogeneous population of cells, 470 

based on the criterion of gene expression markers. For instance, PATROL1 is expressed in guard 471 

cells and only in the smallest of the immediately adjacent pavement cells. The other two 472 
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surrounding pavement cells do not express this gene to detectable levels. PATROL1 directs 473 

trafficking of certain proteins, including AHA1/OST2, a proton pump that is important for 474 

hyperpolarization of the plasma membrane (Merlot et al., 2007; Higaki et al., 2014). Moreover, 475 

single-cell gene transcriptomic profiling in the epidermis of Arabidopsis has revealed differences 476 

between pavement cells and basal trichome cells (also named socket or skirt cells) (Lieckfeldt et 477 

al., 2008; Schliep et al., 2010; Zhou et al., 2017). This diversity in gene expression, as well as the 478 

diversity in membrane electrical properties revealed by our patch-clamp recordings, might be 479 

related to the positional information sensed by the epidermal cells with respect to veins, trichomes 480 

and/or stomata.  481 

 None of the different types of current patterns displaying no time-dependent slowly activating 482 

component (Figure S3) is reminiscent of the activity of a cloned and functionally characterized ion 483 

channel. The situation is different for the protoplasts displaying a Shaker-like time-dependent 484 

activation (Figure 3). Indeed, the available transcriptome data (EMBL-EBI expression atlas) as 485 

well as GUS reporter gene analysis (Lacombe et al., 2000) indicate that, together with AtKC1, the 486 

Shaker gene AKT2 is expressed in pavement cells. Thus, the Shaker-like slowly-activating weakly-487 

inwardly rectifying current pattern (Figure 3) that was observed in about one-third or one-quarter 488 

(in the WT and the mutant, respectively) of the pavement cell protoplasts suggests that a 489 

significant part of the inward and outward currents was mediated by AKT2 homomeric and 490 

heteromeric channels comprising, in WT plants, AtKC1 subunits since both AKT2 and AKT2-491 

AtKC1 channels have been shown to be weakly rectifying (Jeanguenin et al., 2011). The weak 492 

rectification of AKT2 results from coexistence in the membrane of two populations of channels, 493 

one displaying activation by increasingly negative voltages and the other displaying an 494 

instantaneously activated non-rectifying ("leak-like") behavior, depending on the channel 495 

phosphorylation status (Michard et al., 2005a; Michard et al., 2005b). Such phosphorylation-496 

controlled variations of the channel gating properties could also contribute to the diversity of 497 

plasma membrane electrical behavior amongst pavement cell protoplasts. 498 

Comparison of the patch-clamp recordings in WT and atkc1-2 pavement cell protoplasts did 499 

not provide evidence that the pavement cell diversity in plasma membrane electrical features was 500 

reduced by the mutation (Figures 3 and S3). The I-V curves derived for the WT and atkc1-2 501 

mutant protoplasts displaying a time-dependent slowly activating AKT2-like component are quite 502 

similar (Figure 3H). This suggests that it is not by affecting the time-dependent AKT2-like 503 

conductance that the atkc1-2 mutation alters the pavement cell K+ content (Figure 5, 6 and 8) and 504 

the sensitivity of pavement cell membrane potential to K+ (Figure 7).  505 

Altogether, these patch-clamp data leave the actual impact of the mutation on the K+ 506 

conductance of (the different types of) pavement cells still elusive. Patch-clamp measurements on 507 
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protoplasts provide information about individual cell (protoplast) properties, while membrane 508 

potential measurements give access to data reflecting in situ (in the leaf apoplastic solution) 509 

integrated (within the leaf epidermis as a whole due to electrical connection through 510 

plasmodesmata) electrical properties. Such a difference, together with the large diversity in K+ 511 

conductance amongst pavement cells and the fact that the present patch-clamp analysis has 512 

essentially taken into account the protoplasts whose membrane inward conductance appeared to 513 

be dominated by a time-dependent slowly-activating conductance (Figure 3), might explain that no 514 

significant difference between atkc1-2 mutant and WT pavement cell protoplasts has been 515 

evidenced by this analysis. 516 

It should also be noted that AtKC1 is known to play a role in exocytosis, besides its 517 

contribution to the regulation of inwardly rectifying Shaker channel activity. It interacts with the 518 

