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Abstract 9 

The recent emergence of unmanned aerial vehicles (UAV) has opened a new horizon in vegetation remote 10 

sensing, especially for agricultural applications. However, the benefits of UAV centimeter-scale imagery are 11 

still unclear compared to coarser resolution data acquired from satellites or aircrafts. This study aims (i) to 12 

propose novel methods for retrieving canopy variables from UAV multispectral observations, and (ii) to 13 

investigate to what extent the use of such centimeter-scale imagery makes it possible to improve the 14 

estimation of leaf and canopy variables in sugar beet crops (Beta Vulgaris L.). Five important structural and 15 

biochemical plant traits are considered: green fraction (GF), green area index (GAI), leaf chlorophyll content 16 

(Cab), as well as canopy chlorophyll (CCC) and nitrogen (CNC) contents. 17 

Based on a comprehensive data set encompassing a large variability in canopy structure and biochemistry, the 18 

results obtained for every targeted trait demonstrate the superiority of centimeter-resolution methods over 19 

two standard remote-sensing approaches (i.e., vegetation indices and PROSAIL inversion) applied to average 20 

canopy reflectances. Two variables (denoted GFGREENPIX and VICAB) extracted from the images are shown to play 21 

a major role in these performances. GFGREENPIX is the GF estimate obtained by thresholding the Visible 22 

Atmospherically Resistant Index (𝑉𝐴𝑅𝐼) image, and is shown to be an accurate and robust (e.g., against 23 

variable illumination conditions) proxy of the structure of sugar beet canopies, i.e., GF and GAI. VICAB is the 24 

𝑚𝑁𝐷𝑏𝑙𝑢𝑒 index value averaged over the darkest green pixels, and provides critical information on Cab. When 25 

exploited within uni- or multivariate empirical models, these two variables improve the GF, GAI, Cab, CCC and 26 

CNC estimates obtained with standard approaches, with gains in estimation accuracy of 24, 8, 26, 37 and 8 %, 27 
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respectively. For example, the best CCC estimates (𝑅2 = 0.90) are obtained by multiplying Cab and GAI 28 

estimates respectively derived from VICAB and a log-transformed version of GFGREENPIX, log(1-GFGREENPIX). 29 

The GFGREENPIX and VICAB variables, which are only accessible from centimeter-scale imagery, contributes to a 30 

better identification of the effects of canopy structure and leaf biochemistry, whose influences may be 31 

confounded when considering coarser resolution observations. Such results emphasize the strong benefits of 32 

centimeter-scale UAV imagery over satellite or airborne remote sensing, and demonstrate the relevance of 33 

low-cost multispectral cameras to retrieve a number of plant traits, e.g., for agricultural applications. 34 

Keywords: Chlorophyll content, Field phenotyping, Green fraction, Green area index, Nitrogen content, 35 

Remote sensing, Sugar beet, UAV. 36 

1. Introduction 37 

Non-destructive and timely monitoring of crop structural and biochemical traits is of major importance to 38 

assess the physiological and phenological status of the plants and to further understand their functioning over 39 

time. A number of applications benefit from such an accurate monitoring, including (i) precision agriculture, 40 

which aims to adapt cultural practices to the actual state of the canopy over space and time (McBratney et al., 41 

2005; Zhang and Kovacs, 2012), and (ii) plant phenotyping, which aims to identify the genetic basis of 42 

important traits controlling yield and quality (Furbank and Tester, 2011; Sankaran et al., 2015; Zaman-Allah et 43 

al., 2015). 44 

Some of the most relevant crop structural and biochemical traits to be monitored characterize the efficiency 45 

with which light, water and nutrients are captured and used for biomass production and yield (Araus and 46 

Cairns, 2014). Since the green area index (GAI) and the green fraction (GF) closely relate to the capability of 47 

the crop to intercept the incoming photosynthetically-active radiation (PAR), they are both key variables for 48 

photosynthesis, respiration and evapotranspiration (Verger et al., 2014). GAI and GF are also good proxies of 49 

biomass as well as good indicators of developmental stages and various abiotic and biotic stresses (Yang et al., 50 

2017). For all these reasons, GAI is considered as an essential state variable for crop modeling (Baret et al., 51 
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2007; Clevers, 1997; Dong et al., 2017; Dorigo et al., 2007; Launay and Guerif, 2005). In addition to these 52 

structural variables, knowledge of leaf chlorophyll content (Cab) provides critical information on the capability 53 

of the crop to absorb the intercepted PAR and to produce biomass (Gitelson et al., 2005; Houborg et al., 2015). 54 

Cab is also a proxy of nitrogen content (Schlemmer et al., 2013) and maximum rate of carboxylation (Croft et 55 

al., 2017; Houborg et al., 2015). Changes in Cab can also be related to nutrient stresses and developmental 56 

stages (Gitelson et al., 2005). By upscaling Cab to the canopy level, thus considering the canopy chlorophyll 57 

content (CCC), it is possible to assess the total canopy-scale productivity of the crop (Gitelson et al., 2006b; 58 

Inoue et al., 2016). As CCC is also an accurate proxy of canopy nitrogen content (CNC) (Baret et al., 2007; Jay 59 

et al., 2017b; Schlemmer et al., 2013), it is therefore a critical variable for many agricultural applications. 60 

Optical sensors embedded on ground-based platforms, aircrafts and satellites have long been used for 61 

vegetation monitoring. Indeed, because the canopy structure and biochemistry strongly affect the reflected 62 

solar radiation in the optical domain (Jacquemoud and Baret, 1990; Verhoef, 1984), they can potentially be 63 

retrieved from the canopy reflectance measured from remote sensing. However, satellite or aerial remote-64 

sensing imagery generally lacks spatial resolution to observe single microplots of a few dozen square meters 65 

in the context of field phenotyping (Gago et al., 2015; Sankaran et al., 2015; Yang et al., 2017; Zaman-Allah et 66 

al., 2015). Further, the revisit frequency combined with possible cloud occurrence limit the use of satellites 67 

for agricultural applications, when observations need to be completed over short critical periods (Inoue et al., 68 

2012; Launay and Guerif, 2005). Possible alternatives to satellites and aircrafts include a variety of ground-69 

based platforms, such as towers (Hilker et al., 2011) or “phenomobiles” (Araus and Cairns, 2014; Busemeyer 70 

et al., 2013; Comar et al., 2012; Deery et al., 2014). However, these platforms are limited by their spatial 71 

coverage and the difficulty in transporting them from one location to another (Gago et al., 2015; Sankaran et 72 

al., 2015; Yang et al., 2017). 73 

Unmanned Aerial Vehicles (UAVs) offer a very attractive alternative : they can be operated conveniently and 74 

offer high spatial and temporal resolutions as well as a reasonable spatial coverage (Gago et al., 2015; 75 

Sankaran et al., 2015; Van Der Meij et al., 2017; Verger et al., 2014; Zaman-Allah et al., 2015; Zarco-Tejada et 76 
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al., 2013). Interestingly, the high spatial resolution of UAV data makes it possible to document the within-77 

microplot variability in field phenotyping experiments (Araus and Cairns, 2014; Zaman-Allah et al., 2015). For 78 

all of these reasons, UAVs are currently becoming appealing tools for crop monitoring (e.g., Aasen et al., 2015; 79 

Domingues Franceschini et al., 2017; Duan et al., 2014; Jin et al., 2017; Van Der Meij et al., 2017; Verger et al., 80 

2014; Zarco-Tejada et al., 2013; Zhou et al., 2017).  81 

Despite this success, the benefits of using the fine spatial resolution accessible from UAV imagery for retrieving 82 

the above-mentioned structural and biochemical crop traits have not been clearly quantified yet. The 83 

possibility to remove soil and shadow pixels is likely to improve the estimation of leaf biochemistry (Jay et al., 84 

2017a; Moorthy et al., 2008; Zarco-Tejada et al., 2004, 2013, 2001). However, there still lacks methods that 85 

take full advantage of the centimeter resolution to improve estimates of canopy variables. 86 

Therefore, the objectives of this study are (i) to propose novel methods for retrieving canopy variables in sugar 87 

beet (Beta Vulgaris L.) crops using centimeter-scale multispectral imagery, and (ii) to investigate to what 88 

extent the use of centimeter-scale imagery makes it possible to improve the estimation of GF, GAI, Cab, CCC 89 

and CNC in sugar beet crops at the microplot level. Using an extensive two-year multi-site field experiment, 90 

several variables are extracted from UAV multispectral images of microplots, including VI values computed 91 

over various subsets of pixels, or GF estimates obtained by thresholding pixel-level VI values. These variables 92 

are directly related to the targeted traits, or combined, e.g., within Multiple Linear Regression (MLR) models. 93 

These methods are compared to two standard remote-sensing approaches used with coarser resolution data, 94 

i.e., Vegetation Indices (VIs) and PROSAIL inversion (Baret et al., 1992; Jacquemoud et al., 2009) applied to the 95 

averaged reflectances of microplots. Note that this study follows our previous studies based on ground 96 

measurements (Jay et al., 2017b, 2017a), upscaling the results to UAV observations in the perspective of high-97 

throughput field phenotyping and precision agriculture. 98 
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2. Materials and methods 99 

2.1. Field experiments 100 

Field experiments were conducted in France during the 2016 and 2017 growing seasons. Four sites with 101 

different soil properties (sandy loam for Barenton, calcareous loam for St-Memmie, chalk for Charmont and 102 

clay loam for Nizy) were considered (Table 1 and Fig. 1). For each site, one to three trial(s) were monitored. 103 

Each trial was organized as a randomized complete block design using a factorial arrangement of various 104 

nitrogen fertilizations and/or cultivars and/or plant densities. The microplots were 7 to 10 m long and 105 

encompassed four to twelve rows, with 45 cm row spacing and 16 to 18 cm plant spacing. In total, fourteen 106 

cultivars, eight nitrogen fertilization and seven plant densities were considered over the two years and under 107 

various soil and weather conditions, resulting in 274 microplots available. 108 

Table 1 : Summary of field experiments. 109 

Year Trial Soil 

Plant 

density 

(plants/m²) 

Nitrogen 

rate  

(kgN/ha) 

Cultivar 

Id. 

