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Introduction

Non-destructive and timely monitoring of crop structural and biochemical traits is of major importance to assess the physiological and phenological status of the plants and to further understand their functioning over time. A number of applications benefit from such an accurate monitoring, including (i) precision agriculture, which aims to adapt cultural practices to the actual state of the canopy over space and time [START_REF] Mcbratney | Future directions of precision agriculture[END_REF][START_REF] Zhang | The application of small unmanned aerial systems for precision agriculture: a review[END_REF], and (ii) plant phenotyping, which aims to identify the genetic basis of important traits controlling yield and quality [START_REF] Furbank | Phenomics -technologies to relieve the phenotyping bottleneck[END_REF][START_REF] Sankaran | Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A review[END_REF][START_REF] Zaman-Allah | Further, the revisit frequency combined with possible cloud occurrence limit the use of satellites for agricultural applications[END_REF]. Some of the most relevant crop structural and biochemical traits to be monitored characterize the efficiency with which light, water and nutrients are captured and used for biomass production and yield [START_REF] Araus | Field high-throughput phenotyping: The new crop breeding frontier[END_REF]. Since the green area index (GAI) and the green fraction (GF) closely relate to the capability of the crop to intercept the incoming photosynthetically-active radiation (PAR), they are both key variables for photosynthesis, respiration and evapotranspiration [START_REF] Verger | Green area index from an unmanned aerial system over wheat and rapeseed crops[END_REF]. GAI and GF are also good proxies of biomass as well as good indicators of developmental stages and various abiotic and biotic stresses [START_REF] Yang | Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives[END_REF]. For all these reasons, GAI is considered as an essential state variable for crop modeling (Baret et al., al., 2013). Interestingly, the high spatial resolution of UAV data makes it possible to document the withinmicroplot variability in field phenotyping experiments [START_REF] Araus | Field high-throughput phenotyping: The new crop breeding frontier[END_REF][START_REF] Zaman-Allah | Unmanned aerial platformbased multi-spectral imaging for field phenotyping of maize[END_REF]. For all of these reasons, UAVs are currently becoming appealing tools for crop monitoring (e.g., [START_REF] Aasen | Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance[END_REF][START_REF] Domingues Franceschini | Intercomparison of Unmanned Aerial Vehicle and Ground-Based Narrow Band Spectrometers Applied to Crop Trait Monitoring in Organic Potato Production[END_REF][START_REF] Duan | Inversion of the PROSAIL model to 39 estimate leaf area index of maize, potato, and sunflower fields from unmanned aerial vehicle hyperspectral data[END_REF][START_REF] Jin | Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery[END_REF]Van Der Meij et al., 2017;[START_REF] Verger | Green area index from an unmanned aerial system over wheat and rapeseed crops[END_REF][START_REF] Zarco-Tejada | Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV)[END_REF][START_REF] Zhou | Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery[END_REF].

Despite this success, the benefits of using the fine spatial resolution accessible from UAV imagery for retrieving the above-mentioned structural and biochemical crop traits have not been clearly quantified yet. The possibility to remove soil and shadow pixels is likely to improve the estimation of leaf biochemistry (Jay et al., 2017a;[START_REF] Moorthy | Estimating chlorophyll concentration in conifer needles with hyperspectral data: An assessment at the needle and canopy level[END_REF][START_REF] Zarco-Tejada | Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops[END_REF], 2013[START_REF] Zarco-Tejada | Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data[END_REF]. However, there still lacks methods that take full advantage of the centimeter resolution to improve estimates of canopy variables.

Therefore, the objectives of this study are (i) to propose novel methods for retrieving canopy variables in sugar beet (Beta Vulgaris L.) crops using centimeter-scale multispectral imagery, and (ii) to investigate to what extent the use of centimeter-scale imagery makes it possible to improve the estimation of GF, GAI, Cab, CCC and CNC in sugar beet crops at the microplot level. Using an extensive two-year multi-site field experiment, several variables are extracted from UAV multispectral images of microplots, including VI values computed over various subsets of pixels, or GF estimates obtained by thresholding pixel-level VI values. These variables are directly related to the targeted traits, or combined, e.g., within Multiple Linear Regression (MLR) models.

These methods are compared to two standard remote-sensing approaches used with coarser resolution data, i.e., Vegetation Indices (VIs) and PROSAIL inversion [START_REF] Baret | Modeled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands[END_REF][START_REF] Jacquemoud | PROSPECT+SAIL models: A review of use for vegetation characterization[END_REF] applied to the averaged reflectances of microplots. Note that this study follows our previous studies based on ground measurements (Jay et al., 2017b(Jay et al., , 2017a)), upscaling the results to UAV observations in the perspective of highthroughput field phenotyping and precision agriculture.

Materials and methods

Field experiments

Field experiments were conducted in France during the 2016 and 2017 growing seasons. Four sites with different soil properties (sandy loam for Barenton, calcareous loam for St-Memmie, chalk for Charmont and clay loam for Nizy) were considered (Table 1 and Fig. 1). For each site, one to three trial(s) were monitored.

Each trial was organized as a randomized complete block design using a factorial arrangement of various nitrogen fertilizations and/or cultivars and/or plant densities. The microplots were 7 to 10 m long and encompassed four to twelve rows, with 45 cm row spacing and 16 to 18 cm plant spacing. In total, fourteen cultivars, eight nitrogen fertilization and seven plant densities were considered over the two years and under various soil and weather conditions, resulting in 274 microplots available. 

GF, GAI, Cab, CCC and CNC reference measurements

For each microplot, the proportion of green pixels as observed from nadir, GF (unitless), was estimated from millimeter-scale RGB imagery using Support Vector Machine (SVM) classification [START_REF] Vapnik | Statistical learning theory[END_REF] to identify green pixels (see section 2.4.1). GAI (unitless) was estimated based on five hemispherical photographs acquired with a digital camera positioned above a representative part of the canopy. The CAN-EYE freeware (http://www6.paca.inra.fr/caneye/) was then used to retrieve the effective GAI [START_REF] Weiss | Review of methods for in situ leaf area index (LAI) determination Part II. Estimation of LAI, errors and sampling[END_REF]) from these photographs. Comparison with destructive GAI measurements (see Jay et al. (2017b) for more details about the measurement procedure) over twenty samples with GAI values ranging from 0.15 to 3.00, showed an error of 0.12, thus confirming the strong accuracy of this indirect method [START_REF] Demarez | Estimation of leaf area and clumping indexes of crops with hemispherical photographs[END_REF].

The mean Cab (in µg/cm²) value of each microplot was estimated using a Dualex scientific+ TM leafclip (Force-A, Orsay, France). After selecting six plants representative of the microplot in terms of color and plant structure, five measurements per plant were performed at different shoot levels to account for the within-plant variability. The thirty Dualex readings obtained for each microplot were converted into actual Cab values using the relationship provided by [START_REF] Cerovic | A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids[END_REF] for dicotyledons to account for saturation occurring for high Cab values [START_REF] Jay | A physically-based model for retrieving foliar biochemistry and leaf orientation using close-range imaging spectroscopy[END_REF]. Finally, the thirty Cab values were averaged to obtain a single Cab value for each microplot.

For each microplot, CCC (in g/m²) was computed as the product of GAI and Cab [START_REF] Baret | Quantification of plant stress using remote sensing observations and crop models: The case of nitrogen management[END_REF][START_REF] Jacquemoud | Extraction of Vegetation Biophysical Parameters by Inversion of the PROSPECT + SAIL Models on Sugar Beet Canopy Reflectance Data. Application to TM and AVIRIS Sensors[END_REF].

CNC was measured destructively after image acquisition. For this purpose, ten plants representative of each microplot and corresponding to a 1 m² area, were harvested. Leaves were placed in an oven at 75°C until their weight stabilized, and their dry mass was measured. The average leaf nitrogen concentration (in % of dry mass)

was measured using the Dumas method [START_REF] Dumas | Procedes de l'analyse organique[END_REF]. CNC (in g/m²) was then determined by multiplying leaf nitrogen concentration by dry mass per unit soil area.

The ground-based measurements of GAI, Cab and CNC were performed within two days of the corresponding UAV flight, during which variations of these variables were assumed to be negligible.

Unfortunately, not all the ground variables were measured for each of the 274 sampled microplots (Table 1).

In the case of Barenton 1 trial, GAI was only measured for three replicates out of six, while Cab and CNC were measured for the other three replicates. The three Cab and GAI values available were thus averaged to provide a proxy of the average CCC value over the six replicates. Note that GAI was measured for only two replicates on June 6, 2016. Further, GAI was not measured on July 4, 2016, resulting in no CCC values for this date. Finally, GF was not measured for the last date due to full canopy cover. In the case of Nizy trial, Cab and CNC were measured for four replicates out of five, while GAI was measured for the remaining one. The four Cab values available over the four replicates were thus averaged to provide proxies of Cab values and therefore proxies of CCC values for the last replicate with measured GAI. This was justified by the low variability in Cab observed over the four replicates (i.e., standard deviations were lower than 2 µg/cm²). Note that Barenton 1 and Nizy were the only trials where CNC was measured.

UAV data acquisition

The two cameras used in this study were embedded on a hexacopter (based on Mikrokopter components), and fixed on a two-axis gimbal to point vertically downward. The first camera was a SONY ILCE-5100 digital RGB camera equipped with a 30 mm focal length lens. It was set on speed priority and auto ISO mode, with speed of 1/1000 sec, and acquired 6000 x 4000 pixel images saved in TIFF format.

