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Selection of sugar beet (Beta vulgaris L.) cultivars that are resistant to Cercospora Leaf Spot (CLS) disease is critical to increase yield.
Such selection requires an automatic, fast, and objective method to assess CLS severity on thousands of cultivars in the field. For this
purpose, we compare the use of submillimeter scale RGB imagery acquired from an Unmanned Ground Vehicle (UGV) under
active illumination and centimeter scale multispectral imagery acquired from an Unmanned Aerial Vehicle (UAV) under
passive illumination. Several variables are extracted from the images (spot density and spot size for UGV, green fraction for
UGV and UAV) and related to visual scores assessed by an expert. Results show that spot density and green fraction are critical
variables to assess low and high CLS severities, respectively, which emphasizes the importance of having submillimeter images
to early detect CLS in field conditions. Genotype sensitivity to CLS can then be accurately retrieved based on time integrals of
UGV- and UAV-derived scores. While UGV shows the best estimation performance, UAV can show accurate estimates of
cultivar sensitivity if the data are properly acquired. Advantages and limitations of UGV, UAV, and visual scoring methods are
finally discussed in the perspective of high-throughput phenotyping.

1. Introduction

Cercospora Leaf Spot (CLS) caused by Cercospora beticola is
one of the most damaging foliar diseases for sugar beet (Beta
vulgaris L.) crops. It can induce losses of 30 to 48% in recov-
erable sucrose as reported by [1]. CLS is a polycyclic disease
whose severity depends on weather conditions [2]. In warm,
wet, and humid conditions, fungus conidia infect leaves,
resulting in the appearance of millimeter-scale brown round
spots. These necrotic spots then expand and coalesce, eventu-
ally defoliating the entire plant and requiring it to grow new
leaves. Fungicide treatment may be effective in controlling
the development of CLS. However, a significant reduction
of the use of fungicides is highly desired since they affect
the environment while being expensive [3]. Moreover, their
efficacy has already decreased as resistance to fungicides has
been reported [4–6]. In addition to crop rotation, such reduc-
tion may be achieved with the selection of resistant cultivars

and with an early detection of the symptoms enabling a more
effective use of fungicides.

For cultivar selection and precision agriculture, CLS
symptoms are usually evaluated visually by experts, e.g.,
based on a scoring scale ranging from 1 for a healthy canopy
to 9 for a fully necrosed canopy (Table 1). Visual assessment
is often considered as the standard method due to its good
accuracy, its ease of implementation, and generally, the lack
of available alternatives. However, visual assessment may
show some slight variability among experts and times of
scoring due to the part of subjectivity in the measurement
[7]. An appropriate disease assessment method should
indeed be accurate, precise, and reproducible [8]. Several
alternative assessment methods have been shown to be more
accurate and precise than visual assessments, including
counting the number of abscessed leaves in peanuts [9].
Unfortunately, they are still labor intensive and far from
being high throughput as required for routine CLS scoring.
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Alternatively, several sensor measurements can supple-
ment visual scoring to assess disease symptoms. For example,
spectrally based assessment has received increased attention
since the first review of Nilsson [10]. Effective use of reflec-
tance measurements for disease detection relies on the iden-
tification of relevant spectral features that are, ideally, specific
to the targeted disease [11–17]. In the case of CLS, most
symptoms correspond to necrotic spots characterized by
the loss of green chlorophyll pigments and the synthesis of
polyphenols responsible for the brownish color of spots. Such
symptoms could be successfully detected using the Cercos-
pora Leaf Spot Index (CLSI) [15] that accurately discrimi-
nates CLS infected leaves from healthy, sugar beet rust, and
powdery mildew-infected leaves at the leaf scale. At the can-
opy scale, standard vegetation indices such as the Normalized
Difference Vegetation Index (NDVI) [18] were also shown to
be accurate indicators of CLS severity [7, 19], as CLS basically
reduces the green fraction (GF). However, it remains difficult
to discriminate defoliation due to CLS and defoliation due to
other sources (natural senescence, diseases, or pests) based
on the spectral signature alone, especially under field
conditions. Image-based assessment of disease symptoms
represents an interesting alternative to spectrally based
assessment [20, 21]. Visual analysis of images of individual
leaves was first proposed by [22] since computer-assisted
image processing was not very mature at that time. Later,
some authors proposed to apply image analysis to whole
plots [23]. The use of RGB images makes it possible not only
to identify the necrotic spots based on their colors but also to
characterize their sizes, shapes, and numbers if the spatial
resolution is sufficiently fine, which may provide critical
information on the disease stage [24].