SNARE AtSYP121 (Honsbein et al., 2009), a vesicle-trafficking protein active at the plasma 519 

membrane and mediating vesicle fusion required for cellular homeostasis and growth (Geelen et 520 

al., 2002). Formation of tripartite complexes associating AtSYP121 to AtKC1, itself associated to 521 

the other Shaker subunit of the heteromeric channel, has been shown to confer voltage sensitivity 522 

to the contribution of AtSYP121 to vesicle fusion at the plasma membrane, rendering the secretion 523 

voltage dependent, a process proposed to couple K+ uptake to exocytosis and to maintain turgor 524 

pressure in growing plant cells (Honsbein et al., 2009; Grefen et al., 2015). Finally, screening tests 525 

using a split ubiquitin derived system suggest that AtKC1 might also interact with a ROP protein 526 

(Rho-of-Plant, a Rho GTPase) as well as a nitrate transporter (Obrdlik et al., 2004). 527 

Fused to the AtKC1 coding sequence, cell-type specific promoters directing expression in 528 

guard cells, or in both guard cells and pavement cells, or in trichomes only, did not complement 529 

the atkc1 mutant stomatal phenotype, while complementation was observed with promoters 530 

directing expression in these three cell types together (Figure 8). Considering the whole set of 531 

observations, the simplest hypothesis is that AtKC1 contributes to non-autonomous guard cell 532 

control of stomatal aperture and that this contribution involves pavement cells and trichomes. 533 

 A salient finding from the patch-clamp recordings in pavement cell protoplasts is that, despite 534 

the observed diversity in cell membrane electrical properties (Figure 3 and Figure S3), pavement 535 

cells possess in common a rather weak level of rectification when compared to that displayed by 536 

guard cells (Figure 2). The model suggested by these results is thus that guard cells, with strong 537 

rectification of both inward and outward K+ conductances, are embedded in a layer of cells mostly 538 

displaying weak rectification. It is tempting to assume that this functional differentiation between 539 

pavement cells and guard cells renders the exchanges of K+ between these two types of cells 540 

immediately dependent on the guard cell membrane transport activity. The quasi-linearity of the 541 

current-voltage curve of pavement cells would allow that any change in K+ apoplastic 542 
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concentration due to uptake of this cation by - or release from - guard cells could modulate the 543 

efflux of K+ from - or influx into - pavement cells. In other words, due to their low level of 544 

rectification, pavement cells could be a permanent and immediately available K+ source or sink, 545 

depending on the demand of guard cells, in agreement with the model that guard cells play the 546 

dominant motor role in stomatal movements. Finally, the low level of rectification of pavement 547 

cells, which allows K+ exchanges in the whole range of membrane potentials, can also be 548 

hypothesized to facilitate K+ exchange/shuttling among the pavement cells themselves.  549 

 The mutant defect in stomatal movements observed in planta (Figure 1C) is not likely to 550 

directly result from altered control of K+ availability in the external solution (i.e., in the leaf 551 

epidermis apoplast) since impaired control of stomatal aperture was also observed in vitro in 552 

epidermal strips bathed in a solution containing a high concentration of K+ (Figure 1D, 4B, and 553 

8A), like that used in microindentation experiments (Figure 6A). Our results suggest that, when 554 

AtKC1 is functional, trichomes cooperate with adjacent epidermal cells in K+ homeostasis. 555 

ProAtKC1, as well as ProCER5 and ProCYP96A4, which complemented the atkc1-2 mutant, are 556 

all expressed in the ring of basal cells skirting the base of the trichome. The major class of 557 

transcripts detected in trichomes, basal and epidermal cells belong to transport and transport-558 

associated proteins (Lieckfeldt et al., 2008), suggesting that these cells are particularly active in 559 

intra- and inter-cellular movements of solutes. Absence of AtKC1 functional expression might 560 

affect K+ distribution between trichomes, basal cells and pavement cells, resulting in a reduction of 561 

K+ accumulation in the latter cells. 562 

 In conclusion, the whole set of results supports the following causal chain: absence of AtKC1 563 

functional expression leads to a reduced steady-state K+ accumulation in pavement cells, and 564 

thereby in a decrease in the turgor of these cells. The weakened backpressure of the epidermal 565 

cells therefore surrenders to the opposing guard cell turgor, constitutively resulting in more open 566 

stomata. The present data provide genetic, molecular, and electrophysiological evidence that 567 

complex K+ distribution among several epidermal cell types contributes to stomatal aperture 568 

outcome. In conclusion, these data support the view that the entire epidermis should be regarded 569 

as a dynamic filter controlling stomatal aperture. 570 

 571 

MATERIALS AND METHODS 572 

 573 

Plant Culture 574 

 575 

Arabidopsis thaliana (Ws) plants were grown in a growth chamber, at 20°C, with a 8/16 h light/dark 576 