The second camera was an AIRPHEN multispectral camera (www.hiphen-plant.com/plantphenotyping/airphen_41.html) equipped with an 8 mm focal length lens and acquiring 1280 x 960 pixel images saved in TIFF format. AIRPHEN is made of six individual cameras equipped with filters centered on 450, 530, 560 (in 2017, the 570 nm band replaced the 560 nm one), 675, 730 and 850 nm, with a spectral resolution of 10 nm. The integration time of each of the six cameras was adjusted automatically to minimize saturation and maximize the dynamics. Both the RGB and the multispectral cameras acquired images continuously at a 1 Hz frequency.

The flight plan was designed to ensure 80% overlap both across-and along-track. The UAV was first flown at 40 m altitude with the RGB camera, corresponding to a 6 mm spatial resolution. The AIRPHEN multispectral camera was then flown at 60 m altitude in 2016 (corresponding to a 2.7 cm spatial resolution), and 35 m altitude in 2017 (corresponding to a 1.6 cm spatial resolution). These resolutions were finer than the minimum resolution of 4 cm recommended by Jay et al. (2017a) for optimal Cab estimation in sugar beet crops.

Radiometric calibration was performed using a 3 m² carpet reference panel, which could conveniently be used in the field while showing adequate radiometric properties. More specifically, the bidirectional reflectance distribution function of this panel was measured in the laboratory similarly as [START_REF] Verger | Green area index from an unmanned aerial system over wheat and rapeseed crops[END_REF], and showed a nearly Lambertian behavior for viewing zenith angles lower than 30°, and 8 % reflectance for all of the six bands. Note that the low reflectance of the panel was close to that of soil and vegetation (Fig. 7), which improves the dynamics and signal-to-noise ratio of the imagery. For each UAV flight, this panel was placed horizontally on the ground at a distance of 1.5 times the height of the closest microplot in order to limit adjacency effects. In addition to the radiometric reference panel, nine circular panels of 60 cm diameter were placed within the field and used as ground control points (GCPs). The positions of the GCPs were measured with a RTK GPS providing an accuracy of 2 cm. These different panels are shown in Fig. 1. fertilizations and soil properties (Table 1). For each image, the rectangular gray panel is the reference panel used for radiometric calibration, while the smaller circular panels are the GCPs used for georeferencing and orthomosaicking.

UAV RGB and multispectral images were generally acquired around solar noon, with an average solar zenith angle between 29° and 55°. Both UAV flights only took a dozen minutes during which illumination was assumed to be stable. The illumination conditions strongly varied across dates of experiments, ranging from a clear blue sky to a fully overcast one.

Preprocessing of UAV data

For the sake of clarity, the complete preprocessing chain detailed in the next sections is illustrated in Fig. 2. It first consisted in computing the microplot coordinates and estimating the reference GF of each microplot from RGB images (section 2.4.1). Then, the multispectral bands were co-registered, geometrically and radiometrically corrected (section 2.4.2).

Fig. 2 : Flowchart illustrating the preprocessing of UAV RGB and multispectral images for each trial.

Microplot extraction and GF estimation using RGB images

Agisoft Photoscan Professional edition (Version 1.2.2, Agisoft LLC., Russia) was used to generate an orthomosaic of each trial using the GCPs that were automatically detected. The absolute camera position at the time of each image acquisition was computed, such that each image could be projected onto the ground surface with an accuracy of a few centimeters. For each microplot, 20 to 30 sub-images were then extracted from all the individual projected images containing this microplot. This process ensured a higher image quality as compared to using the orthomosaic [START_REF] Jin | Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery[END_REF]. Note that the microplot coordinates used for subimage extraction had been automatically computed from the RGB orthomosaic derived from the first flight when the rows were clearly visible, similarly as [START_REF] Jin | Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery[END_REF] to identify the rows and thanks to the knowledge of microplot dimensions and number of rows.

Since the rough classification based on the thresholding of the Excess Green Index [START_REF] Woebbecke | Color Indices for Weed Identification Under Various Soil, Residue, and Lighting Conditions[END_REF] image was sufficient to identify the rows (Fig. 2), but showed limitations to accurately estimate GF [START_REF] Jay | In-field crop row phenotyping from 3D modeling performed using Structure from Motion[END_REF][START_REF] Lati | Estimating plant growth parameters using an energy minimizationbased stereovision model[END_REF], a SVM classifier was trained to classify the RGB images. A database of 2500 soil and vegetation pixels was built, encompassing a large variability in crop state and illumination conditions. This database was randomly split into 2000 pixels used for training and 500 pixels used for validation. The trained SVM classifier showed an overall accuracy better than 95% on the validation set and was then applied to each sub-image to derive the corresponding GF. Among all the sub-images available for each microplot, the five ones showing no saturation and no blur, the closest viewing angles from nadir, and full coverage of the microplot, were selected. The GF estimate of each microplot was finally computed as the average GF over the five selected sub-images. This GF value is considered as the reference one and denoted GFREF in this paper.

Preprocessing of multispectral images for spectral analysis

The six bands were co-registered with an accuracy generally finer than one pixel using the algorithm proposed by [START_REF] Rabatel | Registration of visible and near infrared unmanned aerial vehicle images based on Fourier-Mellin transform[END_REF]. A master band (530 nm) was then used within Agisoft Photoscan Professional edition (Version 1.2.2, Agisoft LLC., Russia) to derive the camera position for each image acquisition, to project the image onto the ground, and to extract the sub-images corresponding to each microplot in the same way as for RGB imagery. Finally, for each microplot, only sub-images with viewing zenith angles lower than 10°

were kept for further analysis to limit bidirectional effects.

For each image, the digital number (DN) value for each pixel (𝑥, 𝑦) of the 𝑖 th band (noted 𝐷𝑁 𝑖 (𝑥, 𝑦)) was transformed into a bidirectional reflectance factor value (noted 𝐵𝑅𝐹 𝑖 (𝑥, 𝑦)) according to [START_REF] Verger | Green area index from an unmanned aerial system over wheat and rapeseed crops[END_REF]: ) term in Eq. ( 1). Note that the radiometric calibration process assumes that the illumination conditions are stable during the flight, which was generally the case.

𝐵𝑅𝐹 𝑖 (

Approaches used to estimate leaf and canopy variables from UAV multispectral imagery

In this study, five methods exploiting the centimeter spatial resolution of UAV observations are proposed for the estimation of the five targeted plant traits (Table 2 and Fig. 3). These methods rely on the calibration of statistical relationships between each plant trait and one or two VI-based input variable(s) computed from UAV images. Three of these methods (#Avg(VI_AllPix), #Frac(GreenPix) and #Avg(VI_GreenPix)) mainly differ in the set of pixels used to compute the VIs, and the way the VI values are used. The other two methods (#GAI.Cab and #MLR) combine the results obtained with the first three methods. Note that the five variables cannot be estimated with every method (Table 2). The VIs used are first presented in section 2.5.1. Then, the five methods designed for centimeter-scale data as well as the two standard remote-sensing approaches (#RTMI and #VI(Avg_Refl)) serving as baselines for the assessment of the proposed methods are described in sections 2.5.2 and 2.5.3, respectively. 

Selection of VIs

A number of VIs were selected from the literature based on their sensitivity to GF, GAI, Cab, CCC and CNC (Table 3). All of them were expressed as ratios of two or three wavebands. Such VIs indeed minimized the influence of multiplicative factors, including possible variation in the illumination conditions during the flights.

An extensive discussion of the properties of the selected VIs can be found in Jay et al. (2017a). In this study, the Visible Atmospherically Resistant Index (𝑉𝐴𝑅𝐼) was also included in the comparison, as it was demonstrated to be strongly related to GF [START_REF] Gitelson | Novel algorithms for remote estimation of vegetation fraction[END_REF].

All the six VIs selected were originally designed using wavebands that may not be available on the band set chosen for the AIRPHEN multispectral camera. Therefore, each band in the original formulation of each VI was replaced by the closest band available (Table 3). Note that the 560 nm band used in 2016 and the 570 nm band used in 2017 were not considered to prevent potential artifacts between years. 2.5.2. Estimation approaches exploiting the centimeter resolution of UAV multispectral imagery -#Avg(VI_AllPix): using the average VI value over all the pixels of the microplot. Here, the VI value was the average of the VI values computed for all the soil and vegetation pixels of the UAV image of the microplot (Fig. 3). This average was computed using a 1 % trimmed mean to remove possible outliers present in the tails of the VI distributions. Four linear and non-linear (second-degree polynomial, power and exponential functions) prediction models were then built using all the UAV multispectral images available for each targeted variable.

-#Frac(GreenPix): estimating GF and GAI using a fraction of green pixels derived from VI thresholding.

For each microplot, green pixels were identified by thresholding the six VI images. For each VI, the threshold value was optimized to get the best match between the reference GF value GFREF derived from the RGB image classification (section 2.4.1), and the GF value given by the fraction of green pixels after VI image thresholding (Fig. 3). Furthermore, the raw estimated GF value obtained by thresholding the VI image could be linearly related to GFREF to remove possible bias. This corrected GF estimate is called GFGREENPIX, and is also used in the following #MLR approach. In the case of GAI estimation, GFGREENPIX was transformed into log(1-GFGREENPIX) and linearly related to GAI according to [START_REF] Nilson | A theoretical analysis of the frequency of gaps in plant stands[END_REF] and [START_REF] Weiss | Review of methods for in situ leaf area index (LAI) determination Part II. Estimation of LAI, errors and sampling[END_REF].

-#Avg(VI_GreenPix): estimating Cab using the average VI value computed over a fraction of green pixels.