Number of 

microplots 

Number 

of 

replicates 

Date 

Number of reference 

measurements 

GF GAI Cab CCC CNC 

2016 

Barenton 

1 

Sandy 

loam 
11.5 

0; 100; 

150 
1-4 36 6 

05/24 36 18 18 6 18 

06/06 36 12 18 6 18 

06/23 36 18 18 6 18 

07/04 36 N/A 18 N/A 18 

07/21 N/A 18 18 6 18 

Barenton 

2 

Sandy 

loam 
7; 10; 14 

0; 100; 

150 
5-13 11 1 

06/06 11 11 11 11 N/A 

06/22 11 11 10 10 N/A 

StMemmie 

1 

Calcareous 

loam 
11 

40; 80; 

120 
1-4 12 2 06/07 12 12 12 12 N/A 

StMemmie 

2 

Calcareous 

loam 
7; 10; 14 

40; 80; 

120 
5-13 11 1 06/07 11 11 11 11 N/A 

2017 

StMemmie 

3 

Calcareous 

loam 
10 0; 40; 80 14 6 2 

07/04 6 6 6 6 N/A 

07/17 6 5 6 5 N/A 

Charmont Chalk 10.5 
0; 70; 

110; 150 
14 4 1 

07/04 4 4 4 4 N/A 

07/21 4 4 4 4 N/A 

Nizy Clay loam 9.5 0; 40; 80 1-4 29 5 07/19 29 5 23 5 24 

 110 

2.2. GF, GAI, Cab, CCC and CNC reference measurements 111 

For each microplot, the proportion of green pixels as observed from nadir, GF (unitless), was estimated from 112 

millimeter-scale RGB imagery using Support Vector Machine (SVM) classification (Vapnik and Vapnik, 1998) to 113 

identify green pixels (see section 2.4.1). 114 
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GAI (unitless) was estimated based on five hemispherical photographs acquired with a digital camera 115 

positioned above a representative part of the canopy. The CAN-EYE freeware (http://www6.paca.inra.fr/can-116 

eye/) was then used to retrieve the effective GAI (Weiss et al., 2004) from these photographs. Comparison 117 

with destructive GAI measurements (see Jay et al. (2017b) for more details about the measurement 118 

procedure) over twenty samples with GAI values ranging from 0.15 to 3.00, showed an error of 0.12, thus 119 

confirming the strong accuracy of this indirect method (Demarez et al., 2008). 120 

The mean Cab (in µg/cm²) value of each microplot was estimated using a Dualex scientific+TM leafclip (Force-A, 121 

Orsay, France). After selecting six plants representative of the microplot in terms of color and plant structure, 122 

five measurements per plant were performed at different shoot levels to account for the within-plant 123 

variability. The thirty Dualex readings obtained for each microplot were converted into actual Cab values using 124 

the relationship provided by Cerovic et al. (2012) for dicotyledons to account for saturation occurring for high 125 

Cab values (Jay et al., 2016). Finally, the thirty Cab values were averaged to obtain a single Cab value for each 126 

microplot. 127 

For each microplot, CCC (in g/m²) was computed as the product of GAI and Cab (Baret et al., 2007; Jacquemoud 128 

et al., 1995). 129 

CNC was measured destructively after image acquisition. For this purpose, ten plants representative of each 130 

microplot and corresponding to a 1 m² area, were harvested. Leaves were placed in an oven at 75°C until their 131 

weight stabilized, and their dry mass was measured. The average leaf nitrogen concentration (in % of dry mass) 132 

was measured using the Dumas method (Dumas, 1831). CNC (in g/m²) was then determined by multiplying 133 

leaf nitrogen concentration by dry mass per unit soil area. 134 

The ground-based measurements of GAI, Cab and CNC were performed within two days of the corresponding 135 

UAV flight, during which variations of these variables were assumed to be negligible. 136 

Unfortunately, not all the ground variables were measured for each of the 274 sampled microplots (Table 1). 137 

In the case of Barenton 1 trial, GAI was only measured for three replicates out of six, while Cab and CNC were 138 
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measured for the other three replicates. The three Cab and GAI values available were thus averaged to provide 139 

a proxy of the average CCC value over the six replicates. Note that GAI was measured for only two replicates 140 

on June 6, 2016. Further, GAI was not measured on July 4, 2016, resulting in no CCC values for this date. Finally, 141 

GF was not measured for the last date due to full canopy cover. In the case of Nizy trial, Cab and CNC were 142 

measured for four replicates out of five, while GAI was measured for the remaining one. The four Cab values 143 

available over the four replicates were thus averaged to provide proxies of Cab values and therefore proxies of 144 

CCC values for the last replicate with measured GAI. This was justified by the low variability in Cab observed 145 

over the four replicates (i.e., standard deviations were lower than 2 µg/cm²). Note that Barenton 1 and Nizy 146 

were the only trials where CNC was measured. 147 

2.3. UAV data acquisition 148 

The two cameras used in this study were embedded on a hexacopter (based on Mikrokopter components), 149 

and fixed on a two-axis gimbal to point vertically downward. The first camera was a SONY ILCE-5100 digital 150 

RGB camera equipped with a 30 mm focal length lens. It was set on speed priority and auto ISO mode, with 151 

speed of 1/1000 sec, and acquired 6000 x 4000 pixel images saved in TIFF format. 152 

The second camera was an AIRPHEN multispectral camera (www.hiphen-plant.com/plant-153 

phenotyping/airphen_41.html) equipped with an 8 mm focal length lens and acquiring 1280 x 960 pixel images 154 

saved in TIFF format. AIRPHEN is made of six individual cameras equipped with filters centered on 450, 530, 155 

560 (in 2017, the 570 nm band replaced the 560 nm one), 675, 730 and 850 nm, with a spectral resolution of 156 

10 nm. The integration time of each of the six cameras was adjusted automatically to minimize saturation and 157 

maximize the dynamics. Both the RGB and the multispectral cameras acquired images continuously at a 1 Hz 158 

frequency. 159 

The flight plan was designed to ensure 80% overlap both across- and along-track. The UAV was first flown at 160 

40 m altitude with the RGB camera, corresponding to a 6 mm spatial resolution. The AIRPHEN multispectral 161 

camera was then flown at 60 m altitude in 2016 (corresponding to a 2.7 cm spatial resolution), and 35 m 162 
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altitude in 2017 (corresponding to a 1.6 cm spatial resolution). These resolutions were finer than the minimum 163 

resolution of 4 cm recommended by Jay et al. (2017a) for optimal Cab estimation in sugar beet crops.   164 

Radiometric calibration was performed using a 3 m² carpet reference panel, which could conveniently be used 165 

in the field while showing adequate radiometric properties. More specifically, the bidirectional reflectance 166 

distribution function of this panel was measured in the laboratory similarly as Verger et al. (2014), and showed 167 

a nearly Lambertian behavior for viewing zenith angles lower than 30°, and 8 % reflectance for all of the six 168 

bands. Note that the low reflectance of the panel was close to that of soil and vegetation (Fig. 7), which 169 

improves the dynamics and signal-to-noise ratio of the imagery. For each UAV flight, this panel was placed 170 

horizontally on the ground at a distance of 1.5 times the height of the closest microplot in order to limit 171 

adjacency effects. In addition to the radiometric reference panel, nine circular panels of 60 cm diameter were 172 

placed within the field and used as ground control points (GCPs). The positions of the GCPs were measured 173 

with a RTK GPS providing an accuracy of 2 cm. These different panels are shown in Fig. 1. 174 

 175 

Fig. 1 : Examples of RGB images acquired from the UAV over three sites showing differences in growth stages, nitrogen 176 

fertilizations and soil properties (Table 1). For each image, the rectangular gray panel is the reference panel used for 177 

radiometric calibration, while the smaller circular panels are the GCPs used for georeferencing and orthomosaicking. 178 

UAV RGB and multispectral images were generally acquired around solar noon, with an average solar zenith 179 

angle between 29° and 55°. Both UAV flights only took a dozen minutes during which illumination was 180 
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assumed to be stable. The illumination conditions strongly varied across dates of experiments, ranging from a 181 

clear blue sky to a fully overcast one. 182 

2.4. Preprocessing of UAV data 183 

For the sake of clarity, the complete preprocessing chain detailed in the next sections is illustrated in Fig. 2. It 184 

first consisted in computing the microplot coordinates and estimating the reference GF of each microplot from 185 

RGB images (section 2.4.1). Then, the multispectral bands were co-registered, geometrically and 186 

radiometrically corrected (section 2.4.2). 187 

 188 

Fig. 2 : Flowchart illustrating the preprocessing of UAV RGB and multispectral images for each trial. 189 

2.4.1. Microplot extraction and GF estimation using RGB images 190 

Agisoft Photoscan Professional edition (Version 1.2.2, Agisoft LLC., Russia) was used to generate an 191 

orthomosaic of each trial using the GCPs that were automatically detected. The absolute camera position at 192 

the time of each image acquisition was computed, such that each image could be projected onto the ground 193 
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surface with an accuracy of a few centimeters. For each microplot, 20 to 30 sub-images were then extracted 194 

from all the individual projected images containing this microplot. This process ensured a higher image quality 195 

as compared to using the orthomosaic (Jin et al., 2017). Note that the microplot coordinates used for sub-196 

image extraction had been automatically computed from the RGB orthomosaic derived from the first flight 197 

when the rows were clearly visible, similarly as Jin et al. (2017) to identify the rows and thanks to the 198 

knowledge of microplot dimensions and number of rows. 199 

Since the rough classification based on the thresholding of the Excess Green Index (Woebbecke et al., 1995) 200 

image was sufficient to identify the rows (Fig. 2), but showed limitations to accurately estimate GF (Jay et al., 201 

2015; Lati et al., 2013), a SVM classifier was trained to classify the RGB images. A database of 2500 soil and 202 

vegetation pixels was built, encompassing a large variability in crop state and illumination conditions. This 203 

database was randomly split into 2000 pixels used for training and 500 pixels used for validation. The trained 204 

SVM classifier showed an overall accuracy better than 95% on the validation set and was then applied to each 205 

sub-image to derive the corresponding GF. Among all the sub-images available for each microplot, the five 206 

ones showing no saturation and no blur, the closest viewing angles from nadir, and full coverage of the 207 

microplot, were selected. The GF estimate of each microplot was finally computed as the average GF over the 208 

five selected sub-images. This GF value is considered as the reference one and denoted GFREF in this paper. 209 

2.4.2. Preprocessing of multispectral images for spectral analysis 210 

The six bands were co-registered with an accuracy generally finer than one pixel using the algorithm proposed 211 

by Rabatel and Labbé (2016). A master band (530 nm) was then used within Agisoft Photoscan Professional 212 

edition (Version 1.2.2, Agisoft LLC., Russia) to derive the camera position for each image acquisition, to project 213 

the image onto the ground, and to extract the sub-images corresponding to each microplot in the same way 214 

as for RGB imagery. Finally, for each microplot, only sub-images with viewing zenith angles lower than 10° 215 

were kept for further analysis to limit bidirectional effects.  216 

For each image, the digital number (DN) value for each pixel (𝑥, 𝑦) of the 𝑖th band (noted 𝐷𝑁𝑖(𝑥, 𝑦)) was 217 

transformed into a bidirectional reflectance factor value (noted 𝐵𝑅𝐹𝑖(𝑥, 𝑦)) according to Verger et al. (2014): 218 
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𝐵𝑅𝐹𝑖(𝑥, 𝑦) = (
𝐷𝑁𝑖(𝑥, 𝑦). 𝑣𝑖(𝑥, 𝑦)