photoperiod (300 μmol photons.m-2.s-1, white light from fluorescent tubes), at 70% RH (RH = 577 
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relative air humidity), in commercial compost. They were used for experiments when they were 6-578 

weeks old and still not bolting. 579 

 580 

Stomatal aperture and transpiration measurements 581 

 582 

Rosette transpirational water loss, preparation of leaf epidermal strips and measurements of 583 

stomatal aperture (in 30 mM KCl and 10 mM KOH-MES, pH 6.5) were performed as previously 584 

described (Hosy et al., 2003; Nieves-Cordones et al., 2012) . Stomatal aperture measurements 585 

were performed in triplicate on at least six epidermal strips from 6 different plants. To study the 586 

effect of increased mannitol concentration on stomatal aperture, epidermal strips were incubated 587 

in stomatal opening buffer containing 30 mM KCl and 10 mM KOH-MES, pH 6.5, under light for 588 

2 h and then transferred into dishes containing the same solution plus different concentrations of 589 

mannitol. Images were taken within 5 min incubation under a microscope (Olympus BH2) coupled 590 

to a color camera (Olympus Color View II). Displayed data are mean of at least 100 values per 591 

treatment and per mannitol concentration (when stated) for each plant genotype. All experiments 592 

were conducted in blind, i.e. genotypes unknown to the experimenter until data had been 593 

analyzed. Vital staining with neutral red at 0.02% (w/v) was performed to confirm the viability of 594 

guard cells and other epidermal cells in epidermal strips. For whole-plant transpiration assays, 595 

pots containing individually grown 6 week-old plants subjected to the same watering regime were 596 

sealed with a plastic film to prevent water loss from the substrate. The soil water content was 597 

initially adjusted to 2.5 g of H2O per g of dry soil. Evapo-transpirational water loss was then 598 

compensated by addition of equivalent amounts of water in order to maintain the water content at 599 

its initial value over a four-day period. Pots were weighed twice a day, at dusk and at dawn, for 600 

determination of transpirational water loss (in milliliters H2O per square centimeter of leaf and per 601 

hour). Foliar area was measured with ImageJ from images of rosettes. Stomatal conductance was 602 

measured on intact leaves with a diffusion porometer (AP4; Delta-T Devices). 603 

 604 

Patch-clamp recordings 605 

 606 

WT and atkc1-2 Arabidopsis thaliana Ws plants were grown for 6 weeks in compost (individual 607 

containers) in a growth chamber (20°C, 65% relative humidity, 8 h/16 h light/dark, 250 µmol m 2.s 608 

1). Electrophysiological analyses on guard cell protoplasts were performed as previously described 609 

(Hosy et al., 2003; Lebaudy et al., 2008). Epidermal cell protoplasts were isolated by enzymatic 610 

digestion of leaf epidermal strips in darkness. The digestion solution contained 1 mM CaCl2, 2 mM 611 

ascorbic acid, 1 mM Mes-KOH (pH 5.5), Onozuka RS cellulase (1% w/v, Duchefa Biochemie, 612 
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Haarlem, Netherlands), and Y-23 pectolyase (0.1% w/v, Seishin Pharmaceutical, Tokyo, Japan). 613 

The osmolarity was adjusted to 500 mosM with D-mannitol. The epidermal strips were digested for 614 

35 min at 27°C. Filtration through 50-µm mesh allowed recovery of protoplasts. The filtrate was 615 

rinsed four times with two volumes of conservation buffer: 100 mM potassium glutamate, 10 mM 616 

CaCl2, 10 mM HEPES, the osmolarity being adjusted to 520 mOsm with D-mannitol and the pH to 617 

7.5 with KOH. The protoplast suspension was allowed to sediment and then kept on ice in 618 

darkness in the conservation buffer, which was also used as external solution for the sealing step. 619 

Patch-clamp pipettes were pulled (P07, DMZ-Universal Puller, Zeitz-Instruments, Germany) from 620 

borosilicate capillaries (GC150TF-7.5, Phymep, France). The pipette solution contained 1 mM 621 

CaCl2, 5 mM EGTA, 0.5 mM MgCl2, 100 mM potassium glutamate, 2 mM Mg-ATP, 20 mM 622 

HEPES. The osmolarity of the solution was adjusted to 540 mOsm with D-mannitol and the pH 623 

was adjusted to 7.5 with KOH (final K+ concentration assayed by flame spectrophotometry: ca. 624 

140 mM). Under these conditions, the pipette resistance was about 18 MΩ. Seals with resistance 625 