Similarly to Jay et al. (2017a), VIs were here computed based on three subsets of green pixels extracted using the available centimeter-scale UAV multispectral imagery, i.e., (i) all the green pixels, (ii) the 50 % darkest green pixels or (iii) the 50 % brightest green pixels. The green pixels were first identified using the optimal threshold leading to the GFGREENPIX estimates obtained with the previous #Frac(GreenPix) approach (Fig. 3). However, the threshold value leading to optimal Cab estimation may differ from the value leading to optimal GF estimation due to the detrimental influence of mixed pixels containing both soil and vegetation. Therefore, the performance of Cab estimation was also investigated for other selections of green pixels obtained for several threshold values around the optimal value leading to GFGREENPIX estimates. Then, for each selected fraction of green pixels, the 50 % darkest and 50 % brightest pixels were identified based on the value in the near-infrared (NIR) band.

For each subset of pixels considered, the average VI values were computed using a 1 % trimmed mean as for #Avg(VI_Refl), and linearly and non-linearly related to Cab. Note that this approach focusing on green pixels was only used for Cab estimation. The VI computed over the selected fraction of green pixels that provides the best Cab estimation performance is called VICAB when used in the following #MLR approach.

-#GAI.Cab: estimating CCC and CNC using the product of the best GAI and Cab estimates. CCC could be estimated either directly as in approach #Avg(VI_AllPix), or as the product of the best GAI and Cab estimates (Fig. 3). Since leaf nitrogen content shows some correlation with leaf chlorophyll content (Jay et al., 2017b;[START_REF] Schlemmer | Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels[END_REF], CNC was also linearly and non-linearly related to this product (Fig. 3).

-#MLR: estimating GF, GAI, CCC and CNC using Multiple Linear Regression. In the #MLR approach, a Multiple Linear Regression (MLR) model was built, combining (i) GFGREENPIX or log(1-GFGREENPIX) derived from approach #Frac(GreenPix) and carrying information on canopy structure, and (ii) VICAB derived from approach #Avg(VI_GreenPix) and carrying information on leaf chlorophyll content (Fig. 3). These two input variables were assumed to bring complementary information on the targeted plant traits.

These input variables were first standardized according to:

𝑋 𝑖 = (𝑥 𝑖 -𝑥 𝑖 ̅ ) 𝜎 𝑥 𝑖 (2)
where 𝑥 𝑖 ̅ and 𝜎 𝑥 𝑖 are, respectively, the average and standard deviation values of input variable 𝑥 𝑖 in the calibration set, with [𝑥 1 , 𝑥 2 ] = [GFGREENPIX, VICAB]. Note that, in the case of GAI, CCC and CNC estimation, we took 𝑥 1 = log(1-GFGREENPIX). A MLR model was then built according to:

𝑌 = 𝛼 0 + ∑ 𝛼 𝑖 2 𝑖=1 𝑋 𝑖 (3)
where 𝑌 is the variable to be estimated, and 𝛼 𝑖 the MLR coefficients to be calibrated.

2.5.3. Standard remote-sensing approaches using the average reflectance of the microplot -#RTMI: inverting the PROSAIL model. The #RTMI (standing for Radiative Transfer Model Inversion, Table 2 and Fig. 3) approach consists in inverting the PROSAIL radiative transfer model [START_REF] Baret | Modeled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands[END_REF][START_REF] Jacquemoud | PROSPECT+SAIL models: A review of use for vegetation characterization[END_REF], combining the PROSPECT model (Jacquemoud and [START_REF] Jacquemoud | PROSPECT: A model of leaf optical properties spectra[END_REF]) with the SAIL model [START_REF] Verhoef | Earth observation modeling based on layer scattering matrices[END_REF][START_REF] Verhoef | Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model[END_REF]. PROSAIL simulates the canopy bidirectional reflectance of a turbid medium canopy as a function of leaf biochemical and canopy structural variables for a given sun-sensor geometry. Although PROSAIL may not be fully optimal for modeling the reflectance of rowstructured sugar beet canopies, a number of studies have demonstrated that it enables accurate retrievals of GAI, Cab and CCC for such vegetation arrangements [START_REF] Dorigo | Improving the robustness of cotton status characterisation by radiative transfer model inversion of multi-angular CHRIS/PROBA data[END_REF][START_REF] Duan | Inversion of the PROSAIL model to 39 estimate leaf area index of maize, potato, and sunflower fields from unmanned aerial vehicle hyperspectral data[END_REF][START_REF] Jacquemoud | Extraction of Vegetation Biophysical Parameters by Inversion of the PROSPECT + SAIL Models on Sugar Beet Canopy Reflectance Data. Application to TM and AVIRIS Sensors[END_REF]Jay et al., 2017b;[START_REF] Verger | Green area index from an unmanned aerial system over wheat and rapeseed crops[END_REF].

The PROSPECT 3 model [START_REF] Baret | Estimation of leaf water content and specific leaf weight from reflectance and transmittance measurements[END_REF] was used in this study, as [START_REF] Jiang | Estimation of leaf traits from reflectance measurements : comparison between methods based on vegetation indices and several versions of the PROSPECT model[END_REF] showed that this PROSPECT version generally shows similar performance as the latest versions [START_REF] Feret | PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments[END_REF][START_REF] Féret | PROSPECT-D: Towards modeling leaf optical properties through a complete lifecycle[END_REF] while having less variables to be inverted. It simulates the leaf directional-hemispherical reflectance and transmittance as a function of a structure parameter (N, unitless) as well as leaf chlorophyll (Cab, in µg/cm²), dry matter (Cm, in g/cm²), water (Cw, in g/cm²) and brown pigment (Cbp, unitless) contents. SAIL accounts for the effects of leaf reflectance and transmittance, green area index (GAI, unitless), average leaf angle (ALA, in °), soil brightness factor (Bs, unitless), viewing zenith angle (θv, in °), solar zenith angle (θs, in °) and relative azimuth angle (ɸsv, in °). A parameter (sL, unitless) was also included to account for the hotspot effect [START_REF] Kuusk | The hot spot effect in plant canopy reflectance[END_REF][START_REF] Verhoef | Theory of radiative transfer models applied in optical remote sensing of vegetation canopies[END_REF].

In this paper, each UAV-measured canopy reflectance obtained by averaging all the vegetation and soil pixels of each microplot was inverted using a PROSAIL inversion approach based on artificial neural network. Following [START_REF] Verger | Green area index from an unmanned aerial system over wheat and rapeseed crops[END_REF], the inputs of the neural network were the solar zenith and azimuth angles, the viewing zenith angle, and the first five bands normalized by the 850 nm band so as to better handle possible variation in the illumination conditions. More details on the neural network architecture and training data base can be found in [START_REF] Weiss | Validation of neural net techniques to estimate canopy biophysical variables from remote sensing data[END_REF], [START_REF] Verger | Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with CHRIS/PROBA observations[END_REF] and [START_REF] Li | A generic algorithm to estimate LAI, FAPAR and FCOVER variables from SPOT4_HRVIR and landsat sensors: evaluation of the consistency and comparison with ground measurements[END_REF]. Note that GF and CCC can be directly estimated using this inversion method. In the case of CCC, the obtained estimate may differ from the product of GAI and Cab estimated values.

Note also that it is not possible to estimate directly CNC since leaf nitrogen content is not explicitly accounted for by the leaf PROSPECT model.

-#VI(Avg_Refl): using the VI value computed from the average microplot reflectance. The six VIs were computed from the canopy reflectance obtained by averaging over all the vegetation and soil pixels of the UAV image of the microplot (Fig. 3). The VIs were then linearly and non-linearly related to each targeted variable, similarly as #Avg(VI_AllPix) (section 2.5.2). Note that approach #VI(Avg_Refl) does not exploit the centimeter resolution of UAV multispectral images, unlike the previous #Avg(VI_AllPix) approach for which each VI was computed by averaging pixel-level VI values. As the six VIs tested are non-linear functions of reflectance, these two approaches may obtain different results (Jay et al., 2017a;[START_REF] Steven | Toward Standardization of Vegetation Indices[END_REF].

Performance assessment

A cross-validation process was used to quantify the performances of the six VI-based approaches (Table 2). It consisted in calibrating a prediction model using N-1 dates out of the N available (Table 1) and using the last date for the validation. This process was repeated N times to use every date available for the validation. Note that in the case of approach #MLR, each of the N calibration and validation sets was standardized using the 𝑥 𝑖 ̅

and 𝜎 𝑥 𝑖 values computed over the corresponding calibration set (Eq. ( 2)). Four indicators of the prediction performance were then computed, namely, the root mean square error of prediction (RMSEP), the relative RMSEP (RRMSEP) being defined as the ratio of the RMSEP to the mean measured value, the squared Pearson's correlation coefficient (𝑟²) between estimated and measured values, and the coefficient of determination

defined as 𝑅 2 = 1 - 𝑅𝑀𝑆𝐸𝑃² 𝜎 𝑡𝑜𝑡 2
, where 𝜎 𝑡𝑜𝑡 2 is the total variance of the measured variable. A large variability is observed for each structural and biochemical variable of interest (Table 4). Importantly, Cab and canopy structure variables (GAI and GF) poorly correlate (Table 5), which ensures that any correlation between VIs and Cab will not derive from the covariance with either GF or GAI. Conversely, strong correlations are observed between GF and GAI (Table 5), as already outlined by [START_REF] Andrieu | Ground cover and leaf area index of maize and sugar beet crops[END_REF] for sugar beet crops.

Results

Ground-based measurements

Note that, as expected, the linear correlation between GF and GAI slightly increases when transforming GF into log(1-GF) to better account for the saturation observed for high GAI values [START_REF] Andrieu | Ground cover and leaf area index of maize and sugar beet crops[END_REF][START_REF] Nilson | A theoretical analysis of the frequency of gaps in plant stands[END_REF][START_REF] Weiss | Review of methods for in situ leaf area index (LAI) determination Part II. Estimation of LAI, errors and sampling[END_REF]. GAI strongly correlates with CCC (Table 5) because of the larger variability in GAI as compared to that in Cab (Table 4). Table 5 also shows strong correlations between CNC and GAI, as well as between CNC and CCC. However, these correlations should be taken with caution due to the low number of samples considered (24) and to the poorer correlations between CNC and log(1-GF) obtained with a larger number of samples (96). 