𝑡𝑖
) . (

 𝑡𝑟𝑒𝑓
𝑖  

𝐷𝑁𝑟𝑒𝑓
𝑖 𝑣𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

) . 𝐵𝑅𝐹𝑟𝑒𝑓
𝑖  (1) 

where 𝑡𝑖  and 𝑡𝑟𝑒𝑓
𝑖  are, respectively, the integration times of the images acquired over the target and the 219 

reference panel, 𝑣𝑖 the vignetting matrix used to compensate for the darkening observed in the image corners, 220 

𝐷𝑁𝑟𝑒𝑓
𝑖 𝑣𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ the pixel-averaged and vignetting-corrected DN value observed over the reference panel of known 221 

BRF value 𝐵𝑅𝐹𝑟𝑒𝑓
𝑖 . Note that, similarly to 𝐵𝑅𝐹𝑟𝑒𝑓

𝑖 (section 2.3), 𝑣𝑖 was measured in the laboratory as described 222 

by Verger et al. (2014). All the sub-images containing the reference panel and acquired with viewing zenith 223 

angles lower than 30° were used to get a median value of the (𝐷𝑁𝑟𝑒𝑓
𝑖 𝑣𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  𝑡𝑟𝑒𝑓

𝑖⁄ ) term in Eq. (1). Note that the 224 

radiometric calibration process assumes that the illumination conditions are stable during the flight, which 225 

was generally the case. 226 

2.5. Approaches used to estimate leaf and canopy variables from UAV multispectral 227 

imagery 228 

In this study, five methods exploiting the centimeter spatial resolution of UAV observations are proposed for 229 

the estimation of the five targeted plant traits (Table 2 and Fig. 3). These methods rely on the calibration of 230 

statistical relationships between each plant trait and one or two VI-based input variable(s) computed from 231 

UAV images. Three of these methods (#Avg(VI_AllPix), #Frac(GreenPix) and #Avg(VI_GreenPix)) mainly differ 232 

in the set of pixels used to compute the VIs, and the way the VI values are used. The other two methods 233 

(#GAI.Cab and #MLR) combine the results obtained with the first three methods. Note that the five variables 234 

cannot be estimated with every method (Table 2). The VIs used are first presented in section 2.5.1. Then, the 235 

five methods designed for centimeter-scale data as well as the two standard remote-sensing approaches 236 

(#RTMI and #VI(Avg_Refl)) serving as baselines for the assessment of the proposed methods are described in 237 

sections 2.5.2 and 2.5.3, respectively. 238 
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Table 2: Methods used to estimate GF, GAI, Cab, CCC and CNC from UAV multispectral images of microplots. GFGREENPIX is 239 

the best GF estimate obtained with approach #Frac(GreenPix), and VICAB is the VI value that is computed with 240 

#Avg(VI_GreenPix) and that is the most correlated with Cab. 241 

Spatial 

resolution 
Approach Description GF GAI Cab CCC CNC 

Low 

#RTMI 
Radiative Transfer Model Inversion using 

PROSAIL. 
    - 

#VI(Avg_Refl) 
VI computed from average microplot 

reflectance. 
     

High 

#Avg(VI_AllPix) Average VI value over all pixels of the microplot.      

#Frac(GreenPix) 

GF given by the fraction of green pixels obtained 

by thresholding the VI image. The resulting best 

GF estimate, GFGREENPIX, is then transformed into 

log(1- GFGREENPIX) for GAI estimation. 

  - - - 

#Avg(VI_GreenPix) 
Average VI value over a fraction of green pixels 

(all, only darkest, or only brightest green pixels). 
- -  - - 

#GAI.Cab Product of best GAI and Cab estimates. - - -   

#MLR 

Multiple Linear Regression using  

log(1-GFGREENPIX) (or GFGREENPIX for GF estimation) 

and VICAB as inputs. 

  -   

 242 
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 243 

Fig. 3: Flowchart illustrating the seven methods used to estimate GF, GAI, Cab, CCC and CNC from UAV multispectral 244 

images of microplots. The blue (resp., red) panel on the left-hand (resp., right-hand) side corresponds to methods to be 245 

used with low (resp., high) spatial resolution data. 246 

 247 

2.5.1. Selection of VIs 248 

A number of VIs were selected from the literature based on their sensitivity to GF, GAI, Cab, CCC and CNC 249 

(Table 3). All of them were expressed as ratios of two or three wavebands. Such VIs indeed minimized the 250 

influence of multiplicative factors, including possible variation in the illumination conditions during the flights. 251 

An extensive discussion of the properties of the selected VIs can be found in Jay et al. (2017a). In this study, 252 

the Visible Atmospherically Resistant Index (𝑉𝐴𝑅𝐼) was also included in the comparison, as it was 253 

demonstrated to be strongly related to GF (Gitelson et al., 2002). 254 

All the six VIs selected were originally designed using wavebands that may not be available on the band set 255 

chosen for the AIRPHEN multispectral camera. Therefore, each band in the original formulation of each VI was 256 
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replaced by the closest band available (Table 3). Note that the 560 nm band used in 2016 and the 570 nm 257 

band used in 2017 were not considered to prevent potential artifacts between years. 258 

Table 3 : Ratio VIs selected from the literature. 259 

VI name References VI formulation used in this study 

𝑉𝐴𝑅𝐼 Gitelson et al. (2002) 
𝑅530 − 𝑅675

𝑅530 + 𝑅675 − 𝑅450

 

𝑁𝐷𝑉𝐼 Rouse et al. (1973) 
𝑅850 − 𝑅675

𝑅850 + 𝑅675

 

𝐶𝐼𝑔𝑟𝑒𝑒𝑛   Gitelson et al. (2006a, 2005, 2003) 
𝑅850

𝑅530

− 1 

𝐶𝐼𝑟𝑒   Gitelson et al. (2006a, 2005, 2003) 
𝑅850

𝑅730

− 1 

𝑀𝑇𝐶𝐼  Dash and Curran (2004) 
𝑅850 − 𝑅730

𝑅730 − 𝑅675

 

𝑚𝑁𝐷𝑏𝑙𝑢𝑒   Jay et al. (2017a) 
𝑅450 − 𝑅730

𝑅450 + 𝑅850

 

 260 

2.5.2. Estimation approaches exploiting the centimeter resolution of UAV multispectral 261 

imagery 262 

- #Avg(VI_AllPix): using the average VI value over all the pixels of the microplot. Here, the VI value was 263 

the average of the VI values computed for all the soil and vegetation pixels of the UAV image of the 264 

microplot (Fig. 3). This average was computed using a 1 % trimmed mean to remove possible outliers 265 

present in the tails of the VI distributions. Four linear and non-linear (second-degree polynomial, 266 

power and exponential functions) prediction models were then built using all the UAV multispectral 267 

images available for each targeted variable. 268 

- #Frac(GreenPix): estimating GF and GAI using a fraction of green pixels derived from VI thresholding. 269 

For each microplot, green pixels were identified by thresholding the six VI images. For each VI, the 270 

threshold value was optimized to get the best match between the reference GF value GFREF derived 271 

from the RGB image classification (section 2.4.1), and the GF value given by the fraction of green pixels 272 

after VI image thresholding (Fig. 3). Furthermore, the raw estimated GF value obtained by 273 

thresholding the VI image could be linearly related to GFREF to remove possible bias. This corrected GF 274 
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estimate is called GFGREENPIX, and is also used in the following #MLR approach. In the case of GAI 275 

estimation, GFGREENPIX was transformed into log(1-GFGREENPIX) and linearly related to GAI according to 276 

Nilson (1971) and Weiss et al. (2004). 277 

- #Avg(VI_GreenPix): estimating Cab using the average VI value computed over a fraction of green pixels. 278 

Similarly to Jay et al. (2017a), VIs were here computed based on three subsets of green pixels extracted 279 

using the available centimeter-scale UAV multispectral imagery, i.e., (i) all the green pixels, (ii) the 50 280 

% darkest green pixels or (iii) the 50 % brightest green pixels. The green pixels were first identified 281 

using the optimal threshold leading to the GFGREENPIX estimates obtained with the previous 282 

#Frac(GreenPix) approach (Fig. 3). However, the threshold value leading to optimal Cab estimation may 283 

differ from the value leading to optimal GF estimation due to the detrimental influence of mixed pixels 284 

containing both soil and vegetation. Therefore, the performance of Cab estimation was also 285 

investigated for other selections of green pixels obtained for several threshold values around the 286 

optimal value leading to GFGREENPIX estimates. Then, for each selected fraction of green pixels, the 50 % 287 

darkest and 50 % brightest pixels were identified based on the value in the near-infrared (NIR) band. 288 

For each subset of pixels considered, the average VI values were computed using a 1 % trimmed mean 289 

as for #Avg(VI_Refl), and linearly and non-linearly related to Cab. Note that this approach focusing on 290 

green pixels was only used for Cab estimation. The VI computed over the selected fraction of green 291 

pixels that provides the best Cab estimation performance is called VICAB when used in the following 292 

#MLR approach. 293 

- #GAI.Cab: estimating CCC and CNC using the product of the best GAI and Cab estimates. CCC could be 294 

estimated either directly as in approach #Avg(VI_AllPix), or as the product of the best GAI and Cab 295 

estimates (Fig. 3). Since leaf nitrogen content shows some correlation with leaf chlorophyll content 296 

(Jay et al., 2017b; Schlemmer et al., 2013), CNC was also linearly and non-linearly related to this 297 

product (Fig. 3). 298 

- #MLR: estimating GF, GAI, CCC and CNC using Multiple Linear Regression. In the #MLR approach, a 299 

Multiple Linear Regression (MLR) model was built, combining (i) GFGREENPIX or log(1- GFGREENPIX) derived 300 
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from approach #Frac(GreenPix) and carrying information on canopy structure, and (ii) VICAB derived 301 

from approach #Avg(VI_GreenPix) and carrying information on leaf chlorophyll content (Fig. 3). These 302 

two input variables were assumed to bring complementary information on the targeted plant traits. 303 

These input variables were first standardized according to: 304 

𝑋𝑖 =
(𝑥𝑖 − 𝑥�̅�)

𝜎𝑥𝑖

 (2) 

where 𝑥�̅� and 𝜎𝑥𝑖
 are, respectively, the average and standard deviation values of input variable 𝑥𝑖 in 305 

the calibration set, with [𝑥1, 𝑥2] = [GFGREENPIX, VICAB]. Note that, in the case of GAI, CCC and CNC 306 

estimation, we took 𝑥1 = log(1- GFGREENPIX). A MLR model was then built according to: 307 