To carry these sensors, vectors such as UAVs
(Unmanned Aerial Vehicles) and UGVs (Unmanned
Ground Vehicles) are now capable to reach the high through-
put required by the breeders. Both vectors offer specific
advantages and drawbacks: UAVs have a very high through-
put at relatively low cost [25] at the expense of a sensitivity to
illumination and wind conditions. Conversely, UGV can
carry active sensors that make the measurements fully inde-
pendent from the illumination conditions at the expense of
a lower throughput and sensitivity to soil conditions. In addi-
tion, UGV can easily provide the submillimeter resolution

required to identify the CLS symptoms at the earliest stages
because of the short distance between crops and sensors.
Conversely, although UAVs can reach such high spatial res-
olution [26], the flight control and data preprocessing are
more complex.

The objective of this study is to compare the use of centi-
meter resolution multispectral imagery acquired from a UAV
under passive illumination conditions and submillimeter res-
olution RGB imagery acquired from a UGV under active illu-
mination conditions, for scoring CLS symptoms in sugar beet
phenotyping field experiments. In the following section, the
experiments, data collection, and estimation methods are
described. The results are then presented in the third section
and discussed in the fourth section, with due attention to the
advantages and limitations of UGV and UAV systems as
compared to the reference visual scoring method.

2. Materials and Methods

2.1. Field Experiments. Twomicroplot experiments were con-
ducted in 2016 and 2017 in Casteljaloux, France (44°19′04N
0°07′E), as illustrated in Figure 1. These experiments were
designed to provide a wide range of CLS symptoms, ranging
from healthy canopies to fully necrosed canopies. Each
microplot had 4 rows of 1.80m length and spaced by
0.50m, with a plant density of 11.1 plants/m2. In 2016, 80
microplots were monitored, corresponding to 20 genotypes
and three treatments. For the first treatment, plants were
inoculated with the Cercospora beticola fungus on 07/06
and no fungicide was applied afterward. This treatment was
replicated twice. For the second treatment, plants were not
inoculated, and no fungicide was applied to represent natural
infection by CLS. For the third treatment, plants were not
inoculated and fungicide was applied. Each treatment was
organized in a line with a random location of the genotypes.
In 2017, 1374 genotypes corresponding to the whole refer-
ence panel of a breeder were inoculated on 07/11 and no fun-
gicide was applied afterward. Based on previous experiments,
the CLS sensitivity was available for 143 of these genotypes.
These 143 genotypes could be classified into four classes
corresponding to very resistant (15 genotypes), resistant
(41 genotypes), sensitive (68 genotypes), and very sensitive
(19 genotypes).

2.2. Visual Scoring of CLS Symptoms. For both years, the
same expert visually scored CLS severity based on a scale
ranging from 1 to 9 (Table 1) and designed by the breeder
Florimond Desprez (Florimond Desprez, internal communi-
cation). In 2016, the microplots were scored six times
(Figure 2) with noninteger values obtained by averaging the
two integer score values assigned to the two half microplots,
respectively. In 2017, the microplots were scored five times
(Figure 2) with a single integer value given by the expert.

2.3. Phenomobile UGV RGB Measurements

2.3.1. Data Acquisition. The Phenomobile [27] was a high
clearance (1.30m) UGV with four-wheel drive and steering
(Figure 3). It weighted about 900 kg and could reach up to

Table 1: Scoring scale used for visual assessment of CLS symptoms
(Florimond Desprez, internal communication).

Score Description

1 No CLS spots.

2 Spots on one leaf or two.

3 Spots multiplication.

4 Spots start to join on one plant or two.

5 Spots join on several plants but not on most of the row.

6 Spots join on most of the plants.

7
Some leaves are fully necrosed. Until 50% of leaf area

is destroyed.