Correlations between VIs

The correlations between VIs computed over soil and vegetation pixels shows that 𝑉𝐴𝑅𝐼 and 𝑁𝐷𝑉𝐼 are strongly related, with squared Spearman's correlation coefficients (𝜌 2 ) higher than 0.93 ( 

GF estimation

Since GF may play a particular role in the estimation of the other variables when exploiting the centimeter resolution of UAV images, emphasis is first put on it.

When using the average microplot reflectance, the GF values estimated using PROSAIL inversion (approach #RTMI) strongly correlate with the measured ones (𝑟 2 = 0.91) (Fig. When exploiting the centimeter resolution of UAV images through approach #Avg(VI_AllPix) for which each VI value is the average of the VI image, a slight improvement is observed when using 𝑉𝐴𝑅𝐼 (𝑅𝑀𝑆𝐸𝑃 = 0.04, Fig. 4.c), followed by 𝑁𝐷𝑉𝐼 (𝑅𝑀𝑆𝐸𝑃 = 0.07) (Table 8). When using approach #Frac(GreenPix), GF is given by the fraction of green pixels computed by thresholding the VI image. The optimal threshold used here is determined using the reference GF derived from RGB image classification. The best GF estimation results are obtained using 𝑉𝐴𝑅𝐼 images and an optimal threshold of 𝑉𝐴𝑅𝐼 = 0.14 (𝑅𝑀𝑆𝐸𝑃 = 0.09, Table 9), followed by 𝑁𝐷𝑉𝐼 images and an optimal threshold of 𝑁𝐷𝑉𝐼 = 0.62 (𝑅𝑀𝑆𝐸𝑃 = 0.11, Table 9). It is worth noting that similarly accurate results are obtained for a range of 𝑉𝐴𝑅𝐼 values around the optimal value of 0.14, e.g., the 𝑅𝑀𝑆𝐸𝑃 remains lower than 0.11 when taking a 𝑉𝐴𝑅𝐼 threshold between 0 and 0.25 (see the figure in supplementary material). However, these results show some underestimation for low GF values and some overestimation for large GF values (Fig. 4.d). A linear regression was thus applied to correct for this bias, leading to improved performance with 𝑅𝑀𝑆𝐸𝑃 = 0.05 (Table 9,Fig. 4.d). The resulting GF estimates are called GFGREENPIX and used as complementary information to improve the estimation of canopy variables through the #MLR approach. Further, green pixels selected by thresholding the 𝑉𝐴𝑅𝐼 images will be used in the following sections.

Here, approach #MLR consists in combining the two input variables [GFGREENPIX, VICAB], where VICAB is the 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 value averaged over the 50 % darkest green pixels (the green pixels being defined by 𝑉𝐴𝑅𝐼 > 0.20, see section 3.4.1). Using VICAB as additional explanatory variable within #MLR slightly improves the GF estimation results obtained with #Frac(GreenPix), with 𝑅𝑀𝑆𝐸𝑃 = 0.04 (𝑅𝑅𝑀𝑆𝐸𝑃 = 6%) (Fig. 4.e). 

GAI estimation

The GAI estimation results obtained when using the average microplot reflectance show similar characteristics as the GF estimation results. In the case of approach #RTMI, the measured and estimated GAI values strongly correlate (𝑟 2 = 0.85); however, #RTMI significantly underestimates GAI for the largest values, leading to 𝑅𝑀𝑆𝐸𝑃 = 0.53 (𝑅𝑅𝑀𝑆𝐸𝑃 = 35%) (Fig. 5.a). The retrieval accuracy improves when using #VI(Avg_Refl), with the same hierarchy between VIs being observed for GF and GAI (Table 8). The best predictions are obtained with 𝑉𝐴𝑅𝐼 and a linear model (𝑅𝑀𝑆𝐸𝑃 = 0.42) (Fig. 5.b). Note, however, that GAI is still underestimated for 𝐺𝐴𝐼 ≥ 3.00 (Fig. 5.b).

Similarly to GF, exploiting the image centimeter resolution through approach #Avg(VI_AllPix) slightly improves the best performance obtained with approach #VI(Avg_Refl) based on the average microplot reflectance (Table 8). The best predictions are obtained using 𝑉𝐴𝑅𝐼 (𝑅𝑀𝑆𝐸𝑃 = 0.40 with a linear model, Fig. 5.c), followed by 𝑁𝐷𝑉𝐼 (𝑅𝑀𝑆𝐸𝑃 = 0.44 with an exponential model, Table 8). Approach #Frac(GreenPix) for which GAI is linearly related to log(1-GFGREENPIX) further improves GAI estimation, with 𝑅𝑀𝑆𝐸𝑃 = 0.38 (Fig. 5.d).

Finally, similar GAI estimates (𝑅𝑀𝑆𝐸𝑃 = 0.39, Fig. 5.e) are obtained when using approach #MLR based on the two input variables [log(1-GFGREENPIX), VICAB], where VICAB is the 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 value averaged over the 50 % darkest green pixels (the green pixels being defined by 𝑉𝐴𝑅𝐼 > 0.20, see section 3.4.1). Note that the three methods exploiting the centimeter resolution still show some underestimation for 𝐺𝐴𝐼 ≥ 3.00, similarly to approaches based on average microplot reflectance (Fig. 5). 

Estimation of canopy biochemistry

Cab estimation

For Cab estimation, inverting PROSAIL based on the average microplot reflectance results in relatively poor performance (𝑅𝑀𝑆𝐸𝑃 = 5.9 µg/cm², Fig. 6.a). Note that the dispersion around the 1:1 line is greater for samples with Cab values around 30 µg/cm² (Fig. 6.a). Further investigation shows that, although having similar Cab values, these samples are characterized by strongly different canopy structures, with GF ranging from 0.20 to 0.97 and a standard deviation of 0.28. Using VIs through approach #VI(Avg_Refl) significantly improves Cab estimation, with 𝑀𝑇𝐶𝐼 and, to a lesser extent, 𝐶𝐼 𝑟𝑒 , performing better than the other VIs tested (Table 8). The best predictions are obtained using 𝑀𝑇𝐶𝐼 and a second-degree polynomial (𝑅𝑀𝑆𝐸𝑃 = 4.2 µg/cm², Fig. 6.b). Approach #Avg(VI_AllPix) based on the average VI value of the microplot (Fig. 6.c) shows nearly the same performances as approach #VI(Avg_Refl) based on the average microplot reflectance (Table 8). A similar hierarchy between VIs is observed, with 𝑀𝑇𝐶𝐼 leading to the best performance (𝑅𝑀𝑆𝐸𝑃 = 4.2 µg/cm²), and 𝑉𝐴𝑅𝐼, 𝑁𝐷𝑉𝐼 and 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 to the worst ones (𝑅𝑀𝑆𝐸𝑃 ≥ 7.4 µg/cm²).

Focusing on any of the three selections of green pixels identified using the 𝑉𝐴𝑅𝐼 image (using the threshold 𝑉𝐴𝑅𝐼 = 0.14) and the near-infrared band (section 2.5.2), makes the measured optical signature get closer to a typical leaf signature, e.g., with a sharper increase in reflectance observed in the red-edge region (Fig. 7).

Fig. 7 : Subsets of pixels extracted from a multispectral image of a single microplot, and corresponding average reflectance spectra. Pixels are here discriminated using a 𝑉𝐴𝑅𝐼 threshold of 0.14 (section 3.3.1). Purple areas show the pixels excluded from the spectral average for each subset.

Consequently, approach #Avg(VI_GreenPix) generally improves the Cab estimation results obtained with approach #Avg(VI_AllPix) (Fig. 8). For example, the results obtained with 𝑀𝑇𝐶𝐼 slightly improves when focusing on the 50 % darkest green pixels (𝑅𝑀𝑆𝐸𝑃 = 3.9 µg/cm²). However, in the case of 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 , this improvement is much more significant, with 𝑅𝑀𝑆𝐸𝑃 = 3.2 µg/cm² obtained when considering the 50 % darkest green pixels (Fig. 8). Note that 𝑉𝐴𝑅𝐼, 𝑁𝐷𝑉𝐼 and 𝐶𝐼 𝑔𝑟𝑒𝑒𝑛 provide significantly poorer performances than 𝐶𝐼 𝑟𝑒 , 𝑀𝑇𝐶𝐼 and 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 , and show no to little improvement when focusing on either selection of green pixels (Fig. 8).

The threshold value 𝑉𝐴𝑅𝐼 = 0.14 leading to optimal green segmentation (section 3.3.1) also appears to be appropriate for Cab estimation (Fig. 8). Varying the threshold value around 0.14 shows little impact on the performances for the six VIs, especially for 𝑉𝐴𝑅𝐼 values between 0.05 and 0.35. The best Cab estimation results are obtained using a threshold value 𝑉𝐴𝑅𝐼 = 0.20, 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 computed over the darkest green pixels, and an exponential model (𝑅𝑀𝑆𝐸𝑃 = 3.1 µg/cm², Fig. 6.d). Note that using a linear model leads to similar performance (𝑅𝑀𝑆𝐸𝑃 = 3.3 µg/cm², not shown). For each microplot, the VICAB input variable used within the #MLR approach thus corresponds to the 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 value averaged over the 50 % darkest green pixels (the green pixels being defined by 𝑉𝐴𝑅𝐼 > 0.20). 9). For each combination of 𝑉𝐴𝑅𝐼 thresholds, VIs and subsets of pixels, only the RMSEP obtained with the best model (linear or non-linear) is shown.