𝑌 = 𝛼0 + ∑ 𝛼𝑖

2

𝑖=1

𝑋𝑖 (3) 

where 𝑌 is the variable to be estimated, and 𝛼𝑖 the MLR coefficients to be calibrated. 308 

 309 

2.5.3. Standard remote-sensing approaches using the average reflectance of the microplot 310 

- #RTMI: inverting the PROSAIL model. The #RTMI (standing for Radiative Transfer Model Inversion, 311 

Table 2 and Fig. 3) approach consists in inverting the PROSAIL radiative transfer model (Baret et al., 312 

1992; Jacquemoud et al., 2009), combining the PROSPECT model (Jacquemoud and Baret, 1990) with 313 

the SAIL model (Verhoef, 1985, 1984). PROSAIL simulates the canopy bidirectional reflectance of a 314 

turbid medium canopy as a function of leaf biochemical and canopy structural variables for a given 315 

sun-sensor geometry. Although PROSAIL may not be fully optimal for modeling the reflectance of row-316 

structured sugar beet canopies, a number of studies have demonstrated that it enables accurate 317 

retrievals of GAI, Cab and CCC for such vegetation arrangements (Dorigo, 2012; Duan et al., 2014; 318 

Jacquemoud et al., 1995; Jay et al., 2017b; Verger et al., 2014). 319 

The PROSPECT 3 model (Baret and Fourty, 1997) was used in this study, as Jiang et al. (2018) showed 320 

that this PROSPECT version generally shows similar performance as the latest versions (Feret et al., 321 

2008; Féret et al., 2017) while having less variables to be inverted. It simulates the leaf directional-322 
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hemispherical reflectance and transmittance as a function of a structure parameter (N, unitless) as 323 

well as leaf chlorophyll (Cab, in µg/cm²), dry matter (Cm, in g/cm²), water (Cw, in g/cm²) and brown 324 

pigment (Cbp, unitless) contents. SAIL accounts for the effects of leaf reflectance and transmittance, 325 

green area index (GAI, unitless), average leaf angle (ALA, in °), soil brightness factor (Bs, unitless), 326 

viewing zenith angle (θv, in °), solar zenith angle (θs, in °) and relative azimuth angle (ɸsv, in °). A 327 

parameter (sL, unitless) was also included to account for the hotspot effect (Kuusk, 1991; Verhoef, 328 

1998). 329 

In this paper, each UAV-measured canopy reflectance obtained by averaging all the vegetation and 330 

soil pixels of each microplot was inverted using a PROSAIL inversion approach based on artificial neural 331 

network. Following Verger et al. (2014), the inputs of the neural network were the solar zenith and 332 

azimuth angles, the viewing zenith angle, and the first five bands normalized by the 850 nm band so 333 

as to better handle possible variation in the illumination conditions. More details on the neural 334 

network architecture and training data base can be found in Weiss et al. (2002), Verger et al. (2011) 335 

and Li et al. (2015). Note that GF and CCC can be directly estimated using this inversion method. In 336 

the case of CCC, the obtained estimate may differ from the product of GAI and Cab estimated values. 337 

Note also that it is not possible to estimate directly CNC since leaf nitrogen content is not explicitly 338 

accounted for by the leaf PROSPECT model. 339 

- #VI(Avg_Refl): using the VI value computed from the average microplot reflectance. The six VIs were 340 

computed from the canopy reflectance obtained by averaging over all the vegetation and soil pixels 341 

of the UAV image of the microplot (Fig. 3). The VIs were then linearly and non-linearly related to each 342 

targeted variable, similarly as #Avg(VI_AllPix) (section 2.5.2). Note that approach #VI(Avg_Refl) does 343 

not exploit the centimeter resolution of UAV multispectral images, unlike the previous #Avg(VI_AllPix) 344 

approach for which each VI was computed by averaging pixel-level VI values. As the six VIs tested are 345 

non-linear functions of reflectance, these two approaches may obtain different results (Jay et al., 346 

2017a; Steven et al., 2015).  347 
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2.5.4. Performance assessment 348 

A cross-validation process was used to quantify the performances of the six VI-based approaches (Table 2). It 349 

consisted in calibrating a prediction model using N-1 dates out of the N available (Table 1) and using the last 350 

date for the validation. This process was repeated N times to use every date available for the validation. Note 351 

that in the case of approach #MLR, each of the N calibration and validation sets was standardized using the 𝑥�̅� 352 

and 𝜎𝑥𝑖
 values computed over the corresponding calibration set (Eq. (2)). Four indicators of the prediction 353 

performance were then computed, namely, the root mean square error of prediction (RMSEP), the relative 354 

RMSEP (RRMSEP) being defined as the ratio of the RMSEP to the mean measured value, the squared Pearson’s 355 

correlation coefficient (𝑟²) between estimated and measured values, and the coefficient of determination 356 

defined as 𝑅2 = 1 −
𝑅𝑀𝑆𝐸𝑃²

𝜎𝑡𝑜𝑡
2 , where 𝜎𝑡𝑜𝑡

2  is the total variance of the measured variable. 357 

3. Results 358 

3.1. Ground-based measurements 359 

Table 4 : Statistics of GF, GAI, Cab, CCC and CNC measurements. 360 

Variable Unit 
Number of 

microplots 
Min - Max Mean 

Standard 

deviation 

Coefficient of 

variation (%) 

GF - 238 0.18 - 0.97 0.61 0.25 40 

GAI - 135 0.13 - 4.57 1.50 1.00 67 

Cab µg/cm² 177 21.2 - 51.1 33.7 7.0 21 

CCC g/m² 92 0.04 - 1.46 0.52 0.39 74 

CNC g/m² 114 0.7 - 16.8 6.4 3.9 61 

 361 

A large variability is observed for each structural and biochemical variable of interest (Table 4). Importantly, 362 

Cab and canopy structure variables (GAI and GF) poorly correlate (Table 5), which ensures that any correlation 363 

between VIs and Cab will not derive from the covariance with either GF or GAI. Conversely, strong correlations 364 

are observed between GF and GAI (Table 5), as already outlined by Andrieu et al. (1997) for sugar beet crops. 365 

Note that, as expected, the linear correlation between GF and GAI slightly increases when transforming GF 366 

into log(1-GF) to better account for the saturation observed for high GAI values (Andrieu et al., 1997; Nilson, 367 
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1971; Weiss et al., 2004). GAI strongly correlates with CCC (Table 5) because of the larger variability in GAI as 368 

compared to that in Cab (Table 4). Table 5 also shows strong correlations between CNC and GAI, as well as 369 

between CNC and CCC. However, these correlations should be taken with caution due to the low number of 370 

samples considered (24) and to the poorer correlations between CNC and log(1-GF) obtained with a larger 371 

number of samples (96).  372 

Table 5 : Squared Spearman’s (𝜌2, lower diagonal) and Pearson’s (𝑟2, upper diagonal) correlation coefficients between 373 

the five variables targeted. The variable log(1-GF) is also included to show the gain in linear correlation obtained with this 374 

transformation. For each pair of variables, the number of microplots available to compute the correlation is indicated in 375 

parentheses. Colors show the level of correlation, ranging from pale yellow for low correlation to red for high correlation. 376 

                          𝑟2                             

     𝜌2    
GF log(1-GF) GAI Cab CCC CNC 

GF - 0.87 (238) 0.81 (117) 0.11 (159) 0.79 (86) 0.58 (96) 

log(1-GF) 1.00 (238) - 0.83 (117) 0.03 (159) 0.81 (86) 0.50 (96) 

GAI 0.89 (117) 0.89 (117) - 0.07 (87) 0.91 (92) 0.82 (24) 

Cab 0.07 (159) 0.07 (159) 0.11 (87) - 0.21 (87) 0.10 (113) 

CCC 0.86 (86) 0.86 (86) 0.95 (92) 0.24 (87) - 0.84 (24) 

CNC 0.62 (96) 0.62 (96) 0.83 (24) 0.04 (113) 0.87 (24) - 

 377 

3.2. Correlations between VIs 378 

The correlations between VIs computed over soil and vegetation pixels shows that 𝑉𝐴𝑅𝐼 and 𝑁𝐷𝑉𝐼 are 379 

strongly related, with squared Spearman’s correlation coefficients (𝜌2) higher than 0.93 (Table 6). These two 380 

VIs show high to intermediate correlations with 𝐶𝐼𝑔𝑟𝑒𝑒𝑛 and 𝐶𝐼𝑟𝑒 (0.49 ≤ 𝜌2 ≤ 0.83), both of which are 381 

themselves strongly related (𝜌2 = 0.87). On the other hand, 𝑚𝑁𝐷𝑏𝑙𝑢𝑒 and 𝑀𝑇𝐶𝐼 generally poorly correlate 382 

with other VIs (𝜌2 ≤ 0.53). Note that the Spearman’s and Pearson’s correlation coefficients are generally 383 

similar, indicating that the relationships are approximately linear. 384 

 385 

 386 

Table 6 : Squared Spearman’s (𝜌2, lower diagonal) and Pearson’s (𝑟2, upper diagonal) correlation coefficients between 387 

VIs computed over all soil and vegetation pixels and over all the 274 microplots. For each microplot, each VI is computed 388 
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from the average of pixel-level VI values. Colors show the level of correlation, ranging from pale yellow for low correlation 389 

to red for high correlation. 390 

           𝑟2                             

𝜌2   
𝑉𝐴𝑅𝐼   𝑁𝐷𝑉𝐼  𝐶𝐼𝑔𝑟𝑒𝑒𝑛  𝐶𝐼𝑟𝑒  𝑀𝑇𝐶𝐼  𝑚𝑁𝐷𝑏𝑙𝑢𝑒   

𝑉𝐴𝑅𝐼  - 0.94 0.65 0.49 0.01 0.55 

𝑁𝐷𝑉𝐼  0.93 - 0.80 0.63 0.06 0.53 

𝐶𝐼𝑔𝑟𝑒𝑒𝑛  0.64 0.83 - 0.90 0.32 0.18 

𝐶𝐼𝑟𝑒  0.49 0.66 0.87 - 0.56 0.04 

𝑀𝑇𝐶𝐼  0.00 0.03 0.19 0.40 - 0.15 

𝑚𝑁𝐷𝑏𝑙𝑢𝑒   0.53 0.42 0.21 0.07 0.17 - 

 391 

𝑉𝐴𝑅𝐼 and 𝑁𝐷𝑉𝐼 still strongly correlate (𝜌2 = 0.80) when computed over vegetation pixels (Table 7). However, 392 

in this case, only 𝑁𝐷𝑉𝐼 shows significant correlations with the other VIs tested, with maximum 𝜌2 values of 393 