8 Just three or four healthy leaves remain on the plants.

9 All the leaves are necrosed.
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Figure 1: Microplot experiments as observed from the UAV and conducted in 2016 (a) and 2017 (b). In 2016, only the 80 microplots seen in
the top right corner of the image were used to study cultivar resistance to CLS. In 2017, all the microplots present in the image were used.
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Figure 2: Sampling dates for visual scoring (green circles), UAV (orange squares), and Phenomobile UGV (purple diamonds) measurements,
for 2016 (left) and 2017 (right). Time is expressed both in growing degree days (GDD) after disease inoculation (bottom x-axis) and in
calendar days (top x-axis).
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Figure 3: The Phenomobile system: schematic diagram (a) and measurement head (b).
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0.5m/s speed. The axle track could be changed from 1.50m
to 2.10m. An arm placed at the front of the vehicle carried
the measurement head (Figure 3). Thanks to a Sick LMS
400 lidar, the height of the measurement head was automat-
ically adjusted over each microplot to keep a constant dis-
tance of 1.50m from the top of the canopy. The system was
powered by electricity produced by a thermic engine that
provided approximately eight hours of battery life. The
Phenomobile followed a trajectory that had been initially
measured at sowing with an Ashtech MB800 (Trimble® Inte-
grated Technologies, CA, USA) RTK GPS based on a Virtual
Reference Station (VRS) network, allowing centimeter posi-
tioning accuracy. A similar RTK GPS system was also used
by the Phenomobile to ensure centimeter positioning accu-
racy. The Phenomobile moved automatically over the micro-
plots according to this trajectory and stopped if the VRS
connection was lost. When the Phenomobile entered a
microplot, several sensor measurements were performed
according to a predefined scenario.

To detect CLS spots, one RGB camera pointing nadir was
embedded on the measurement head. Four Phoxene FR60
Xenon flashes (http://www.phoxene.com/) with a tunable
energy level ranging from 5 to 100 J were synchronized with
the RGB camera to make the measurements fully indepen-
dent from the illumination conditions. Identification of CLS
symptoms required a very high spatial resolution that was
provided by the Baumer HXG-40 RGB camera (http://www
.baumer.com/). This 2048 × 2048 pixel camera was equipped
with a 25mm focal length lens providing a 0:36 × 0:36mm
pixel size at 1.5m distance with a 0:74 × 0:74m footprint.
RGB images were encoded in 12 bits and saved as 16-bit
images in TIFF format.

For each microplot, the Phenomobile passed over each of
the four rows at 0.1m/s speed. It acquired only one image per
row in 2016, and two images per row in 2017. The RTK GPS
ensured that each image was taken exactly at the same loca-

tion across the several sampling dates, thus providing a very
high spatial consistency. In 2016, the 80 microplots were
sampled in less than one hour and at 16 dates (Figure 2). In
2017, the 1374 microplots were sampled in five hours. How-
ever, only a subsample of all microplots was sampled at each
of the 16 dates (Figure 2), resulting in five to nine observation
dates for each microplot.

2.3.2. Variable Extraction from RGB Images. First, saturating
pixels that were defined as pixels with red, green, and/or blue
band value(s) equal to 212-1 were considered as invalid and
removed from the analysis (Figure 4). They were mainly cor-
responding to strong specular reflections caused by the waxy
surface of leaves and stalks. Underexposed pixels that were
defined as pixels with luma values lower than 1% of the max-
imum value were also discarded, which allowed us to remove
shaded pixels. On average, saturating and underexposed
pixels corresponded to 16% of the whole image, this fraction
ranging from 0 to 60% in a few extreme cases (Table 2).
Remaining green and nongreen pixels were then classified
using support vector machine (SVM) [28, 29] implemented
within the Matlab 9.5.0 function “fitcsvm,” as SVM is one
of the most powerful classification methods [30]. To create
the training and validation datasets, we selected 100 images
with maximum variability, i.e., corresponding to several
acquisition dates and both years, several microplots, and
strong differences in the illumination conditions. For each
image, 30 pixels were randomly drawn and assigned to the
class “green” or “nongreen,” resulting in a total dataset of
3000 samples. An SVMmodel with Gaussian kernel and tak-
ing as inputs the three RGB bands was trained using 70% of
the total dataset. When validated on the remaining 30%,
the model showed a 98% classification overall accuracy,
defined as the number of correctly classified samples divided
by the total number of samples (see the confusion matrix in
Table S1 in the supplementary data). To remove isolated