> 1 GΩ were used for electrophysiological analyses. The bath solution contained, except when 626 

otherwise mentioned, 100 mM potassium glutamate, 0.1 mM CaCl2, 10 mM HEPES, the 627 

osmolarity being adjusted to 520 mOsm with D-mannitol and the pH to 7.5 with KOH (final K+ 628 

concentration: 105 mM, assayed by flame spectrophotometry). Whole-cell recordings were 629 

obtained using an Axon Instruments Axopatch 200B amplifier. pCLAMP 8.2 software (Axon 630 

Instruments, Foster City, CA) was used for voltage pulse stimulation, online data acquisition, and 631 

data analysis. The voltage protocol consisted of stepping the membrane potential from −40 mV 632 

(holding potential) to +80 mV or −205 mV, or from + 25 mV (holding potential) to either +130 mV 633 

or −140 mV, in 15 mV steps. Liquid junction potentials at the pipette/bath interface were measured 634 

and corrected. 635 

 636 

Membrane potential recordings in pavement cells 637 

 638 

Rosette leaves from WT and atkc1-2 mutant plants grown in hydroponics for 3 weeks (1/5 639 

Hoagland solution) were excised and immobilized in a 1-mL chamber. The external solution 640 

contained 5 mM MES (2-(N-Morpholino) ethanesulphonic acid), 0.1 mM KCl, 0.1 mM CaCl2 and 641 

0.1 mM NaCl, brought to pH 6.0 with Ca(OH)2. The leaf was bathed for at least 30 minutes in the 642 

perfusion solution before cell impalement. Impalement micro-electrodes were pulled from 643 

borosilicate glass capillaries (1B120F-4, World precision instruments, http://www.wpiinc.com) and 644 

showed a diameter of approximately 0.5 µm at the tip. Glass microelectrodes were fixed to 645 

electrode holders containing an Ag/AgCl pellet and connected to a high-impedance amplifier 646 

(model duo 773; World precision instruments). Impalement and reference electrodes were filled 647 
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with 200 mM KCl. To impale leaf pavement cells, the micro-electrode was approached to the leaf 648 

surface with a motorized micro-manipulator (Narishige MM-89, http://narishige-group.com) and 649 

impalements were carried out with a one-axis oil hydraulic micromanipulator (Narishige MO-10). 650 

The precise penetration of the micro-electrode into pavement cells was visually followed with an 651 

inverted microscope. 652 

 653 

Atomic force microscopy 654 

 655 

AFM determination of turgor pressure in the leaf epidermis was performed as in Beauzamy et al. 656 

(2015) with modifications. Specifically, 1×1 cm leaf segments were fixed in Petri-dishes by double-657 

sided tape and microtube tough-tags (Diversified Biotech) with the abaxial face up. Adaxial 658 

trichomes were removed by tweezers to facilitate tape fixation. Leaf segments were incubated in 659 

the stomata opening buffer (see above) under light for at least 2 hours before being mounted onto 660 

a BioScope Catalyst AFM (Bruker). A spherical-tipped AFM cantilever with 400 nm tip radius and 661 

42 N/m spring constant was used for the measurements (SD-SPHERE-NCH-S-10, Nanosensors); 662 

a spherical tip was used to avoid the cell wall puncture that often occurs upon usage of a more 663 

standard sharp pyramidal tip. One to 2 μm-deep indentations were made along the topological 664 

skeletons of epidermal cells to ensure relative normal contact between the probe and sample 665 

surface. At least 3 indentation positions were chosen for each cell, with each position 666 

consecutively indented 3 times, making at least 9 indentation force curves per cell. Cell recordings 667 

of AFM force curves were performed with the NanoIndentation plugin for ImageJ (https://fiji.sc/) as 668 

described in (Long et al. 2020). Parameters for turgor deduction were generated as follows. The 669 

cell wall elastic modulus and apparent stiffness were calculated from each force curve following 670 

Beauzamy et al. (2015). To minimize the effect of neighboring and underlying cells (Malgat et al., 671 

2016; Long et al., 2020), we used a force range of 1-10% of maximal force for modulus and 75-672 

99% of maximal force for cell stiffness, which typically correspond to depths in the ranges 10-100 673 

nm and 400-500 nm, respectively. Cell surface curvature was estimated from AFM topographic 674 

images, with the curvature radii fitted to the long and short axes of small cells or along and 675 

perpendicular to the most prominent topological skeleton of heavily serrated pavement cells. 676 

Turgor pressure was further deduced from each force curve (4 iterations) with the simplified 677 

hypothesis that the surface periclinal cell walls of leaf epidermis have a constant thickness, at 200 678 

nm, and cell-specific turgor pressure is retrieved by averaging all turgor deductions per cell. 679 