CCC estimation

Despite a similar bias as for GF and GAI, #RTMI based on PROSAIL inversion provides relatively accurate CCC estimates, with 𝑅𝑀𝑆𝐸𝑃 = 0.19 g/m² (Fig. 9.a). When using VIs computed from average microplot reflectances (#VI(Avg_Refl)), all the VIs except 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 provides rather similar performances, with RMSEP ranging from 0.19 g/m² for 𝑉𝐴𝑅𝐼 to 0.25 g/m² for 𝑀𝑇𝐶𝐼 (Table 8, Exploiting the centimeter resolution by using the average VI value of the microplot (#Avg(VI_AllPix)) shows negligible difference with the previous #VI(Avg_Refl) approach (Table 8), 𝑉𝐴𝑅𝐼 and a linear model still providing the best performance (𝑅𝑀𝑆𝐸𝑃 = 0.19 g/m², Fig. 9.c). On the other hand, combining the best GAI and Cab estimates within approach #GAI.Cab leads to a significant 37 % gain in estimation accuracy (𝑅𝑀𝑆𝐸𝑃 = 0.12 g/m²) as compared to previous approaches that do not differentiate between green and non-green pixels (Fig. .d). Similarly, the #MLR approach combining log(1-GFGREENPIX) and VICAB also achieves very good performance, with 𝑅𝑀𝑆𝐸𝑃 = 0.13 g/m² (Fig. .e). 

CNC estimation

As outlined in section 2.5.3, approach #RTMI could not be used to estimate CNC, since leaf nitrogen content is not an input variable of the PROSAIL model. When using approach #VI(Avg_Refl) based on average microplot reflectance, 𝐶𝐼 𝑔𝑟𝑒𝑒𝑛 , 𝑁𝐷𝑉𝐼 and 𝑉𝐴𝑅𝐼 provide the most accurate estimates (Table 8). The best results are obtained using 𝐶𝐼 𝑔𝑟𝑒𝑒𝑛 and a linear model, with 𝑅𝑀𝑆𝐸𝑃 = 2.1 g/m² (Fig. 10.a). 

PROSAIL inversion provides less accurate estimates than empirical approaches

When inverting PROSAIL based on average microplot reflectance (approach #RTMI), significant biases are observed for the estimation of GF and GAI (Figs. 4.a and 5.a). Such results are probably due to the turbid medium assumption used to describe the canopy structure within the SAIL model [START_REF] Verhoef | Earth observation modeling based on layer scattering matrices[END_REF][START_REF] Verhoef | Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model[END_REF]. As with ground-based spectro-radiometric measurements (Jay et al., 2017b), this assumption seems to be a limiting factor to accurately characterize the row structure of sugar beet canopies based on UAV observations. Further, the biases observed for GF and GAI affect Cab estimation through a compensation effect well known in optical remote sensing [START_REF] Baret | Quantification of plant stress using remote sensing observations and crop models: The case of nitrogen management[END_REF][START_REF] Baret | Estimating canopy characteristics from remote sensing observations: review of methods and associated problems[END_REF]Jay et al., 2017b). In particular, the GAI underestimation (Fig. 5.a) is partly compensated for by the Cab overestimation generally observed for samples with similar Cab values around 30 µg/cm² but with strongly different canopy structures (Fig. 6.a). Because of these compensations, the bias observed for the product of GAI and Cab, namely, CCC, is less marked than those observed for GF and GAI. Overall, PROSAIL inversion performs similarly or poorer than empirical approaches for every targeted variable (Table 10). However, when properly exploited, the centimeter-resolution imagery makes it possible to improve the performance for every variable, as we will see in the next sections.

4.2. Exploiting the centimeter resolution to compute VIs leads to more accurate estimates than using VIs computed from average microplot reflectance

Empirical approaches can be applied to VIs computed from average microplot reflectances (#VI(Avg_Refl)), or to VIs averaged over VI images (#Avg(VI_AllPix)) when exploiting the high spatial resolution imagery.

Approaches #VI(Avg_Refl) and #Avg(VI_AllPix) perform similarly (Table 10), although a slight improvement is observed for canopy structure variables (GF, GAI) with #Avg(VI_AllPix). This agrees with the results of Jay et al. (2017a) who suggested that approach #Avg(VI_AllPix) enhances the influence of the heterogeneity due to shadowing and soil effects, which relate to the canopy structure. Another reason is that, unlike #VI(Avg_Refl), approach #Avg(VI_AllPix) used with ratio-based VIs is insensitive to multiplicative variations observed at the pixel level and due mainly to soil brightness [START_REF] Kauth | The tasselled cap--a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat[END_REF]) and leaf orientation [START_REF] Jay | A physically-based model for retrieving foliar biochemistry and leaf orientation using close-range imaging spectroscopy[END_REF].

Besides enabling the use of VIs averaged over VI images, the centimeter resolution makes it possible to focus on a subset of pixels of interest. For example, approach #Frac(GreenPix) relates the fraction of green pixels to GF and GAI, while #Avg(VI_GreenPix) uses VI values averaged over the selected darkest green pixels to provide the best Cab estimates (Table 10).

4.3.

The 𝑉𝐴𝑅𝐼 index provides the most accurate estimates of canopy structure variables (GF, GAI)

Canopy structure variables (GF and GAI) are best estimated using 𝑉𝐴𝑅𝐼 or 𝑁𝐷𝑉𝐼 (Tables 8 and9). The strong correlation between both VIs (Table 6) indicates that they convey similar information for the ranges of GF and GAI values investigated. The remarkable relationship between GF and 𝑉𝐴𝑅𝐼 averaged over all soil and vegetation pixels is consistent with the literature [START_REF] Gitelson | Novel algorithms for remote estimation of vegetation fraction[END_REF] and makes this VI the most appropriate for accurately retrieving GF in this study. 𝑉𝐴𝑅𝐼 also leads to GFGREENPIX, defined as the fraction of green pixels obtained by thresholding the 𝑉𝐴𝑅𝐼 image (approach #Frac(GreenPix)). As GF and GAI are closely but nonlinearly related in sugar beet crops (Table 5), GAI can be accurately derived from log(1-GFGREENPIX).

Because 𝑉𝐴𝑅𝐼 is based only on visible bands (Table 3) for which leaf and soil reflectances are minimum, it is significantly less affected by multiple scattering caused by surrounding elements as compared to other VIs using a NIR band. Using 𝑉𝐴𝑅𝐼 within approach #Avg(VI_AllPix) thus leads to very accurate and stable GF and GAI estimates, especially when considering a highly heterogeneous data set such as the one used in this study.

However, when the canopy reaches nearly full cover for 𝐺𝐴𝐼 ≥ 3.00, 𝑉𝐴𝑅𝐼 saturates and becomes insensitive to GAI, especially because it does not use a NIR band that saturates for much higher GAI values [START_REF] Jacquemoud | PROSPECT+SAIL models: A review of use for vegetation characterization[END_REF]. This saturation effect and the associated GAI underestimation are clearly visible in Fig. 5 and are consistent with the findings of [START_REF] Andrieu | Ground cover and leaf area index of maize and sugar beet crops[END_REF].

Overall, approaches #Avg(VI_AllPix) and #Frac(GreenPix) provide very similar GF and GAI estimation performances (Table 10), especially when considering that GAI reference measurements are also affected by some level of uncertainty (section 2.2). However, approach #Frac(GreenPix) is expected to be more robust than #Avg(VI_AllPix) because it is not based on the whole distribution of 𝑉𝐴𝑅𝐼 values in the image, but only on the number of green pixels whose 𝑉𝐴𝑅𝐼 values exceed 0.14. Therefore, #Frac(GreenPix) is less affected than #Avg(VI_AllPix) by possible non-multiplicative variations in soil reflectance (e.g., between different sites or due to shadows cast by leaves) and illumination conditions (e.g., under variable cloud coverage). The beneficial influence of such robustness properties on the results could have certainly been more visible if the illumination had been more variable during the flights. Yet, these properties are critical in the perspective of applying a unique prediction model over a wide range of soil properties and illumination conditions, e.g., in a phenotyping context.

4.4. The best Cab estimates are obtained using the 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 index computed over the darkest green pixels

When using average microplot reflectances (#VI(Avg_Refl)), the best performance obtained with 𝑀𝑇𝐶𝐼 confirms its strong potential for retrieving Cab from meter-to decameter-scale observations [START_REF] Haboudane | Remote estimation of crop chlorophyll content using spectral indices derived from hyperspectral data[END_REF][START_REF] Hunt | A visible band index for remote sensing leaf chlorophyll content at the canopy scale[END_REF]Jay et al., 2017bJay et al., , 2017a)). The improved sensitivity to Cab observed when computing the VIs over a selection of green pixels (#Avg(VI_GreenPix)) is mainly due to the reduction of the soil influence, as reported in the literature (Jay et al., 2017a;[START_REF] Moorthy | Estimating chlorophyll concentration in conifer needles with hyperspectral data: An assessment at the needle and canopy level[END_REF][START_REF] Zarco-Tejada | Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops[END_REF], 2013[START_REF] Zarco-Tejada | Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data[END_REF].

This gain is very important for 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 that is extremely sensitive to this detrimental influence (Jay et al., 2017a). Therefore, 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 performs the best when the 𝑉𝐴𝑅𝐼 threshold used to extract green pixels is sufficiently high to remove most of the soil pixels, including mixed pixels containing both soil and vegetation.

In this study, the optimal 𝑉𝐴𝑅𝐼 threshold of 0.14 leading to optimal green segmentation (Table 9) may therefore be slightly increased up to 0.20 to remove more mixed pixels, thus reaching best Cab estimation.