Figure 4: On the left, original RGB image acquired with the Phenomobile using the four flashes. On the right, results of image processing after
SVM classification and morphological operations on the areas delimited in red on the original image. Blue pixels are invalid pixels, purple
pixels are pixels labeled as nongreen but not identified as CLS spots, and red pixels are pixels labeled as nongreen and identified as CLS spots.
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green and nongreen pixels due to the classification noise, we
applied the same morphological operation to the SVM
output binary mask and its logical negative, i.e., an opening
by reconstruction based on a disk-shaped structuring
element with a radius of 3 pixels (Matlab 9.5.0 function
“imreconstruct”). The green fraction (GF), defined as the
fraction of green pixels with respect to the total number of
valid pixels, was then computed for each image (Table 2).
CLS spots were identified based on their shapes and sizes
using the Matlab 9.5.0 function “regionprops.” For each
group of connected nongreen pixels, the area and
eccentricity features were computed to identify CLS spots
that were defined as disk-shaped objects with a diameter
lower than 4mm and eccentricity lower than 0.9. This
allowed us to effectively discard most of the nongreen
pixels corresponding to soil background, necrotic leaf
tissues, and remaining stalks. For each image, the spot
density (SD), defined as the number of CLS spots divided
by the area of valid pixels, and the average spot size (SS),
defined as the average diameter of spots in the image, were
computed (Table 2). The GF, SD, and SS values were finally
averaged over all the images available for each date and
each microplot.

2.4. UAV Multispectral Measurements

2.4.1. Data Acquisition. An AIRPHEN multispectral camera
(http://www.hiphen-plant.com/) was embedded on a hexa-
copter and fixed on a two-axis gimbal. The camera was
equipped with an 8mm focal length lens and acquired 1280
× 960 pixel images using a 3:6 × 4:8mm CCD sensor. These
images were saved in TIFF format at a 1Hz frequency. The
AIRPHEN camera is made of six individual cameras spaced
by a few centimeters and sampling the reflected radiation at
bands centered on 450, 530, 560 (in 2017, the 570 nm band
replaced the 560nm one), 675, 730 and 850nm, with a
spectral resolution of 10 nm. For each individual camera,
the integration time was adjusted automatically to minimize
saturation and maximize the dynamics.

The flight plan was designed to ensure 80% overlap
across and along track. The UAV was flown at 20m in
2016 and 50m in 2017, corresponding to spatial resolutions
of 0.9 and 2.3 cm, respectively. Several circular panels of
60 cm diameter were placed evenly within the field and used
as ground control points (GCPs) for photogrammetric
processing (Section 2.4.2). Their positions were measured
using an RTK GPS providing an accuracy of 2 cm. Further,
a 3m2 radiometric gray reference panel was used for radio-
metric calibration [31]. Illumination conditions were gener-
ally stable during the flight, except at the fourth date in
2016 (Figure 2) due to intermediate cloud cover and wind.
For each year, the UAV was flown five times after CLS inoc-
ulation (Figure 2).

2.4.2. Data Preprocessing and Variable Extraction from
Multispectral Images. As the six bands were acquired from
different points of view, they were first registered using the
algorithm proposed by [32] and already successfully used
in [31]. This algorithm is based on spatial frequency anal-
ysis through the Fourier-Mellin transform, which allows it
to solve the visible-near-infrared band registration problem
observed with classical scale-invariant feature transform
descriptors [33]. A unique band (530 nm) could then be
used within the photogrammetric software Agisoft Photo-
scan Professional edition (Version 1.2.2, Agisoft LLC.,
Russia) to estimate the camera position for each image
acquisition using the GCPs placed in the field. Images
could then be projected onto the ground surface with an
accuracy of 2 cm when evaluated over the GCPs (1 cm
along the x- and y-axes, and 1.7 cm along the z-axis),
which was sufficient with respect to the microplot dimen-
sions of 2 × 1:80m (Section 2.1). Microplots that were
fully covered by images acquired with viewing zenith
angles lower than 10° (to limit bidirectional effects) were
finally extracted. To remove the influence of spectral vari-
ations in the incoming light, the digital number, DNiðx, yÞ,
of each pixel ðx, yÞ and each band i was converted to

Table 2: Variables extracted from the RGB images acquired with the Phenomobile.