 680 
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Plasmolysis assays 681 

 682 

Epidermal strips were peeled, fixed on glass slides, and bathed in solutions differing in mannitol 683 

concentration. The percentage of strips displaying plasmolysis within 5 min incubation was 684 

determined using a microscope. 685 

 686 

Tissue K+ content 687 

 688 

Leaf margins were isolated by obtaining 2 mm razor-cut bands, which were enriched for 689 

hydathodes. Leaf epidermis was obtained by peeling abaxial epidermis with forceps. K+ contents 690 

were determined in dried samples by flame spectrometry (SpectrAA 220 FS, Varian, 691 

http://www.varianinc.com/), after ionic extraction (sample incubation for 2 d in 0.1 N HCl).  692 

 693 

Complementation of atkc1-2 mutant plants and promoter analyses 694 

 695 

Mutant isolation and generation of transgenic plants expressing AtKC1 under its native promoter 696 

has been described elsewhere (Jeanguenin et al., 2011). For guard cell specific complementation 697 

of atkc1-2 mutant plants, AtKC1 and AtKC1-DN cDNAs were expressed under the KAT1 promoter 698 

in pCambia1301 vector (Hajdukiewicz et al., 1994). AtKC1-DN has been described previously 699 

(Jeanguenin et al., 2011) and contained two pore residue mutations (G291R and Y292R) that 700 

rendered it a dominant-negative channel subunit. For other indicated cell-specific expression of 701 

AtKC1 we cloned the previously characterized genomic regions upstream of the first ATG from the 702 

loci CER5, OCT3, GL2, At1G66460 and FMO1 in the pCambia1301 vector to drive AtKC1 703 

expression. For expression pattern analyses, the same upstream regions were also cloned in 704 

pGWB3 using Gateway cloning (Nakagawa et al., 2007) to drive GUS expression in wild-type 705 

transformed plants, except ProOCT3:GUS lines that were kindly gifted by Isabell Kufner and 706 

described elsewhere (Kufner and Koch, 2008). For previously uncharacterized promoters 707 

(ProCYP96A4 and ProKCS19), the inter-genomic regions located between the first ATG and the 708 

3'-end of the corresponding upstream loci were amplified. Floral dip method was used to transfect 709 

Arabidopsis plants (Clough and Bent, 1998). Transformed lines were verified by RT-PCR on RNA 710 

extracted from leaves of individual T1 plants, and T2 progeny homozygous for the transgene were 711 

selected based on true segregation of the linked hygromycin resistance marker of pCambia1301. 712 

Experiments were conducted on T3 homozygous plants. 713 

 714 

Guard cell protoplast preparation for gene expression analysis 715 
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 716 

About 30-35 fully expanded rosette leaves were kept in cold water and in the dark. Main veins of 717 

leaves were removed using a scalpel. Leaf pieces were blended 3 times for 45 s at full speed, the 718 

yielded mixture was put over a nylon mesh and rinsed with cold distilled water. The epidermis 719 

fragments recovered from the 75 µm nylon mesh were digested for 30-45 min at 25°C with gentle 720 

shaking (140 rpm) in an enzyme solution (0.7% Calbiochem cellulysin, 0.1% PVP 40, 0.25% BSA, 721 

0.5 mM ascorbic acid, 45% distilled water and 55% solution containing sorbitol 560 mmol/kg, 5 722 

mM MES, 0.5 mM CaCl2, 0.5 mM MgCl2, 0.5 mM ascorbic acid, pH 5.5 with Tris). Translation 723 

inhibitor (100 mg/L Cordycepin, C3394-Sigma) and transcription inhibitor (33 mg/L Actinomycin D, 724 

A1410- Sigma) were also added to the digestion mixture. The digestion process was followed 725 

under a microscope (Olympus BH2), to check that "intact" guard cells were still present in situ in 726 

the digested epidermis at the end of the enzymatic treatment. The undigested fraction was 727 

recovered by filtration through 40 μm nylon mesh, rinsed with basic solution and stored at −80 °C. 728 

 729 

Gene expression analysis by RT-qPCR 730 

 731 

Total RNA extraction, synthesis of first-strand cDNAs and quantitative RT–PCR procedures were 732 

performed as described elsewhere (Cuellar et al., 2010). Primers used for real time qRT-PCR 733 

were designed using PRIMER3 (http://frodo.wi.mit.edu) (Table S2). All amplification plots were 734 

analysed with an Rn threshold (normalised reporter) of 0.2 to obtain CT (threshold cycle) values. 735 