Further, focusing on the dark green pixels rather than on the bright ones appears to be more effective for Cab estimation, which is inconsistent with previous studies (Jay et al., 2017a;[START_REF] Moorthy | Estimating chlorophyll concentration in conifer needles with hyperspectral data: An assessment at the needle and canopy level[END_REF][START_REF] Zarco-Tejada | Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops[END_REF], 2013[START_REF] Zarco-Tejada | Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data[END_REF]. Leaf surface contribution that does not contain information on Cab may explain the poorer performance obtained with bright pixels, for which the importance and variability of the surface reflectance is large. Further inspection shows that the poorer results obtained with bright green pixels are also due to small errors in the co-registration of multispectral bands. These pixels are indeed not only located at the top of canopy, but also on the plant/soil boundaries where the accuracy of the co-registration is the most critical. An error of a few pixels is likely to induce unrealistic VI values at these boundaries, which may have a critical influence on the average VI value. On the other hand, the use of dark green pixels is less affected by errors in the co-registration as these pixels are usually located in the inner part of the canopy and thus surrounded by other green pixels anyway. These results suggest that some improvements are required to allow full exploitation of bright green pixels, hence improving Cab estimation. Three avenues could be explored:

(i) improving the co-registration algorithm, (ii), using another multispectral camera technology for which the different wavebands natively overlap, e.g., the one presented by [START_REF] Lee | Development of a portable 3CCD camera system for multispectral imaging of biological samples[END_REF] or (iii) excluding pixels on plant/soil boundaries (this would, however, require a significant increase in spatial resolution to make the number of excluded pixels negligible compared to the total number of bright green pixels).

Using covariables improves the estimation of canopy biochemistry (CCC, CNC)

The addition of the information on Cab derived from #Avg(VI_GreenPix) to that of GFGREENPIX within the #MLR approach does not significantly improve the estimation of single canopy structure variables such as GF and GAI (Table 10). The GFGREENPIX estimates already provide very accurate GF estimates. The same applies to GAI estimates based on log(1-GFGREENPIX) because of the very strong relationship between GAI and GF (Table 5).

Conversely, in the case of CCC estimation, the #GAI.Cab and #MLR approaches substantially outperform the other approaches based on a single input variable (#VI(Avg_Refl), #Avg(VI_AllPix)) (Table 10). In fact, when directly related to CCC, VIs may not simultaneously detect CCC variations due to GAI and Cab with sufficient accuracies. For example, 𝑉𝐴𝑅𝐼 and 𝑁𝐷𝑉𝐼 are strongly sensitive to GAI (up to 𝐺𝐴𝐼 ≈ 3.00) but nearly insensitive to Cab (Table 8), which partly explains the scatters observed for CCC in Figs. 9.b-c. Similarly, 𝐶𝐼 𝑟-𝑒 is more sensitive to Cab than 𝑉𝐴𝑅𝐼 and 𝑁𝐷𝑉𝐼, but less sensitive to GAI (Table 8). As a result, these three VIs obtain a similar accuracy of 0.19 g/m² for CCC. On the other hand, #GAI.Cab exploits independently the two optimal configurations for estimating the two components of CCC, namely, using 𝑉𝐴𝑅𝐼 and all the pixels of the microplot image for GAI, and using 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 and only the darkest green pixels for Cab. #GAI.Cab thus makes it possible to accurately capture the two sources of CCC variations, e.g., the variations due to Cab that were not detected with 𝑉𝐴𝑅𝐼 or 𝑁𝐷𝑉𝐼 alone. This yields a significant 37 % gain in accuracy over #VI(Avg_Refl) and #Avg(VI_AllPix). Note that #GAI.Cab performs slightly better than #MLR since it directly combines the best estimates of GAI and Cab in a multiplicative way, as opposed to #MLR for which the two input variables are combined in an additive way.

The case of CNC appears to be more complex than that of CCC. #GAI.Cab does not bring any improvement as compared to #VI(Avg_Refl) and #Avg(VI_AllPix), while the #MLR approach leads to the best performance (Table 10). In fact, nitrogen does not absorb light at the six wavebands sampled by the camera [START_REF] Curran | Remote sensing of foliar chemistry[END_REF], which means that CNC can mainly be retrieved through its presumed correlation with CCC. Therefore, the strong improvements obtained for Cab and CCC when exploiting the centimeter resolution, do not result in a strong improvement for CNC because CCC and CNC show a poorer correlation for 𝐶𝑁𝐶 ≥ 5.0 g/m², as already suggested by Jay et al. (2017b) between different years. The more comprehensive data set used here thus indicates that CCC is generally not an accurate proxy of CNC for large CNC values in sugar beet crops. Actually, a significant amount of the nitrogen uptake is stored in the root for the latest stages [START_REF] Draycott | Sugar beet[END_REF], which could explain the loose relationship between leaf nitrogen content and Cab for such stages.

Conclusions and perspectives

This study aims to quantify the benefits of centimeter-resolution multispectral imagery as acquired from a UAV for the estimation of GF, GAI, Cab, CCC and CNC in sugar beet crops. Besides testing classical methods (#Avg(VI_AllPix) and #Avg(VI_GreenPix)) that relate each targeted plant trait and the average VI value computed over a particular subset of pixels, we propose several novel methods (#Frac(GreenPix), #GAI.Cab and #MLR) that exploit the centimeter resolution to improve the estimation of canopy-level variables.

#Frac(GreenPix) exploits the GF estimate (denoted GFGREENPIX) obtained by thresholding the 𝑉𝐴𝑅𝐼 image to identify the green pixels. GFGREENPIX is shown to be at least as accurate as GF estimates derived from other approaches based on VI values averaged over the microplots, while being less dependent from soil optical properties and variable illumination conditions leading to poor reflectance correction. Further, the logarithmic transformation of GFGREENPIX, log(1-GFGREENPIX), provides the best GAI estimate at least up to 𝐺𝐴𝐼 ≥ 3.00. For larger GAI values corresponding to GFGREENPIX  1, #Frac(GreenPix) should be combined with another approach exploiting the red-edge and/or near infrared band(s) that should be still sensitive to GAI variations. In the case of Cab estimation, the results show the superiority of 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 computed over the darkest green pixels (denoted VICAB), as compared to other approaches using all the pixels of the microplot. By simply multiplying these Cab estimates by the #Frac(GreenPix) GAI estimates, the chlorophyll content at the leaf level can be upscaled to the canopy level, leading to the best CCC estimates (#GAI.Cab approach). Similarly, combining log(1-GFGREENPIX) and VICab within a multiple linear regression model (#MLR) leads to the best CNC estimates.

Compared to two standard remote-sensing approaches applied to average microplot reflectances, the centimeter-resolution methods always improve the estimation performance, with a minimum gain of 8 % for GAI and CNC, and maximum gains of 26 and 37 % for Cab and CCC, respectively. It is worth noting here that the centimeter-resolution methods based on GFGREENPIX would have led to even stronger gains if the illumination conditions had strongly varied during the flights (this was not the case here). Since GFGREENPIX and VICAB are sufficient to retrieve all the five targeted plant traits and can be computed using a low-cost multispectral (or even RGB for GFGREENPIX only) camera, these two variables are promising for important agricultural applications such as precision agriculture and phenotyping. In addition, the methods presented in this study might be useful for the calibration and/or validation of vegetation land products derived from satellite imagery.

Despite the diversity of the data set used in this study, the robustness of the proposed empirical models should be further assessed using a larger and more contrasted data set. Also, because some of the results presented in this paper may be specific to sugar beet crops, they should be re-evaluated for other species. For example, the two 𝑉𝐴𝑅𝐼 thresholds leading to optimal GF and Cab estimates may change with the canopy structure and spatial resolution of the multispectral images. That said, the strong discrimination abilities of 𝑉𝐴𝑅𝐼 suggest that finely tuning these thresholds is not critical and that a unique threshold between 0.05 and 0.25 may be sufficient for most cases if the spatial resolution is fine enough. The accuracy of GAI and Cab estimation should also be confirmed by using direct reference measurements, e.g., as provided using a pigment extraction method for Cab. A variety of other machine learning algorithms [START_REF] Feilhauer | Multi-method ensemble selection of spectral bands related to leaf biochemistry[END_REF][START_REF] Verrelst | Spectral band selection for vegetation properties retrieval using Gaussian processes regression[END_REF] could be tested to better handle possible non-linearities between GFGREENPIX (or log(1-GFGREENPIX)), VICAB and the targeted variables. Finally, note that exploiting the high-resolution imagery through the GFGREENPIX and VICAB variables requires a very accurate registration between the several images constituting the multispectral image. Refining the co-registration process thus represents another way of improvement.

Fig. 1 :

 1 Fig. 1 : Examples of RGB images acquired from the UAV over three sites showing differences in growth stages, nitrogen

Fig. 3 :

 3 Fig. 3: Flowchart illustrating the seven methods used to estimate GF, GAI, Cab, CCC and CNC from UAV multispectral images of microplots. The blue (resp., red) panel on the left-hand (resp., right-hand) side corresponds to methods to be used with low (resp., high) spatial resolution data.

  4.a). However, the results are penalized by a significant underestimation for the largest GF values, resulting in 𝑅𝑀𝑆𝐸𝑃 = 0.15 (𝑅𝑅𝑀𝑆𝐸𝑃 = 25%). The bias is removed when using #VI(Avg_Refl) based on VIs computed over average microplot reflectances (Fig. 4.b). Significantly better predictions are obtained using 𝑉𝐴𝑅𝐼 and a second-degree polynomial, with 𝑅𝑀𝑆𝐸𝑃 = 0.05 (𝑅𝑅𝑀𝑆𝐸𝑃 = 8 %, Table 8, Fig. 4.b).