Variable Definition Unit Min Max Equation

Pt Total number of pixels per image — 4:2 × 106 4:2 × 106 —

Pv Number of valid pixels — 2:5 × 106 4:2 × 106 —

Pg Number of green pixels — 0 4:2 × 106 —

Ps Number of pixels per CLS spot — 0 4:2 × 106 —

Ns Number of spots — 0 2000 —

A Pixel size at the ground level mm2 0.13 0.13 —

GF Green fraction — 0 1 GF =
Pg

Pv

SD Spot density cm-2 0 0.4 SD = Ns

Pv · A · 10−2

SS Average spot size mm 2 5 SS = 4
πNs

〠
spots

ffiffiffiffiffiffiffiffiffiffiffi
Ps · A

p
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bidirectional reflectance factor, BRFiðx, yÞ [34], according
to the following:

BRFi x, yð Þ = DNi x, yð Þ:vi x, yð Þ
ti

� �
:

tiref
DNi

refv
i

 !
:BRFiref , ð1Þ

where ti and tiref are, respectively, the integration times of
the images acquired over the microplot and the reference
panel, vi is the vignetting correction factor [31], and

DNi
refv

i is the pixel-averaged and vignetting-corrected DN
value observed over the reference panel of known BRF value,
BRFiref .

Due to the too low spatial resolution, CLS spots could not
be identified individually. CLS symptoms were thus assessed
using the GF computed by thresholding the Visible Atmo-
spherically Resistant Index (VARI) image [35], as further
detailed in [31]. This whole multispectral image processing
chain, ranging from the registration of multispectral bands
to the estimation of GF, made it possible to estimate GF with
a root mean square error of prediction (RMSE) of 0.04, as
already validated in [31].

2.5. Estimation of Scores Using Phenomobile RGB Data and
UAV Multispectral Data. Because Phenomobile, UAV, and
visual measurements were not performed at the same dates
(Figure 2), we first interpolated Phenomobile and UAV data
to the dates of visual scoring using modified Akima cubic
interpolation [36]. A linear regression over the last three
points was used to extrapolate 2016 Phenomobile data to
the last date of visual scoring. This was justified by (1) the
continuous behavior of Phenomobile-measured variables
over the entire acquisition period (e.g., Figure S1 in the
supplementary data), and (2) the short time interval of
three days between the last Phenomobile measurement and
the last visual scoring (Figure 2). Similarly, the UAV-
derived GF value at the first visual scoring date was
computed from the Phenomobile-derived GF value based
on a linear model between Phenomobile and UAV GF
estimates calibrated on the four remaining dates (RMSE =
0:05, not shown).

The CLS scores were estimated using artificial neural
networks. For the Phenomobile, four inputs could be used:
GF, SD, SS, and GFn. GFn is a transformation of GF
designed to reduce the confounding influence of crop
growth and CLS development: GF is first divided by the
maximum GF value in the time series, and values observed
before this maximum are set to 1.0. For UAV data, only GF
and GFn could be used as inputs to the neural network. A
simple architecture based on a layer of four tangent-
sigmoid transfer function neurons followed by a single lin-
ear transfer function neuron was used (see Figure S2 in the
supplementary data). The default implementation of the
Matlab 9.5.0 function “train” was used to train the neural
network, i.e., input(s) and output were first mapped to
[-1; 1], and the mean square error was optimized using
the Levenberg-Marquardt algorithm [37, 38] to estimate
weights and biases. Predicted scores lower than 1 or
greater than 9 were set to 1 or 9, respectively.

First, the influence of each input variable on CLS score
estimation was investigated by testing every possible combi-
nation of input variables, i.e., 15 combinations for Phenomo-
bile data and three combinations for UAV data. For each
combination, the RMSE was computed using a twofold
cross-validation, i.e., using 2016 data for training and 2017
data for validation, and reciprocally. Due to the strong differ-
ence in the number of samples between both years (480 sam-
ples for 2016 versus 6870 samples for 2017), we randomly
drew 480 samples from the 2017 dataset. This was performed
by using a k-means algorithm [39] with 480 classes and by
randomly drawing one sample per class to ensure a more rep-
resentative sampling of the dataset. Such random sampling
was replicated 20 times to account for sampling variability,
and the RMSE was computed over these 20 replicates. The
optimal combination of input variables was the one with
the lowest RMSE.

Second, based on the optimal combination of input vari-
ables, the estimation performance obtained for the total 2016
dataset was evaluated by applying a model trained over the
total 2017 dataset. Similarly, the estimation performance
obtained for the total 2017 dataset was evaluated by applying
a model trained over the total 2016 dataset. In both cases, ten
neural networks with similar architecture but initialized with
different weight and bias values obtained with the Nguyen-
Widrow method [40] were trained. Every score estimate
was then given by the median of these ten estimates to reduce
estimation uncertainty and to limit the sensitivity of the neu-
ral network training convergence to the initial conditions
[41–43]. The estimation performance was then evaluated
using the absolute and relative (with respect to the mean)
RMSE and squared Pearson’s correlation coefficient (r2).