0.73 and 0.49 with 𝐶𝐼𝑔𝑟𝑒𝑒𝑛 and 𝐶𝐼𝑟𝑒, respectively. 𝑀𝑇𝐶𝐼, 𝐶𝐼𝑟𝑒, 𝐶𝐼𝑔𝑟𝑒𝑒𝑛 and, to a lesser extent, 𝑚𝑁𝐷𝑏𝑙𝑢𝑒, 394 

strongly correlate with each other, with a maximum correlation between 𝑀𝑇𝐶𝐼 and 𝐶𝐼𝑟𝑒 (𝜌2 = 0.97), and a 395 

minimum correlation between 𝐶𝐼𝑔𝑟𝑒𝑒𝑛 and 𝑚𝑁𝐷𝑏𝑙𝑢𝑒 (𝜌2 = 0.20). Here again, the similar Spearman’s and 396 

Pearson’s correlation coefficients indicate that the relationships are approximately linear. 397 

Table 7 : Squared Spearman’s (𝜌2, lower diagonal) and Pearson’s (𝑟2, upper diagonal) correlation coefficients between 398 

VIs computed over all green pixels and over all the 274 microplots. For each microplot, each VI is computed from the 399 

average of pixel-level VI values. Colors show the level of correlation, ranging from pale yellow for low correlation to red 400 

for high correlation. 401 

                        𝑟2                     

𝜌2 
𝑉𝐴𝑅𝐼   𝑁𝐷𝑉𝐼  𝐶𝐼𝑔𝑟𝑒𝑒𝑛  𝐶𝐼𝑟𝑒  𝑀𝑇𝐶𝐼  𝑚𝑁𝐷𝑏𝑙𝑢𝑒   

𝑉𝐴𝑅𝐼  - 0.79 0.30 0.19 0.13 0.00 

𝑁𝐷𝑉𝐼  0.80 - 0.69 0.52 0.43 0.07 

𝐶𝐼𝑔𝑟𝑒𝑒𝑛  0.33 0.73 - 0.87 0.81 0.38 

𝐶𝐼𝑟𝑒  0.21 0.49 0.81 - 0.99 0.70 

𝑀𝑇𝐶𝐼  0.12 0.36 0.72 0.97 - 0.77 

𝑚𝑁𝐷𝑏𝑙𝑢𝑒   0.01 0.02 0.20 0.51 0.63 - 

 402 

3.3. Estimation of canopy structure 403 

3.3.1. GF estimation 404 

Since GF may play a particular role in the estimation of the other variables when exploiting the centimeter 405 

resolution of UAV images, emphasis is first put on it. 406 
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When using the average microplot reflectance, the GF values estimated using PROSAIL inversion (approach 407 

#RTMI) strongly correlate with the measured ones (𝑟2 = 0.91) (Fig. 4.a). However, the results are penalized 408 

by a significant underestimation for the largest GF values, resulting in 𝑅𝑀𝑆𝐸𝑃 = 0.15 (𝑅𝑅𝑀𝑆𝐸𝑃 = 25%). The 409 

bias is removed when using #VI(Avg_Refl) based on VIs computed over average microplot reflectances 410 

(Fig. 4.b). Significantly better predictions are obtained using 𝑉𝐴𝑅𝐼 and a second-degree polynomial, with 411 

𝑅𝑀𝑆𝐸𝑃 = 0.05 (𝑅𝑅𝑀𝑆𝐸𝑃 = 8 %, Table 8, Fig. 4.b).  412 

 413 

Fig. 4 : GF estimation results obtained using low and high spatial resolution approaches: (a) #RTMI based on PROSAIL 414 
inversion, (b) #VI(Avg_Refl) with 𝑉𝐴𝑅𝐼 and a second-degree polynomial, (c) #Avg(VI_AllPix) with 𝑉𝐴𝑅𝐼 and a second-415 
degree polynomial, (d) #Frac(GreenPix) with 𝑉𝐴𝑅𝐼 and a threshold of 0.14 before (disks in light blue) and after (squares 416 
in dark blue) correcting for the bias affecting the raw GF estimate GFGREENPIX,RAW, and (e) #MLR based on standardized 417 
GFGREENPIX (Fig. 4.d) and VICAB (Fig. 6.d) values. For each method, the squared Pearson’s correlation coefficient (𝑟2) and the 418 
RMSEPs in absolute and relative (in %) are indicated. The regression equation is also shown for empirical approaches. 419 

 420 

Table 8 : RMSEPs obtained for the estimation of GF (unitless), GAI (unitless), Cab (in µg/cm²), CCC (in g/m²) and CNC (in 421 
g/m²) using VIs computed either from the average microplot reflectance (#VI(Avg_Refl)) or from the average of pixel-422 
level VI values over all microplot pixels (#Avg(VI_AllPix)). For each method, each variable and each VI, only the RMSEP 423 
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obtained with the best model is shown (results obtained with the four linear and non-linear models tested are provided 424 
in supplementary material). For each column, the best result is in bold. 425 

VI 
#VI(Avg_Refl)  #Avg(VI_AllPix) 

GF GAI Cab CCC CNC  GF GAI Cab CCC CNC 
𝑉𝐴𝑅𝐼 0.05 0.42 7.4 0.19 2.7  0.04 0.40 7.7 0.19 2.7 
𝑁𝐷𝑉𝐼 0.07 0.46 7.6 0.20 2.2  0.07 0.44 7.6 0.19 2.2 

𝐶𝐼𝑔𝑟𝑒𝑒𝑛 0.18 0.69 6.9 0.24 2.1  0.18 0.70 6.9 0.24 2.1 
𝐶𝐼𝑟𝑒 0.21 0.74 5.4 0.20 3.2  0.20 0.74 5.2 0.20 3.1 

𝑀𝑇𝐶𝐼 0.25 0.93 4.2 0.25 3.6  0.29 1.10 4.2 0.32 4.8 
𝑚𝑁𝐷𝑏𝑙𝑢𝑒 0.21 0.87 7.7 0.41 5.3  0.19 0.82 7.4 0.40 5.1 

 426 

When exploiting the centimeter resolution of UAV images through approach #Avg(VI_AllPix) for which each VI 427 

value is the average of the VI image, a slight improvement is observed when using 𝑉𝐴𝑅𝐼 (𝑅𝑀𝑆𝐸𝑃 = 0.04, 428 

Fig. 4.c), followed by 𝑁𝐷𝑉𝐼 (𝑅𝑀𝑆𝐸𝑃 = 0.07) (Table 8). When using approach #Frac(GreenPix), GF is given by 429 

the fraction of green pixels computed by thresholding the VI image. The optimal threshold used here is 430 

determined using the reference GF derived from RGB image classification. The best GF estimation results are 431 

obtained using 𝑉𝐴𝑅𝐼 images and an optimal threshold of 𝑉𝐴𝑅𝐼 = 0.14 (𝑅𝑀𝑆𝐸𝑃 = 0.09, Table 9), followed 432 

by 𝑁𝐷𝑉𝐼 images and an optimal threshold of 𝑁𝐷𝑉𝐼 = 0.62 (𝑅𝑀𝑆𝐸𝑃 = 0.11, Table 9). It is worth noting that 433 

similarly accurate results are obtained for a range of 𝑉𝐴𝑅𝐼 values around the optimal value of 0.14, e.g., the 434 

𝑅𝑀𝑆𝐸𝑃 remains lower than 0.11 when taking a 𝑉𝐴𝑅𝐼 threshold between 0 and 0.25 (see the figure in 435 

supplementary material). However, these results show some underestimation for low GF values and some 436 

overestimation for large GF values (Fig. 4.d). A linear regression was thus applied to correct for this bias, 437 

leading to improved performance with 𝑅𝑀𝑆𝐸𝑃 = 0.05 (Table 9, Fig. 4.d). The resulting GF estimates are called 438 

GFGREENPIX and used as complementary information to improve the estimation of canopy variables through the 439 

#MLR approach. Further, green pixels selected by thresholding the 𝑉𝐴𝑅𝐼 images will be used in the following 440 

sections. 441 

Here, approach #MLR consists in combining the two input variables [GFGREENPIX, VICAB], where VICAB is the 442 

𝑚𝑁𝐷𝑏𝑙𝑢𝑒 value averaged over the 50 % darkest green pixels (the green pixels being defined by 𝑉𝐴𝑅𝐼 > 0.20, 443 

see section 3.4.1). Using VICAB as additional explanatory variable within #MLR slightly improves the GF 444 

estimation results obtained with #Frac(GreenPix), with 𝑅𝑀𝑆𝐸𝑃 = 0.04 (𝑅𝑅𝑀𝑆𝐸𝑃 = 6%) (Fig. 4.e). 445 
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 446 

Table 9 : Results obtained for the estimation of GF using the #Frac(GreenPix) approach, consisting in retrieving the 447 
fraction of green pixels by thresholding the VI images. For each VI, the RMSEP (unitless) before and after bias correction 448 
is shown, and the best result is in bold. 449 

VI Optimal threshold value RMSEP before bias correction (-) RMSEP after bias correction (-) 

𝑉𝐴𝑅𝐼 0.14 0.09 0.05 

𝑁𝐷𝑉𝐼 0.62 0.11 0.06 

𝐶𝐼𝑔𝑟𝑒𝑒𝑛 2.20 0.16 0.12 

𝐶𝐼𝑟𝑒 0.15 0.16 0.16 

𝑀𝑇𝐶𝐼 0.22 0.23 0.24 

𝑚𝑁𝐷𝑏𝑙𝑢𝑒 -0.68 0.37 0.30 

 450 

3.3.2. GAI estimation 451 

The GAI estimation results obtained when using the average microplot reflectance show similar characteristics 452 

as the GF estimation results. In the case of approach #RTMI, the measured and estimated GAI values strongly 453 

correlate (𝑟2 = 0.85); however, #RTMI significantly underestimates GAI for the largest values, leading to 454 

𝑅𝑀𝑆𝐸𝑃 = 0.53 (𝑅𝑅𝑀𝑆𝐸𝑃 = 35%) (Fig. 5.a). The retrieval accuracy improves when using #VI(Avg_Refl), with 455 

the same hierarchy between VIs being observed for GF and GAI (Table 8). The best predictions are obtained 456 

with 𝑉𝐴𝑅𝐼 and a linear model (𝑅𝑀𝑆𝐸𝑃 = 0.42) (Fig. 5.b). Note, however, that GAI is still underestimated for 457 

𝐺𝐴𝐼 ≥ 3.00 (Fig. 5.b). 458 

Similarly to GF, exploiting the image centimeter resolution through approach #Avg(VI_AllPix) slightly improves 459 

the best performance obtained with approach #VI(Avg_Refl) based on the average microplot reflectance 460 