Standard curves for AtKC1, KAT1, KAT2 and GORK were obtained from dilution series of known 736 

quantities of corresponding cDNA fragments used as templates. Standard curves were used to 737 

calculate the absolute numbers of tested cDNA molecules in each cDNA sample, and these 738 

values were then normalised against corresponding housekeeping gene signals. Four 739 

housekeeping genes EF1alpha, TIP41, PDF2 and MXC9.20 (Czechowski et al., 2005) were used 740 

to calculate a normalization factor with the online algorithm “geNorm” (https://genorm.cmgg.be/ ). 741 

 742 
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Expression analyses by GUS staining 743 

 744 

GUS staining of leaves from 6-week-old transgenic plants expressing the ß-glucuronidase (GUS) 745 

reporter gene under the control of the promoters listed in Figure S1 was performed as described 746 

elsewhere (Lagarde et al., 1996). Similar expression patterns were obtained in three independent 747 

transgenic lines for each promoter. 748 

 749 

Statistical analysis 750 

Statistical analysis was performed using the two-tailed Student’s t test, Analysis of Variance 751 

(ANOVA) and Tukey’s post-hoc test as indicated with Statistix V.8 software for Windows. The 752 

results are shown in Supplemental Data Set S1. 753 

 754 

Accession Numbers 755 

Sequence data from this article can be found in the TAIR (Arabidopsis) database under accession 756 

numbers: AtKC1 (At4G32650), KAT1 (AT5G46240), CER5 (At1G51500), OCT3 (At1G16390), 757 

GL2 (At1G79840),  Uncharacterized Protein Kinase gene (At1G66460), FMO1 (At1G19250), 758 

CYP96A4 (At5G52320) and ProKCS19 (At5G04530). 759 

 760 

Supplemental Data 761 

Supplemental Figure S1. Expression patterns driven by the AtKC1 promoter and by other 762 

selected cell-specific promoters in leaf epidermis. 763 

Supplemental Figure S2. Stomatal density in wild-type and atkc1-2 leaves (abaxial side). 764 

Supplemental Figure S3. Example of non Shaker-like channel activities in pavement cell 765 

protoplasts from Arabidopsis thaliana wild type and atkc1-2 mutant plants (Ws ecotype). 766 

Supplemental Figure S4. Expression of AtKC1 and AtKC1-DN under the KAT1 promoter. 767 

Supplemental Figure S5. Expression patterns driven by AtKC1 promoter and by other selected 768 

cell-specific promoters in abaxial leaf epidermis and trichomes. 769 

Supplemental Figure S6. The atkc1-2 mutation does not affect trichome density in wild type and 770 

atkc1-2 plants. 771 

Supplemental Table S1. Cell-specific expression level of the genes selected in complementation 772 

experiments (Figure 8) obtained from eFP browser site. Supports Figure 8. 773 

Supplemental Table S2. Primer list.  774 

Supplemental Data Set S1. Statistical analysis results. 775 

 776 

 777 
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Table 1. Summary of the results presented in Figure S1 (expression pattern) and Figure 8A 796 

(stomatal aperture) 797 

 798 

AtKC1 

expression in 

Promoter 

Pro 

AtKC1 

Pro 

CER5 

Pro 

CYP96A4 

Pro 

KCS19 

Pro 

OCT3 

Pro 

KAT1 

Pro 

GL2 

Pro 

At1G66460 

Pro 

FMO1 

Guard cells + + + + + + − − − 

Pavement cells + + + + + − − − − 

Trichomes + + + − − − + + − 

Hydathodes + + − − + − − − + 

Stomatal aperture 

similar to that in 

WT plants 

Yes Yes Yes No No No No No No 

 799 

 800 

 801 

 802 

  803 
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A B

C

Figure 1. Impaired control of stomatal aperture and transpirational water loss in atkc1-2 mutant plants.

(A ) Transpirational water loss from excised leaves. The second leaf was excised from wild-type (WT, Ws 

ecotype), atkc1-2 and ProAtKC1:AtKC1 -complemented atkc1-2 plants. Excised leaf water loss was deduced from 

the decrease in leaf weight. 

(B) Leaf water conductance measured on intact leaves with a porometer. 

(C) Transpiration rates in whole-plant assays. 

(D) Stomatal aperture in WT, atkc1-2 and ProAtKC1:AtKC1-complemented atkc1-2 plants. Before stomatal 

aperture measurements, epidermal strips were kept in the dark for 2 h (Dark treatment) or in dark for 2 h, followed 

by 2 h in the light (Light treatment) in a 40 mM K+ solution.