2.6. Estimation of Genotypic Sensitivity to CLS. To report dif-
ferences between microplots in a synthetic way, the integral
of CLS scores over time was computed for each microplot.
Time was expressed in growing degree days (GDD, in °C)
with a base temperature of 0°C rather than in calendar days
to better represent sugar beet growth and CLS development
and for a better consistency between different years. Such
an integral was called Area under the Disease Progression
Curve (ADPC) by [44]. It is a synthetic index used to quan-
tify the sensitivity of a genotype to a given disease and is
given by

ADPC = 〠
n

i=1

Si+1 + Sið Þ
2 GDDi+1 −GDDið Þ, ð2Þ

where Si is the CLS score measured at date GDDi and n is the
number of observation dates.

For each microplot, ADPC was computed from Pheno-
mobile- and UAV-derived scores and compared to ADPC
computed from visual scores using RMSE and r2.

For the 143 genotypes of known CLS sensitivity class in
2017 (Section 2.1), visually-, Phenomobile-, and UAV-
derived ADPC values were also compared based on their
abilities to discriminate these genotypes. For each of the three
scoring methods, we first sorted the genotypes in ascending
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order according to their ADPC values. Then, we computed
the abundance of each of the four CLS sensitivity classes by
a group of 20 genotypes and assigned it to the average ADPC
of the group. The abundance of a class was defined as the per-
centage of genotypes of this class present within these 20
genotypes. A total of 123 (=143-20) groups of 20 genotypes
were selected. A moving window with unity step was used
to decrease the influence of possible discontinuities in the
abundances related to the sampling of these genotypes.

2.7. Repeatability of Visual, Phenomobile, and UAV
Measurements. The repeatability of a measurement is usually
assessed by comparing the values between several replicates.
The repeatability of visual and estimated scores and corre-
sponding ADPC was therefore evaluated based on the two
replicates “CLS inoculation and no fungicide” studied in
2016 (Section 2.1). It was quantified by computing the RMSE
and r2 between the scores and ADPC obtained for the two
replicates.

3. Results

3.1. Representativeness of RGB Images Acquired with the
Phenomobile. Four to eight RGB images were taken with
the Phenomobile for every microplot. We first evaluated the

variability between the GF, SD, and SS values derived from
single images as compared to their averages per microplot.
Results show that such variability remained limited for
2016, with relative RMSE computed over all the microplots
and observation dates lower than 23% and r2 higher than
0.61 (Figure 5). For 2017, the variability was larger for the
three variables, as shown by the higher RMSE and lower r2

obtained as compared to 2016 (Figure 5). Fortunately, the
number of images acquired in 2017 (eight) ensured a good
representativeness of each microplot.

Such a good representativeness was confirmed by the
smooth temporal courses of Phenomobile-derived variables
observed for both years before and after interpolation to the
dates of visual scoring (Figure S1 in the supplementary
data). Note that in the case of UAV, similarly smooth
temporal courses were observed for GF and both years
(Figure S1 in supplementary data).

3.2. Dynamics of Visual Scores and Phenomobile- and UAV-
Derived Variables. Regardless of years and treatments, visual
scores regularly increased over time (Figure 6). For 2016,
uninoculated microplots showed delayed CLS infection when
fungicide was applied, the median score reaching only a max-
imum of five over the studied period. Fungicide was, how-
ever, effective only for a limited period, after which natural
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CLS infection eventually occurred. Without fungicide appli-
cation, uninoculated microplots generally showed slightly
higher scores, indicating that CLS developed faster for this
treatment. Inoculated microplots where no fungicide was
applied showed an early development of CLS and signifi-
cantly higher scores than the other two treatments for every
date. In this case, all the microplots showed scores higher
than five for the last observation date. The microplots
conducted similarly in 2017 (inoculation and no fungicide)
generally showed lower scores due to the early interruption
of measurements (GDD = 785°C) that made it impossible
to evaluate the late stages of CLS development for most
of the microplots. A significantly stronger variability
between microplots was also observed in 2017, probably
due to the larger number of cultivars considered and the
wider range of sensitivity levels.