(Table 8). The best predictions are obtained using 𝑉𝐴𝑅𝐼 (𝑅𝑀𝑆𝐸𝑃 = 0.40 with a linear model, Fig. 5.c), 461 

followed by 𝑁𝐷𝑉𝐼 (𝑅𝑀𝑆𝐸𝑃 = 0.44 with an exponential model, Table 8). Approach #Frac(GreenPix) for which 462 

GAI is linearly related to log(1- GFGREENPIX) further improves GAI estimation, with 𝑅𝑀𝑆𝐸𝑃 = 0.38 (Fig. 5.d). 463 

Finally, similar GAI estimates (𝑅𝑀𝑆𝐸𝑃 = 0.39, Fig. 5.e) are obtained when using approach #MLR based on the 464 

two input variables [log(1- GFGREENPIX), VICAB], where VICAB is the 𝑚𝑁𝐷𝑏𝑙𝑢𝑒 value averaged over the 50 % darkest 465 

green pixels (the green pixels being defined by 𝑉𝐴𝑅𝐼 > 0.20, see section 3.4.1). Note that the three methods 466 

exploiting the centimeter resolution still show some underestimation for 𝐺𝐴𝐼 ≥ 3.00, similarly to approaches 467 

based on average microplot reflectance (Fig. 5). 468 
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 469 

 470 

 471 

Fig. 5 : GAI estimation results obtained using low and high spatial resolution approaches: (a) #RTMI based on PROSAIL 472 
inversion, (b) #VI(Avg_Refl) with 𝑉𝐴𝑅𝐼 and a linear model, (c) #Avg(VI_AllPix) with 𝑉𝐴𝑅𝐼 and a linear model, (d) 473 
#Frac(GreenPix) with log(1-GFGREENPIX) and a linear model, and (e) #MLR based on standardized log(1-GFGREENPIX) (Fig. 4.d) 474 
and VICAB (Fig. 6.d) values. For each method, the squared Pearson’s correlation coefficient (𝑟2) and the RMSEPs in absolute 475 
and relative (in %) are indicated. The regression equation is also shown for empirical approaches. 476 

 477 

3.4. Estimation of canopy biochemistry  478 

3.4.1. Cab estimation 479 

For Cab estimation, inverting PROSAIL based on the average microplot reflectance results in relatively poor 480 

performance (𝑅𝑀𝑆𝐸𝑃 = 5.9 µg/cm², Fig. 6.a). Note that the dispersion around the 1:1 line is greater for 481 

samples with Cab values around 30 µg/cm² (Fig. 6.a). Further investigation shows that, although having similar 482 

Cab values, these samples are characterized by strongly different canopy structures, with GF ranging from 0.20 483 

to 0.97 and a standard deviation of 0.28. Using VIs through approach #VI(Avg_Refl) significantly improves Cab 484 
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estimation, with 𝑀𝑇𝐶𝐼 and, to a lesser extent, 𝐶𝐼𝑟𝑒, performing better than the other VIs tested (Table 8). The 485 

best predictions are obtained using 𝑀𝑇𝐶𝐼 and a second-degree polynomial (𝑅𝑀𝑆𝐸𝑃 = 4.2 µg/cm², Fig. 6.b). 486 

 487 

 488 

Fig. 6 : Cab estimation results obtained using low and high spatial resolution approaches: (a) #RTMI based on PROSAIL 489 

inversion, (b) #VI(Avg_Refl) with 𝑀𝑇𝐶𝐼 and a second-degree polynomial, (c) #Avg(VI_AllPix) with 𝑀𝑇𝐶𝐼 and a second-490 

degree polynomial, and (d) #Avg(VI_GreenPix) with a 𝑉𝐴𝑅𝐼 threshold of 0.20, and an exponential model relating Cab and 491 

𝑚𝑁𝐷𝑏𝑙𝑢𝑒  values averaged over the darkest green pixels. For each method, the squared Pearson’s correlation coefficient 492 

(𝑟2) and the RMSEPs in absolute and relative (in %) are indicated. The regression equation is also shown for empirical 493 

approaches. 494 

 495 

Approach #Avg(VI_AllPix) based on the average VI value of the microplot (Fig. 6.c) shows nearly the same 496 

performances as approach #VI(Avg_Refl) based on the average microplot reflectance (Table 8). A similar 497 

hierarchy between VIs is observed, with 𝑀𝑇𝐶𝐼 leading to the best performance (𝑅𝑀𝑆𝐸𝑃 = 4.2 µg/cm²), and 498 

𝑉𝐴𝑅𝐼, 𝑁𝐷𝑉𝐼 and 𝑚𝑁𝐷𝑏𝑙𝑢𝑒 to the worst ones (𝑅𝑀𝑆𝐸𝑃 ≥ 7.4 µg/cm²).  499 

Focusing on any of the three selections of green pixels identified using the 𝑉𝐴𝑅𝐼 image (using the threshold 500 

𝑉𝐴𝑅𝐼 = 0.14) and the near-infrared band (section 2.5.2), makes the measured optical signature get closer to 501 

a typical leaf signature, e.g., with a sharper increase in reflectance observed in the red-edge region (Fig. 7). 502 
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 503 

Fig. 7 : Subsets of pixels extracted from a multispectral image of a single microplot, and corresponding average 504 

reflectance spectra. Pixels are here discriminated using a 𝑉𝐴𝑅𝐼 threshold of 0.14 (section 3.3.1). Purple areas show the 505 

pixels excluded from the spectral average for each subset. 506 

 507 

Consequently, approach #Avg(VI_GreenPix) generally improves the Cab estimation results obtained with 508 

approach #Avg(VI_AllPix) (Fig. 8). For example, the results obtained with 𝑀𝑇𝐶𝐼 slightly improves when 509 

focusing on the 50 % darkest green pixels (𝑅𝑀𝑆𝐸𝑃 = 3.9 µg/cm²). However, in the case of 𝑚𝑁𝐷𝑏𝑙𝑢𝑒, this 510 

improvement is much more significant, with 𝑅𝑀𝑆𝐸𝑃 = 3.2 µg/cm² obtained when considering the 50 % 511 

darkest green pixels (Fig. 8). Note that 𝑉𝐴𝑅𝐼, 𝑁𝐷𝑉𝐼 and 𝐶𝐼𝑔𝑟𝑒𝑒𝑛 provide significantly poorer performances 512 

than 𝐶𝐼𝑟𝑒, 𝑀𝑇𝐶𝐼 and 𝑚𝑁𝐷𝑏𝑙𝑢𝑒, and show no to little improvement when focusing on either selection of green 513 

pixels (Fig. 8). 514 

The threshold value 𝑉𝐴𝑅𝐼 = 0.14 leading to optimal green segmentation (section 3.3.1) also appears to be 515 

appropriate for Cab estimation (Fig. 8). Varying the threshold value around 0.14 shows little impact on the 516 

performances for the six VIs, especially for 𝑉𝐴𝑅𝐼 values between 0.05 and 0.35. The best Cab estimation results 517 

are obtained using a threshold value 𝑉𝐴𝑅𝐼 = 0.20, 𝑚𝑁𝐷𝑏𝑙𝑢𝑒 computed over the darkest green pixels, and an 518 

exponential model (𝑅𝑀𝑆𝐸𝑃 = 3.1 µg/cm², Fig. 6.d). Note that using a linear model leads to similar 519 

performance (𝑅𝑀𝑆𝐸𝑃 = 3.3 µg/cm², not shown). For each microplot, the VICAB input variable used within the 520 

#MLR approach thus corresponds to the 𝑚𝑁𝐷𝑏𝑙𝑢𝑒 value averaged over the 50 % darkest green pixels (the 521 

green pixels being defined by 𝑉𝐴𝑅𝐼 > 0.20). 522 
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 523 

Fig. 8 : RMSEPs obtained for the estimation of Cab using VIs computed as the average of pixel-level VI values over all 524 
microplot pixels (#Avg(VI_AllPix)), or over one of the three subsets of green pixels (#Avg(VI_GreenPix)) identified using 525 
various 𝑉𝐴𝑅𝐼 thresholds. The vertical dashed line shows the optimal 𝑉𝐴𝑅𝐼 threshold of 0.14 leading to GFGREENPIX 526 
(Table 9). For each combination of 𝑉𝐴𝑅𝐼 thresholds, VIs and subsets of pixels, only the RMSEP obtained with the best 527 
model (linear or non-linear) is shown. 528 

 529 

3.4.2. CCC estimation 530 

Despite a similar bias as for GF and GAI, #RTMI based on PROSAIL inversion provides relatively accurate CCC 531 

estimates, with 𝑅𝑀𝑆𝐸𝑃 = 0.19 g/m² (Fig. 9.a). When using VIs computed from average microplot reflectances 532 

(#VI(Avg_Refl)), all the VIs except 𝑚𝑁𝐷𝑏𝑙𝑢𝑒 provides rather similar performances, with RMSEP ranging from 533 

0.19 g/m² for 𝑉𝐴𝑅𝐼 to 0.25 g/m² for 𝑀𝑇𝐶𝐼 (Table 8, Fig. 9.b). Both approaches #RTMI and #VI(Avg_Refl) 534 

generally show a strong dispersion for the highest CCC values (Figs. 9.a-b), corresponding to contrasted 535 

combinations of GAI and Cab. For example, in the case of #RTMI and 𝐶𝐶𝐶 ≥ 1.00 g/m², the most 536 

underestimated CCC values correspond to 𝐺𝐴𝐼 ≥ 3.00  and 𝐶𝑎𝑏 ≤ 40 µg/cm², while the most accurate CCC 537 

estimates correspond to 𝐺𝐴𝐼 ≈ 2.80 and 𝐶𝑎𝑏 ≥ 46 µg/cm². 538 

Exploiting the centimeter resolution by using the average VI value of the microplot (#Avg(VI_AllPix)) shows 539 

negligible difference with the previous #VI(Avg_Refl) approach (Table 8), 𝑉𝐴𝑅𝐼 and a linear model still 540 

providing the best performance (𝑅𝑀𝑆𝐸𝑃 = 0.19 g/m², Fig. 9.c). On the other hand, combining the best GAI 541 

and Cab estimates within approach #GAI.Cab leads to a significant 37 % gain in estimation accuracy (𝑅𝑀𝑆𝐸𝑃 =542 
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0.12 g/m²) as compared to previous approaches that do not differentiate between green and non-green pixels 543 