(A) to (D) Means ± SE. In (A), (B) and (C), n = 5, 9 and 11, respectively; in (D), n = 6 values, each value 

corresponding to ~100 stomata. Letters depict significant group values after analysis of variance (ANOVA) and 

Tukey’s post-hoc test. In C, for the statistical analysis, the data obtained during the four consecutive days were 

pooled, taking into account the corresponding day cycle.

Excised

leaves

Intact

leaves

Whole-plant

D

Epidermal

peels
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Guard cells

Figure 2. Shaker-like K+ channel activity in guard cells from wild type and atkc1-2 mutant 

plants (Ws ecotype).

Guard cell protoplast current/voltage relationships. Means ± SE; n = 8 and 10 for the wild 

type and mutant genotypes, respectively. External K-glutamate concentration was 100 mM.
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Figure 3. Weakly inwardly-rectifying K+ channel activity in pavement cells from wild type and 

atkc1-2 mutant plants (Ws ecotype). 

(A-C) Typical weakly inwardly-rectifying K+ currents recorded in pavement cell protoplasts and 

their blockage by 10 mM external BaCl2. 
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(A) Example of inward and outward current traces (right and left panels, respectively), 

recorded in the presence of 100 mM K-glutamate (total K+ concentration: 105 mM) and 

successively before BaCl2 addition (top panels), in the presence of BaCl2 (middle panel) and 

after BaCl2 rinse (lower panels). (B) Corresponding current/voltage relationships. (C) Current 

inhibition in the presence of BaCl2 at negative and positive voltages. Means ± SE; n = 7. 

(D) and (E) Effect of change in external K-glutamate concentration on the weakly inwardly 

rectifying currents in pavement cell protoplasts. (D) Example of inward and outward current 

traces (right and left panels, respectively) recorded successively in 100 mM K-glutamate (top 

panels) and 10 mM K-glutamate (lower panels; total K+ concentration: 15 mM). (E)

Current/voltage relationships in the two external K-glutamate conditions. Currents were 

normalized in each protoplast by the current value obtained in 100 mM K-glutamate at -160 

mV. Means ± SE; n = 7. 

(F) and (G) Representative inward and outward (right and left panels, respectively) Shaker-

like K+ current traces in wild type (F) and atkc1-2 (G) pavement cell protoplasts. 

(H) Pavement cell protoplast Shaker-like current/voltage relationship in wild type and atkc1-2 

mutant plants. External K-glutamate concentration: 100 mM. Means ± SE; n = 8 for both the 

wild type and the mutant genotypes. The concentration of K+ (essentially as glutamate salt) 

in the pipette solution and in the bath solution was 140 and 105 mM, respectively, which 

results in a K+ equilibrium potential close to -7 mV.
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*** **

*** ***

Figure 4. The defect in stomatal aperture displayed by the atkc1-2 mutant does not result from loss of AtKC1

expression in guard cells. 

(A) Relative expression of AtKC1 compared to that of other Shaker channels in guard cells (left panel) and 

relative expression of AtKC1 in guard cells compared to that in leaves (right panel). Expression levels 

determined by RT qPCR experiments.

(B) Stomatal aperture in wild type plants (WT), in atkc1-2 mutant plants and in atkc1-2 mutant plants 

transformed with either the complementing ProAtKC1:AtKC1 construct (see Figure 1) or with a construct, 

ProKAT1:AtKC1, rendering AtKC1 expression dependent on the activity of the promoter of KAT1, a Shaker 

channel gene whose expression in guard cells is specific of this cell type in leaf epidermis (see also 

supplemental Figure S4). "Dark" and "Light" treatments: stomatal aperture was measured under dark or light 

as described in Figure 1D. "Light + ABA" treatment: 10 μM ABA was applied for 2 h to light-treated strips 

before stomatal aperture measurement.

(A) and (B) Means ± SE. For (A), n = 3 pools of 5-6 plants, and ** and *** denote p < 0.01 and <0.001 in a 

two-tailed Student’s T-test (comparison AtKC1 expression to that of KAT1, KAT2 or GORK, left panel, and 

AtKC1 expression in guard cells vs AtKC1 expression in leaves, right panel). For (B), n = 6-10 values, each 

value corresponding to ~60 stomata. Letters depict significant group values after analysis of variance 

(ANOVA) and Tukey’s post-hoc test.
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Figure 5. Disruption of AtKC1 leads to reduced K+ contents in leaf epidermis.