Fig. 4 :

 4 Fig. 4 : GF estimation results obtained using low and high spatial resolution approaches: (a) #RTMI based on PROSAIL inversion, (b) #VI(Avg_Refl) with 𝑉𝐴𝑅𝐼 and a second-degree polynomial, (c) #Avg(VI_AllPix) with 𝑉𝐴𝑅𝐼 and a seconddegree polynomial, (d) #Frac(GreenPix) with 𝑉𝐴𝑅𝐼 and a threshold of 0.14 before (disks in light blue) and after (squares in dark blue) correcting for the bias affecting the raw GF estimate GFGREENPIX,RAW, and (e) #MLR based on standardized GFGREENPIX (Fig. 4.d) and VICAB (Fig. 6.d) values. For each method, the squared Pearson's correlation coefficient (𝑟 2 ) and the RMSEPs in absolute and relative (in %) are indicated. The regression equation is also shown for empirical approaches.

Fig. 5 :

 5 Fig. 5 : GAI estimation results obtained using low and high spatial resolution approaches: (a) #RTMI based on PROSAIL inversion, (b) #VI(Avg_Refl) with 𝑉𝐴𝑅𝐼 and a linear model, (c) #Avg(VI_AllPix) with 𝑉𝐴𝑅𝐼 and a linear model, (d) #Frac(GreenPix) with log(1-GFGREENPIX) and a linear model, and (e) #MLR based on standardized log(1-GFGREENPIX) (Fig. 4.d) and VICAB (Fig. 6.d) values. For each method, the squared Pearson's correlation coefficient (𝑟 2 ) and the RMSEPs in absolute and relative (in %) are indicated. The regression equation is also shown for empirical approaches.

Fig. 6 :

 6 Fig. 6 : Cab estimation results obtained using low and high spatial resolution approaches: (a) #RTMI based on PROSAIL inversion, (b) #VI(Avg_Refl) with 𝑀𝑇𝐶𝐼 and a second-degree polynomial, (c) #Avg(VI_AllPix) with 𝑀𝑇𝐶𝐼 and a seconddegree polynomial, and (d) #Avg(VI_GreenPix) with a 𝑉𝐴𝑅𝐼 threshold of 0.20, and an exponential model relating Cab and 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 values averaged over the darkest green pixels. For each method, the squared Pearson's correlation coefficient (𝑟 2 ) and the RMSEPs in absolute and relative (in %) are indicated. The regression equation is also shown for empirical approaches.

Fig. 8 :

 8 Fig.8: RMSEPs obtained for the estimation of Cab using VIs computed as the average of pixel-level VI values over all microplot pixels (#Avg(VI_AllPix)), or over one of the three subsets of green pixels (#Avg(VI_GreenPix)) identified using various 𝑉𝐴𝑅𝐼 thresholds. The vertical dashed line shows the optimal 𝑉𝐴𝑅𝐼 threshold of 0.14 leading to GFGREENPIX (Table9). For each combination of 𝑉𝐴𝑅𝐼 thresholds, VIs and subsets of pixels, only the RMSEP obtained with the best

  Fig. 9.b). Both approaches #RTMI and #VI(Avg_Refl) generally show a strong dispersion for the highest CCC values (Figs. 9.a-b), corresponding to contrasted combinations of GAI and Cab. For example, in the case of #RTMI and 𝐶𝐶𝐶 ≥ 1.00 g/m², the most underestimated CCC values correspond to 𝐺𝐴𝐼 ≥ 3.00 and 𝐶 𝑎𝑏 ≤ 40 µg/cm², while the most accurate CCC estimates correspond to 𝐺𝐴𝐼 ≈ 2.80 and 𝐶 𝑎𝑏 ≥ 46 µg/cm².

Fig. 9 :

 9 Fig. 9 : CCC estimation results obtained using low and high spatial resolution approaches: (a) #RTMI based on PROSAIL inversion, (b) #VI(Avg_Refl) with 𝑉𝐴𝑅𝐼 and a linear model, (c) #Avg(VI_AllPix) with 𝑉𝐴𝑅𝐼 and a linear model, (d) #GAI.Cab, and (e) #MLR based on standardized log(1-GFGREENPIX) (Fig. 4.d) and VICAB (Fig. 6.d) values. For each method, the squared Pearson's correlation coefficient (𝑟 2 ) and the RMSEPs in absolute and relative (in %) are indicated. The regression equation is also shown for empirical approaches.

  

  

  

  

Table 1 :

 1 Summary of field experiments.

	Year	Trial	Soil	Plant density (plants/m²)	Nitrogen rate (kgN/ha)	Cultivar Id.	Number of microplots	Number of replicates	Date	Number of reference measurements GF GAI Cab CCC CNC
	2016	Barenton 1	Sandy loam 18 loam 11.5 0; 100; 150 1-4 36 6 05/24 36 18 7; 10; 14 0; 100; 150 5-13 11 06/06 11 11 11 1 06/22 11 11 10	11 10	N/A N/A
		StMemmie 1	Calcareous loam	11	40; 80; 120	1-4	12	2	06/07 12	12	12	12	N/A
		StMemmie 2	Calcareous loam	7; 10; 14	40; 80; 120	5-13	11	1	06/07 11	11	11	11	N/A
		StMemmie 3	Calcareous loam	10	0; 40; 80	14	6	2	07/04 6 07/17 6	6 5	6 6	6 5	N/A N/A
	2017	Charmont	Chalk	10.5	0; 70; 110; 150	14	4	1	07/04 4 07/21 4	4 4	4 4	4 4	N/A N/A
		Nizy	Clay loam	9.5	0; 40; 80	1-4	29	5	07/19 29	5	23	5	24

Table 2 :

 2 Methods used to estimate GF, GAI, Cab, CCC and CNC from UAV multispectral images of microplots. GFGREENPIX is the best GF estimate obtained with approach #Frac(GreenPix), and VICAB is the VI value that is computed with #Avg(VI_GreenPix) and that is the most correlated with Cab.

	Spatial resolution	Approach	Description				GF	GAI Cab	CCC CNC
	Low	#RTMI #VI(Avg_Refl)	Radiative Transfer Model Inversion using PROSAIL. VI computed from average microplot reflectance.	 	 	 	 	-
		#Avg(VI_AllPix)	Average VI value over all pixels of the microplot. 				
			GF given by the fraction of green pixels obtained		
		#Frac(GreenPix)	by thresholding the VI image. The resulting best GF estimate, GFGREENPIX, is then transformed into			-	-	-
			log(1-GFGREENPIX) for GAI estimation.			
	High	#Avg(VI_GreenPix)	Average VI value over a fraction of green pixels (all, only darkest, or only brightest green pixels).	-	-		-	-
		#GAI.Cab	Product of best GAI and Cab estimates.		-	-	-		
			Multiple	Linear	Regression	using		
		#MLR	log(1-GFGREENPIX) (or GFGREENPIX for GF estimation)		
			and VICAB as inputs.				

Table 3 :

 3 Ratio VIs selected from the literature.

	VI name	References	VI formulation used in this study
	𝑉𝐴𝑅𝐼	Gitelson et al. (2002)	𝑅 530 -𝑅 675 𝑅 530 + 𝑅 675 -𝑅 450
	𝑁𝐷𝑉𝐼	Rouse et al. (1973)	𝑅 850 -𝑅 675 𝑅 850 + 𝑅 675
	𝐶𝐼 𝑔𝑟𝑒𝑒𝑛	Gitelson et al. (2006a, 2005, 2003)	𝑅 850 𝑅 530	-1
	𝐶𝐼 𝑟𝑒	Gitelson et al. (2006a, 2005, 2003)	𝑅 850 𝑅 730	-1
	𝑀𝑇𝐶𝐼	Dash and Curran (2004)	𝑅 850 -𝑅 730 𝑅 730 -𝑅 675
	𝑚𝑁𝐷 𝑏𝑙𝑢𝑒	Jay et al. (2017a)	𝑅 450 -𝑅 730 𝑅 450 + 𝑅 850

Table 4 :

 4 Statistics of GF, GAI, Cab, CCC and CNC measurements.

	Variable Unit	Number of microplots	Min -Max	Mean	Standard deviation	Coefficient of variation (%)
	GF	-	238	0.18 -0.97	0.61	0.25	40
	GAI	-	135	0.13 -4.57	1.50	1.00	67
	Cab	µg/cm² 177	21.2 -51.1	33.7	7.0	21
	CCC	g/m²	92	0.04 -1.46	0.52	0.39	74
	CNC	g/m²	114	0.7 -16.8	6.4	3.9	61

Table 5 :

 5 Squared Spearman's (𝜌 2 , lower diagonal) and Pearson's (𝑟 2 , upper diagonal) correlation coefficients between the five variables targeted. The variable log(1-GF) is also included to show the gain in linear correlation obtained with this transformation. For each pair of variables, the number of microplots available to compute the correlation is indicated in parentheses. Colors show the level of correlation, ranging from pale yellow for low correlation to red for high correlation.

	𝜌 2	𝑟 2	GF	log(1-GF)	GAI	Cab	CCC	CNC
	GF		-	0.87 (238)	0.81 (117)	0.11 (159)	0.79 (86)	0.58 (96)
	log(1-GF)		1.00 (238)	-	0.83 (117)	0.03 (159)	0.81 (86)	0.50 (96)
	GAI		0.89 (117)	0.89 (117)	-	0.07 (87)	0.91 (92)	0.82 (24)
	Cab		0.07 (159)	0.07 (159)	0.11 (87)	-	0.21 (87)	0.10 (113)
	CCC		0.86 (86)	0.86 (86)	0.95 (92)	0.24 (87)	-	0.84 (24)
	CNC		0.62 (96)	0.62 (96)	0.83 (24)	0.04 (113)	0.87 (24)	-

Table 6 )

 6 . These two VIs show high to intermediate correlations with 𝐶𝐼 𝑔𝑟𝑒𝑒𝑛 and 𝐶𝐼 𝑟𝑒 (0.49 ≤ 𝜌 2 ≤ 0.83), both of which are themselves strongly related (𝜌 2 = 0.87). On the other hand, 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 and 𝑀𝑇𝐶𝐼 generally poorly correlate with other VIs (𝜌 2 ≤ 0.53). Note that the Spearman's and Pearson's correlation coefficients are generally similar, indicating that the relationships are approximately linear.