(Fig. .d). Similarly, the #MLR approach combining log(1-GFGREENPIX) and VICAB also achieves very good 544 

performance, with 𝑅𝑀𝑆𝐸𝑃 = 0.13 g/m² (Fig. .e). 545 

 546 

Fig. 9 : CCC estimation results obtained using low and high spatial resolution approaches: (a) #RTMI based on PROSAIL 547 

inversion, (b) #VI(Avg_Refl) with 𝑉𝐴𝑅𝐼 and a linear model, (c) #Avg(VI_AllPix) with 𝑉𝐴𝑅𝐼 and a linear model, (d) #GAI.Cab, 548 

and (e) #MLR based on standardized log(1-GFGREENPIX) (Fig. 4.d) and VICAB (Fig. 6.d) values. For each method, the squared 549 

Pearson’s correlation coefficient (𝑟2) and the RMSEPs in absolute and relative (in %) are indicated. The regression 550 

equation is also shown for empirical approaches. 551 

 552 

3.4.3. CNC estimation 553 

As outlined in section 2.5.3, approach #RTMI could not be used to estimate CNC, since leaf nitrogen content 554 

is not an input variable of the PROSAIL model. When using approach #VI(Avg_Refl) based on average microplot 555 

reflectance, 𝐶𝐼𝑔𝑟𝑒𝑒𝑛, 𝑁𝐷𝑉𝐼 and 𝑉𝐴𝑅𝐼 provide the most accurate estimates (Table 8). The best results are 556 

obtained using 𝐶𝐼𝑔𝑟𝑒𝑒𝑛 and a linear model, with 𝑅𝑀𝑆𝐸𝑃 = 2.1 g/m² (Fig. 10.a). 557 
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Except for 𝑀𝑇𝐶𝐼, approach #Avg(VI_AllPix) shows comparable performances as approach #VI(Avg_Refl) 558 

(Table 8): 𝐶𝐼𝑔𝑟𝑒𝑒𝑛 still performs the best, with 𝑅𝑀𝑆𝐸𝑃 = 2.1 g/m² and a linear model (Fig. 10.b). Similar 559 

results are also obtained using approach #GAI.Cab based on the best GAI and Cab estimates (Fig. 10.c). Further 560 

inspection of the results however indicates that #GAI.Cab provides more accurate CNC estimates for 𝐶𝑁𝐶 ≤561 

5 g/m². However, for higher CNC values, poor estimates are obtained with the three approaches. Finally, a 562 

slight improvement is observed when using approach #MLR, which achieves 𝑅𝑀𝑆𝐸𝑃 = 1.9 g/m² (Fig. 10.d). 563 

 564 

 565 

Fig. 10 : CNC estimation results obtained using low and high spatial resolution approaches: (a) #VI(Avg_Refl) with  566 

𝐶𝐼𝑔𝑟𝑒𝑒𝑛 and a linear model, (c) #Avg(VI_AllPix) with 𝐶𝐼𝑔𝑟𝑒𝑒𝑛 and a linear model, (d) #GAI.Cab and a linear model relating 567 

CNC and the product of the best GAI and Cab estimates (denoted 𝐺𝐴𝐼̂  and 𝐶𝑎�̂� ), and (e) #MLR based on standardized 568 

log(1-GFGREENPIX) (Fig. 4.d) and VICAB (Fig. 6.d) values. For each method, the squared Pearson’s correlation coefficient (𝑟2) 569 

and the RMSEPs in absolute and relative (in %) are indicated. The regression equation is also shown for empirical 570 

approaches. 571 

 572 

4. Discussion 573 

All the results presented in sections 3.3 and 3.4 are summarized in Table 10 that will serve as a basis for the 574 

following discussion. 575 

  576 
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Table 10 : Summary of best performances obtained with the seven approaches tested for the estimation of GF, GAI, Cab, 577 

CCC and CNC. Performances are here evaluated using the coefficient of determination (𝑅2). The best VI (when necessary) 578 

and best performance are indicated in bold. 579 

Spatial 

resolution 
Approach 

GF GAI Cab CCC CNC 

VI R² VI R² VI R² VI R² VI R² 

Low 
#RTMI - 0.63 - 0.72 - 0.30 - 0.75 - - 

#VI(Avg_Refl) 𝑉𝐴𝑅𝐼 0.96 𝑉𝐴𝑅𝐼 0.82 𝑀𝑇𝐶𝐼 0.63 𝑉𝐴𝑅𝐼 0.75 𝐶𝐼𝑔𝑟𝑒𝑒𝑛 0.70 

High 

#Avg(VI_AllPix) 𝑉𝐴𝑅𝐼 0.97 𝑉𝐴𝑅𝐼 0.84 𝑀𝑇𝐶𝐼 0.64 𝑉𝐴𝑅𝐼 0.75 𝐶𝐼𝑔𝑟𝑒𝑒𝑛 0.70 

#Frac(GreenPix) 𝑉𝐴𝑅𝐼 0.96 𝑽𝑨𝑹𝑰 0.85 - - - - - - 

#Avg(VI_GreenPix) - - - - 𝒎𝑵𝑫𝒃𝒍𝒖𝒆 0.80 - - - - 

#GAI.Cab - - - - - - - 0.90 - 0.68 

#MLR - 0.98 - 0.84 - - - 0.88 - 0.75 

 580 

4.1. PROSAIL inversion provides less accurate estimates than empirical approaches 581 

When inverting PROSAIL based on average microplot reflectance (approach #RTMI), significant biases are 582 

observed for the estimation of GF and GAI (Figs. 4.a and 5.a). Such results are probably due to the turbid 583 

medium assumption used to describe the canopy structure within the SAIL model (Verhoef, 1985, 1984). As 584 

with ground-based spectro-radiometric measurements (Jay et al., 2017b), this assumption seems to be a 585 

limiting factor to accurately characterize the row structure of sugar beet canopies based on UAV observations. 586 

Further, the biases observed for GF and GAI affect Cab estimation through a compensation effect well known 587 

in optical remote sensing (Baret et al., 2007; Baret and Buis, 2008; Jay et al., 2017b). In particular, the GAI 588 

underestimation (Fig. 5.a) is partly compensated for by the Cab overestimation generally observed for samples 589 

with similar Cab values around 30 µg/cm² but with strongly different canopy structures (Fig. 6.a). Because of 590 

these compensations, the bias observed for the product of GAI and Cab, namely, CCC, is less marked than those 591 

observed for GF and GAI. Overall, PROSAIL inversion performs similarly or poorer than empirical approaches 592 

for every targeted variable (Table 10). However, when properly exploited, the centimeter-resolution imagery 593 

makes it possible to improve the performance for every variable, as we will see in the next sections. 594 

4.2. Exploiting the centimeter resolution to compute VIs leads to more accurate 595 

estimates than using VIs computed from average microplot reflectance 596 

Empirical approaches can be applied to VIs computed from average microplot reflectances (#VI(Avg_Refl)), or 597 

to VIs averaged over VI images (#Avg(VI_AllPix)) when exploiting the high spatial resolution imagery. 598 
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Approaches #VI(Avg_Refl) and #Avg(VI_AllPix) perform similarly (Table 10), although a slight improvement is 599 

observed for canopy structure variables (GF, GAI) with #Avg(VI_AllPix). This agrees with the results of Jay et 600 

al. (2017a) who suggested that approach #Avg(VI_AllPix) enhances the influence of the heterogeneity due to 601 

shadowing and soil effects, which relate to the canopy structure. Another reason is that, unlike #VI(Avg_Refl), 602 

approach #Avg(VI_AllPix) used with ratio-based VIs is insensitive to multiplicative variations observed at the 603 

pixel level and due mainly to soil brightness (Kauth and Thomas, 1976) and leaf orientation (Jay et al., 2016).  604 

Besides enabling the use of VIs averaged over VI images, the centimeter resolution makes it possible to focus 605 

on a subset of pixels of interest. For example, approach #Frac(GreenPix) relates the fraction of green pixels to 606 

GF and GAI, while #Avg(VI_GreenPix) uses VI values averaged over the selected darkest green pixels to provide 607 

the best Cab estimates (Table 10). 608 

4.3. The 𝑉𝐴𝑅𝐼 index provides the most accurate estimates of canopy structure variables 609 

(GF, GAI) 610 

Canopy structure variables (GF and GAI) are best estimated using 𝑉𝐴𝑅𝐼 or 𝑁𝐷𝑉𝐼 (Tables 8 and 9). The strong 611 

correlation between both VIs (Table 6) indicates that they convey similar information for the ranges of GF and 612 

GAI values investigated. The remarkable relationship between GF and 𝑉𝐴𝑅𝐼 averaged over all soil and 613 

vegetation pixels is consistent with the literature (Gitelson et al., 2002) and makes this VI the most appropriate 614 

for accurately retrieving GF in this study. 𝑉𝐴𝑅𝐼 also leads to GFGREENPIX, defined as the fraction of green pixels 615 

obtained by thresholding the 𝑉𝐴𝑅𝐼 image (approach #Frac(GreenPix)). As GF and GAI are closely but non-616 

linearly related in sugar beet crops (Table 5), GAI can be accurately derived from log(1- GFGREENPIX).  617 

Because 𝑉𝐴𝑅𝐼 is based only on visible bands (Table 3) for which leaf and soil reflectances are minimum, it is 618 

significantly less affected by multiple scattering caused by surrounding elements as compared to other VIs 619 

using a NIR band. Using 𝑉𝐴𝑅𝐼 within approach #Avg(VI_AllPix) thus leads to very accurate and stable GF and 620 

GAI estimates, especially when considering a highly heterogeneous data set such as the one used in this study. 621 

However, when the canopy reaches nearly full cover for 𝐺𝐴𝐼 ≥ 3.00, 𝑉𝐴𝑅𝐼 saturates and becomes insensitive 622 

to GAI, especially because it does not use a NIR band that saturates for much higher GAI values (Jacquemoud 623 



32 
 

et al., 2009). This saturation effect and the associated GAI underestimation are clearly visible in Fig. 5 and are 624 

consistent with the findings of Andrieu et al. (1997). 625 

Overall, approaches #Avg(VI_AllPix) and #Frac(GreenPix) provide very similar GF and GAI estimation 626 

performances (Table 10), especially when considering that GAI reference measurements are also affected by 627 

some level of uncertainty (section 2.2). However, approach #Frac(GreenPix) is expected to be more robust 628 

than #Avg(VI_AllPix) because it is not based on the whole distribution of 𝑉𝐴𝑅𝐼 values in the image, but only 629 

on the number of green pixels whose 𝑉𝐴𝑅𝐼 values exceed 0.14. Therefore, #Frac(GreenPix) is less affected 630 

than #Avg(VI_AllPix) by possible non-multiplicative variations in soil reflectance (e.g., between different sites 631 

or due to shadows cast by leaves) and illumination conditions (e.g., under variable cloud coverage). The 632 

beneficial influence of such robustness properties on the results could have certainly been more visible if the 633 

illumination had been more variable during the flights. Yet, these properties are critical in the perspective of 634 

applying a unique prediction model over a wide range of soil properties and illumination conditions, e.g., in a 635 

phenotyping context. 636 

4.4. The best Cab estimates are obtained using the 𝑚𝑁𝐷𝑏𝑙𝑢𝑒  index computed over the 637 

darkest green pixels 638 

When using average microplot reflectances (#VI(Avg_Refl)), the best performance obtained with 𝑀𝑇𝐶𝐼 639 

confirms its strong potential for retrieving Cab from meter- to decameter-scale observations (Haboudane et 640 

al., 2008; Hunt et al., 2012; Jay et al., 2017b, 2017a). The improved sensitivity to Cab observed when computing 641 

the VIs over a selection of green pixels (#Avg(VI_GreenPix)) is mainly due to the reduction of the soil influence, 642 

as reported in the literature (Jay et al., 2017a; Moorthy et al., 2008; Zarco-Tejada et al., 2004, 2013, 2001). 643 