K+ contents in whole leaf, leaf margin and leaf epidermis in wild type and atkc1-2 

mutant plants. Means ± SE; n = 3 pools, each one obtained from 9 leaves (*, p < 0.05, 

using  two-tailed Student’s T-test). 
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Figure 6. Disruption of AtKC1 leads to reduced turgor pressure in pavement cells but not in guard cells.

(A) Boxplots depicting turgor pressure values obtained with atomic force microscopy in wild-type and 

atkc1-2 pavement cells (left panel) and guard cells (right panel). Upper and lower whiskers : 1.5 times the 

IQR (first to third interquartile range), border of the boxes: first and third quartile, central line: median. 

Letters depict different group values after Student T-test (p<0.05). For guard cells, n = 46 for the wild type 

genotype and 32 for the atkc1-2 mutant genotype. For pavement cells, n = 86 for the wild type and 51 for 

the mutant genotype.

(B) Disruption of AtKC1 results in decreased osmotic pressures in leaf epidermis as deduced from 

plasmolysis curves obtained by measuring the percentage of epidermal strips displaying plasmolyzed 

cells when bathed for 5 min in the presence of mannitol. Ten to 12 strips were examined for each 

genotype and mannitol concentration.

(C ) Effect on stomatal aperture of adding mannitol to the solution bathing epidermal strips from wild type 

or atkc1-2 mutant plants. n = 92-120 from 6 leaves for each mannitol concentration and genotype.
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Figure 7. The atkc1-2 mutation results in membrane depolarization in pavement cells 

and in an increased sensitivity of the membrane potential to the external concentration of 

K+. (A) Membrane potentials recorded in WT and atkc1-2 pavement cells bathed in 0.1 

mM or 10 mM K+. (B) Membrane depolarizations induced by the increase in external K+

concentration from 0.1 mM to 10 mM. Each value corresponded to the difference in the 

membrane potential that was observed when the external K+ concentration was 

increased from 0.1 mM to 10 mM K+ within the same cell. (C) Representative trace of a 

WT pavement cell showing membrane depolarization and repolarization due to changes 

in external K+ concentration. (D) Representative trace of an atkc1-2 pavement cell 

subjected to the same protocol as in (C). White and gray bars depict the periods where 

the external K+ concentration was 0.1 mM and 10 mM, respectively. In (A) and (B), 

means ± SE are shown. n = 14 cells from five different plants for WT and n =14 cells 

from three different plants for atkc1-2. Letters depict significant group values after 

analysis of variance (ANOVA) and Tukey’s post-hoc test. *** denotes p <0.001 in a two-

tailed Student’s T-test. 
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Figure 8. Restoration of wild-type stomatal features in the atkc1-2 mutant requires AtKC1 expression in pavement cells and 

trichomes.

(A) Stomatal aperture under light in wild-type Arabidopsis plants (Ws ecotype, black bar), in atkc1-2 mutant plants (white bar), 

and in atkc1-2 mutant plants transformed with a construct allowing expression of AtKC1 under control of one of the following 

promoters: ProCER5, ProCYP96A4, ProKCS19, ProOCT3, ProGL2, ProAt1G66460 and ProFMO1 (expression patterns of these 

promoters: see Table 1 and Supplemental Figures 1 and 5). Grey bars and dark green bars: transformed plants with rescued or 

non-rescued stomatal phenotype, respectively.  Stomatal aperture was measured following the same procedure as in Figure 1D.

(B ) Stomatal aperture in epidermal strips bathed in mannitol solutions. Transformed lines identified in (A) as displaying stomatal 

aperture values similar to that of wild-type plants (transforming constructs: ProAtKC1:AtKC1, ProCER5:AtKC1 and 

ProCYP96A4:AtKC1) also behaved like wild-type plants in response to added mannitol (showing a non-monotonous sensitivity 

to mannitol concentration). In contrast, the transgenic line ProKAT1:AtKC1, shown in (A) to display a stomatal aperture similar to 

that of atkc1-2 mutant plants, also displayed a monotonous decrease in stomatal aperture in response to increased mannitol 

concentration, and thus behaved like atkc1-2 mutant plants (see Figure 6C).

(C ) Leaf epidermis K+ content in wild type plants, in atkc1 2 mutant plants and in atkc1 2 mutant plants transformed with the 

ProCER5:AtKC1 and ProCYP96A4:AtKC1 complementing constructs.

(A) to (C) Means ± SE. In (A) and (B), n = 94-131 stomata from 6 leaves. In (C), n = 3 pools of samples, each one obtained from 

9 leaves. In (A) and (C), letters depict significant group values after analysis of variance (ANOVA) and Tukey’s post-hoc test.
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