Table 6 :

 6 Squared Spearman's (𝜌 2 , lower diagonal) and Pearson's (𝑟 2 , upper diagonal) correlation coefficients between VIs computed over all soil and vegetation pixels and over all the 274 microplots. For each microplot, each VI is computed from the average of pixel-level VI values. Colors show the level of correlation, ranging from pale yellow for low correlation to red for high correlation.𝑉𝐴𝑅𝐼 and 𝑁𝐷𝑉𝐼 still strongly correlate (𝜌 2 = 0.80) when computed over vegetation pixels (Table7). However, in this case, only 𝑁𝐷𝑉𝐼 shows significant correlations with the other VIs tested, with maximum 𝜌 2 values of 0.73 and 0.49 with 𝐶𝐼 𝑔𝑟𝑒𝑒𝑛 and 𝐶𝐼 𝑟𝑒 , respectively. 𝑀𝑇𝐶𝐼, 𝐶𝐼 𝑟𝑒 , 𝐶𝐼 𝑔𝑟𝑒𝑒𝑛 and, to a lesser extent, 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 ,

	𝜌 2	𝑟 2	𝑉𝐴𝑅𝐼	𝑁𝐷𝑉𝐼	𝐶𝐼 𝑔𝑟𝑒𝑒𝑛	𝐶𝐼 𝑟𝑒	𝑀𝑇𝐶𝐼	𝑚𝑁𝐷 𝑏𝑙𝑢𝑒
	𝑉𝐴𝑅𝐼		-	0.94	0.65	0.49	0.01	0.55
	𝑁𝐷𝑉𝐼		0.93	-	0.80	0.63	0.06	0.53
	𝐶𝐼 𝑔𝑟𝑒𝑒𝑛		0.64	0.83	-	0.90	0.32	0.18
	𝐶𝐼 𝑟𝑒		0.49	0.66	0.87	-	0.56	0.04
	𝑀𝑇𝐶𝐼		0.00	0.03	0.19	0.40	-	0.15
	𝑚𝑁𝐷 𝑏𝑙𝑢𝑒		0.53	0.42	0.21	0.07	0.17	-

strongly correlate with each other, with a maximum correlation between 𝑀𝑇𝐶𝐼 and 𝐶𝐼 𝑟𝑒 (𝜌 2 = 0.97), and a minimum correlation between 𝐶𝐼 𝑔𝑟𝑒𝑒𝑛 and 𝑚𝑁𝐷 𝑏𝑙𝑢𝑒 (𝜌 2 = 0.20). Here again, the similar Spearman's and Pearson's correlation coefficients indicate that the relationships are approximately linear.

Table 7 :

 7 

	𝜌 2	𝑟 2	𝑉𝐴𝑅𝐼	𝑁𝐷𝑉𝐼	𝐶𝐼 𝑔𝑟𝑒𝑒𝑛	𝐶𝐼 𝑟𝑒	𝑀𝑇𝐶𝐼	𝑚𝑁𝐷 𝑏𝑙𝑢𝑒
	𝑉𝐴𝑅𝐼		-	0.79	0.30	0.19	0.13	0.00
	𝑁𝐷𝑉𝐼		0.80	-	0.69	0.52	0.43	0.07
	𝐶𝐼 𝑔𝑟𝑒𝑒𝑛		0.33	0.73	-	0.87	0.81	0.38
	𝐶𝐼 𝑟𝑒		0.21	0.49	0.81	-	0.99	0.70
	𝑀𝑇𝐶𝐼		0.12	0.36	0.72	0.97	-	0.77
	𝑚𝑁𝐷 𝑏𝑙𝑢𝑒		0.01	0.02	0.20	0.51	0.63	-
	3.3. Estimation of canopy structure				

Squared Spearman's (𝜌 2 , lower diagonal) and Pearson's (𝑟 2 , upper diagonal) correlation coefficients between VIs computed over all green pixels and over all the 274 microplots. For each microplot, each VI is computed from the average of pixel-level VI values. Colors show the level of correlation, ranging from pale yellow for low correlation to red for high correlation.

Table 8 :

 8 the best model is shown (results obtained with the four linear and non-linear models tested are provided in supplementary material). For each column, the best result is in bold.

	VI	GF	#VI(Avg_Refl) GAI Cab CCC	CNC	GF	GAI	#Avg(VI_AllPix) Cab CCC	CNC
	𝑉𝐴𝑅𝐼	0.05	0.42	7.4	0.19	2.7	0.04	0.40	7.7	0.19	2.7
	𝑁𝐷𝑉𝐼	0.07	0.46	7.6	0.20	2.2	0.07	0.44	7.6	0.19	2.2
	𝐶𝐼 𝑔𝑟𝑒𝑒𝑛	0.18	0.69	6.9	0.24	2.1	0.18	0.70	6.9	0.24	2.1
	𝐶𝐼 𝑟𝑒	0.21	0.74	5.4	0.20	3.2	0.20	0.74	5.2	0.20	3.1
	𝑀𝑇𝐶𝐼	0.25	0.93	4.2	0.25	3.6	0.29	1.10	4.2	0.32	4.8
	𝑚𝑁𝐷 𝑏𝑙𝑢𝑒	0.21	0.87	7.7	0.41	5.3	0.19	0.82	7.4	0.40	5.1

RMSEPs obtained for the estimation of GF (unitless), GAI (unitless), Cab (in µg/cm²), CCC (in g/m²) and CNC (in g/m²) using VIs computed either from the average microplot reflectance (#VI(Avg_Refl)) or from the average of pixellevel VI values over all microplot pixels (#Avg(VI_AllPix)). For each method, each variable and each VI, only the RMSEP obtained with

Table 9 :

 9 Results obtained for the estimation of GF using the #Frac(GreenPix) approach, consisting in retrieving the fraction of green pixels by thresholding the VI images. For each VI, the RMSEP (unitless) before and after bias correction is shown, and the best result is in bold.

	VI	Optimal threshold value	RMSEP before bias correction (-)	RMSEP after bias correction (-)
	𝑉𝐴𝑅𝐼	0.14	0.09	0.05
	𝑁𝐷𝑉𝐼	0.62	0.11	0.06
	𝐶𝐼 𝑔𝑟𝑒𝑒𝑛	2.20	0.16	0.12
	𝐶𝐼 𝑟𝑒	0.15	0.16	0.16
	𝑀𝑇𝐶𝐼	0.22	0.23	0.24
	𝑚𝑁𝐷 𝑏𝑙𝑢𝑒	-0.68	0.37	0.30

Table 10 :

 10 Summary of best performances obtained with the seven approaches tested for the estimation of GF, GAI, Cab, CCC and CNC. Performances are here evaluated using the coefficient of determination (𝑅 2 ). The best VI (when necessary) and best performance are indicated in bold.

	Spatial resolution	Approach	VI	GF	R²	VI	GAI	R²	VI	Cab	R²	VI	CCC	R²	VI	CNC	R²
	Low	#RTMI #VI(Avg_Refl)	-𝑉𝐴𝑅𝐼 0.96 𝑉𝐴𝑅𝐼 0.82 0.63 -0.72	-𝑀𝑇𝐶𝐼	0.30 0.63	-𝑉𝐴𝑅𝐼	0.75 0.75 𝐶𝐼 𝑔𝑟𝑒𝑒𝑛 0.70 --
		#Avg(VI_AllPix)	𝑉𝐴𝑅𝐼 0.97 𝑉𝐴𝑅𝐼 0.84	𝑀𝑇𝐶𝐼	0.64	𝑉𝐴𝑅𝐼	0.75 𝐶𝐼 𝑔𝑟𝑒𝑒𝑛 0.70
		#Frac(GreenPix)	𝑉𝐴𝑅𝐼 0.96 𝑽𝑨𝑹𝑰 0.85	-		-	-		-	-		-
	High	#Avg(VI_GreenPix)	-		-	-		-	𝒎𝑵𝑫 𝒃𝒍𝒖𝒆 0.80	-		-	-		-
		#GAI.Cab	-		-	-		-	-		-	-		0.90	-		0.68
		#MLR	-		0.98	-		0.84	-		-	-		0.88	-		0.75
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Except for 𝑀𝑇𝐶𝐼, approach #Avg(VI_AllPix) shows comparable performances as approach #VI(Avg_Refl) (Table 8): 𝐶𝐼 𝑔𝑟𝑒𝑒𝑛 still performs the best, with 𝑅𝑀𝑆𝐸𝑃 = 2.1 g/m² and a linear model (Fig. 10.b). Similar results are also obtained using approach #GAI.Cab based on the best GAI and Cab estimates (Fig. 10.c). Further inspection of the results however indicates that #GAI.Cab provides more accurate CNC estimates for 𝐶𝑁𝐶 ≤ 5 g/m². However, for higher CNC values, poor estimates are obtained with the three approaches. Finally, a slight improvement is observed when using approach #MLR, which achieves 𝑅𝑀𝑆𝐸𝑃 = 1.9 g/m² (Fig. 10.d). 

Discussion

All the results presented in sections 3.3 and 3.4 are summarized in Table 10 that will serve as a basis for the following discussion.