This gain is very important for 𝑚𝑁𝐷𝑏𝑙𝑢𝑒 that is extremely sensitive to this detrimental influence (Jay et al., 644 

2017a). Therefore, 𝑚𝑁𝐷𝑏𝑙𝑢𝑒 performs the best when the 𝑉𝐴𝑅𝐼 threshold used to extract green pixels is 645 

sufficiently high to remove most of the soil pixels, including mixed pixels containing both soil and vegetation. 646 

In this study, the optimal 𝑉𝐴𝑅𝐼 threshold of 0.14 leading to optimal green segmentation (Table 9) may 647 

therefore be slightly increased up to 0.20 to remove more mixed pixels, thus reaching best Cab estimation. 648 
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Further, focusing on the dark green pixels rather than on the bright ones appears to be more effective for Cab 649 

estimation, which is inconsistent with previous studies (Jay et al., 2017a; Moorthy et al., 2008; Zarco-Tejada 650 

et al., 2004, 2013, 2001). Leaf surface contribution that does not contain information on Cab may explain the 651 

poorer performance obtained with bright pixels, for which the importance and variability of the surface 652 

reflectance is large. Further inspection shows that the poorer results obtained with bright green pixels are also 653 

due to small errors in the co-registration of multispectral bands. These pixels are indeed not only located at 654 

the top of canopy, but also on the plant/soil boundaries where the accuracy of the co-registration is the most 655 

critical. An error of a few pixels is likely to induce unrealistic VI values at these boundaries, which may have a 656 

critical influence on the average VI value. On the other hand, the use of dark green pixels is less affected by 657 

errors in the co-registration as these pixels are usually located in the inner part of the canopy and thus 658 

surrounded by other green pixels anyway. These results suggest that some improvements are required to 659 

allow full exploitation of bright green pixels, hence improving Cab estimation. Three avenues could be explored: 660 

(i) improving the co-registration algorithm, (ii), using another multispectral camera technology for which the 661 

different wavebands natively overlap, e.g., the one presented by Lee et al. (2014) or (iii) excluding pixels on 662 

plant/soil boundaries (this would, however, require a significant increase in spatial resolution to make the 663 

number of excluded pixels negligible compared to the total number of bright green pixels). 664 

4.5. Using covariables improves the estimation of canopy biochemistry (CCC, CNC) 665 

The addition of the information on Cab derived from #Avg(VI_GreenPix) to that of GFGREENPIX within the #MLR 666 

approach does not significantly improve the estimation of single canopy structure variables such as GF and 667 

GAI (Table 10). The GFGREENPIX estimates already provide very accurate GF estimates. The same applies to GAI 668 

estimates based on log(1- GFGREENPIX) because of the very strong relationship between GAI and GF (Table 5).  669 

Conversely, in the case of CCC estimation, the #GAI.Cab and #MLR approaches substantially outperform the 670 

other approaches based on a single input variable (#VI(Avg_Refl), #Avg(VI_AllPix)) (Table 10). In fact, when 671 

directly related to CCC, VIs may not simultaneously detect CCC variations due to GAI and Cab with sufficient 672 

accuracies. For example, 𝑉𝐴𝑅𝐼 and 𝑁𝐷𝑉𝐼 are strongly sensitive to GAI (up to 𝐺𝐴𝐼 ≈ 3.00) but nearly 673 
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insensitive to Cab (Table 8), which partly explains the scatters observed for CCC in Figs. 9.b-c. Similarly, 𝐶𝐼𝑟−𝑒 674 

is more sensitive to Cab than 𝑉𝐴𝑅𝐼 and 𝑁𝐷𝑉𝐼, but less sensitive to GAI (Table 8). As a result, these three VIs 675 

obtain a similar accuracy of 0.19 g/m² for CCC. On the other hand, #GAI.Cab exploits independently the two 676 

optimal configurations for estimating the two components of CCC, namely, using 𝑉𝐴𝑅𝐼 and all the pixels of 677 

the microplot image for GAI, and using 𝑚𝑁𝐷𝑏𝑙𝑢𝑒 and only the darkest green pixels for Cab. #GAI.Cab thus makes 678 

it possible to accurately capture the two sources of CCC variations, e.g., the variations due to Cab that were 679 

not detected with 𝑉𝐴𝑅𝐼 or 𝑁𝐷𝑉𝐼 alone. This yields a significant 37 % gain in accuracy over #VI(Avg_Refl) and 680 

#Avg(VI_AllPix). Note that #GAI.Cab performs slightly better than #MLR since it directly combines the best 681 

estimates of GAI and Cab in a multiplicative way, as opposed to #MLR for which the two input variables are 682 

combined in an additive way.  683 

The case of CNC appears to be more complex than that of CCC. #GAI.Cab does not bring any improvement as 684 

compared to #VI(Avg_Refl) and #Avg(VI_AllPix), while the #MLR approach leads to the best performance 685 

(Table 10). In fact, nitrogen does not absorb light at the six wavebands sampled by the camera (Curran, 1989), 686 

which means that CNC can mainly be retrieved through its presumed correlation with CCC. Therefore, the 687 

strong improvements obtained for Cab and CCC when exploiting the centimeter resolution, do not result in a 688 

strong improvement for CNC because CCC and CNC show a poorer correlation for 𝐶𝑁𝐶 ≥ 5.0 g/m², as already 689 

suggested by Jay et al. (2017b) between different years. The more comprehensive data set used here thus 690 

indicates that CCC is generally not an accurate proxy of CNC for large CNC values in sugar beet crops. Actually, 691 

a significant amount of the nitrogen uptake is stored in the root for the latest stages (Draycott, 2006), which 692 

could explain the loose relationship between leaf nitrogen content and Cab for such stages. 693 

5. Conclusions and perspectives 694 

This study aims to quantify the benefits of centimeter-resolution multispectral imagery as acquired from a 695 

UAV for the estimation of GF, GAI, Cab, CCC and CNC in sugar beet crops. Besides testing classical methods 696 

(#Avg(VI_AllPix) and #Avg(VI_GreenPix)) that relate each targeted plant trait and the average VI value 697 

computed over a particular subset of pixels, we propose several novel methods (#Frac(GreenPix), #GAI.Cab and 698 
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#MLR) that exploit the centimeter resolution to improve the estimation of canopy-level variables. 699 

#Frac(GreenPix) exploits the GF estimate (denoted GFGREENPIX) obtained by thresholding the 𝑉𝐴𝑅𝐼 image to 700 

identify the green pixels. GFGREENPIX is shown to be at least as accurate as GF estimates derived from other 701 

approaches based on VI values averaged over the microplots, while being less dependent from soil optical 702 

properties and variable illumination conditions leading to poor reflectance correction. Further, the logarithmic 703 

transformation of GFGREENPIX, log(1- GFGREENPIX), provides the best GAI estimate at least up to 𝐺𝐴𝐼 ≥ 3.00. For 704 

larger GAI values corresponding to GFGREENPIX  1, #Frac(GreenPix) should be combined with another approach 705 

exploiting the red-edge and/or near infrared band(s) that should be still sensitive to GAI variations. In the case 706 

of Cab estimation, the results show the superiority of 𝑚𝑁𝐷𝑏𝑙𝑢𝑒 computed over the darkest green pixels 707 

(denoted VICAB), as compared to other approaches using all the pixels of the microplot. By simply multiplying 708 

these Cab estimates by the #Frac(GreenPix) GAI estimates, the chlorophyll content at the leaf level can be 709 

upscaled to the canopy level, leading to the best CCC estimates (#GAI.Cab approach). Similarly, combining 710 

log(1- GFGREENPIX) and VICab within a multiple linear regression model (#MLR) leads to the best CNC estimates. 711 

Compared to two standard remote-sensing approaches applied to average microplot reflectances, the 712 

centimeter-resolution methods always improve the estimation performance, with a minimum gain of 8 % for 713 

GAI and CNC, and maximum gains of 26 and 37 % for Cab and CCC, respectively. It is worth noting here that the 714 

centimeter-resolution methods based on GFGREENPIX would have led to even stronger gains if the illumination 715 

conditions had strongly varied during the flights (this was not the case here). Since GFGREENPIX and VICAB are 716 

sufficient to retrieve all the five targeted plant traits and can be computed using a low-cost multispectral (or 717 

even RGB for GFGREENPIX only) camera, these two variables are promising for important agricultural applications 718 

such as precision agriculture and phenotyping. In addition, the methods presented in this study might be 719 

useful for the calibration and/or validation of vegetation land products derived from satellite imagery. 720 

Despite the diversity of the data set used in this study, the robustness of the proposed empirical models should 721 

be further assessed using a larger and more contrasted data set. Also, because some of the results presented 722 

in this paper may be specific to sugar beet crops, they should be re-evaluated for other species. For example, 723 
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the two 𝑉𝐴𝑅𝐼 thresholds leading to optimal GF and Cab estimates may change with the canopy structure and 724 

spatial resolution of the multispectral images. That said, the strong discrimination abilities of 𝑉𝐴𝑅𝐼 suggest 725 

that finely tuning these thresholds is not critical and that a unique threshold between 0.05 and 0.25 may be 726 

sufficient for most cases if the spatial resolution is fine enough. The accuracy of GAI and Cab estimation should 727 

also be confirmed by using direct reference measurements, e.g., as provided using a pigment extraction 728 

method for Cab. A variety of other machine learning algorithms (Feilhauer et al., 2015; Verrelst et al., 2016) 729 

could be tested to better handle possible non-linearities between GFGREENPIX (or log(1- GFGREENPIX)), VICAB and the 730 

targeted variables. Finally, note that exploiting the high-resolution imagery through the GFGREENPIX and VICAB 731 

variables requires a very accurate registration between the several images constituting the multispectral 732 

image. Refining the co-registration process thus represents another way of improvement. 733 
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