Overall, the combinations of several treatments and
genotypes in 2016 and several genotypes in 2017 successfully
introduced a strong variability in the CLS symptoms, the
visual scores generally covering the whole range of possible
values (Figure S3 in the supplementary data). The
distribution of visual scores was, however, less uniform in
2017, showing a strong proportion of scores of one and
very few scores higher than seven (Figure S3 in the
supplementary data).

Phenomobile-derived variables GF, SD, and SS showed
typical temporal profiles associated to the development of
CLS symptoms (Figure 7). In 2016, the canopy was nearly
fully covering the soil when Phenomobile observations
started, with GF ≈ 1:00 (row 1 in Figure 7). GF then
decreased regularly over time. The inoculated microplots
where no fungicide was applied showed the strongest and
earliest decrease (median GF of 0.50 at GDD = 1200°C). On
the other hand, the uninoculated microplots where fungicide
was applied showed the lowest and latest decrease (median
GF of 0.95 at GDD = 1200°C). In 2017, the measurements
started at CLS inoculation, when GF was still increasing
(row 1 in Figure 7, right plot). Maximum GF was reached

at around GDD = 450°C, with GF values significantly lower
than 1.00. After GDD = 450°C, GF started decreasing, but
measurements ended too early to observe low GF values as
seen for the same treatment (i.e., CLS inoculation and no
fungicide application) in 2016.

For the three treatments in 2016, the spot density
increased over time up to approximately SD = 0:2 cm-2 (row
2 in Figure 7). SD increased earlier for the inoculated micro-
plots where no fungicide was applied and then started
decreasing. Such decrease was not visible for the other two
treatments, probably because measurements ended too early.
The same was observed for 2017, i.e., SD increased until the
interruption of measurements, the median value reaching
SD = 0:17 cm-2 at GDD = 785°C.

The average spot size SS showed different temporal pro-
files for 2016 and 2017 (row 3 in Figure 7). SS slightly
increased over time in 2016 (although less strongly for the
inoculated microplots), while it slightly decreased in 2017.

UAV-derived GF showed similar temporal courses as
Phenomobile-derived GF for both years (row 4 in Figure 7).
The main difference between the two vectors was the
maximum GF reached, i.e., 0.94 for UAV and 0.99 for the
Phenomobile.

3.3. Estimation of Visual Scores. The four features, GF, GFn,
SD, and SS, extracted from Phenomobile and/or UAV
images generally varied similarly with CLS visual scores
for 2016 and 2017 (Figure 8). As expected, Phenomobile-
and UAV-derived GF generally decreased as the CLS score
increased (Figures 8(a) and 8(c)). For scores greater than
five, the decrease was stronger and its rate differed
between 2016 and 2017, especially for Phenomobile-
derived GF (Figure 8(a)). A large GF variability was also
visible for scores lower than five in 2017, while such vari-
ability was greatly reduced when considering the normalized
GF (GFn). GFn showed a more consistent relationship with
the visual score, with limited variations for scores lower than
five and strong variations for scores greater than five
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(Figures 8(d) and 8(f)). The spot density SD was sensitive to
variation in the CLS score, even for low scores of 2 or 3. How-
ever, the relationship between SD and scores was not mono-
tonic: SD increased with scores up to scores of seven (in
2016) or eight (in 2017) before decreasing. As for its temporal
profile, the average spot size SS showed different relation-
ships with CLS visual score for 2016 and 2017. While SS
increased with score in 2016, it slightly decreased with score
in 2017.

In the case of Phenomobile, the twofold cross-validation
process showed that the optimal set of input variables to
the neural network for score estimation was GFn, SD, and
SS, with RMSE = 0:91 (Table 3). The best explanatory vari-
able was SD, which appeared in the first eight sets of input

variables, followed by GFn, which appeared in the best four
combinations, while GF and SS only appeared twice. SS only
brought marginal information as compared to the use of GFn
and SD alone, decreasing the RMSE from 0.98 to 0.91.

In the case of UAV, the best performance was obtained
using GFn alone, with RMSE = 1:23 (Table 3). These results
were similar to those obtained with Phenomobile-derived
GFn (RMSE = 1:19). Conversely, using GF instead of GFn
significantly worsened the performance for Phenomobile
and UAV: for example, RMSE of 2.30 (for Phenomobile)
and 2.35 (for UAV) were obtained using GF alone.

Detailed inspection of the best score estimation results
obtained for each year and each vector showed that the
performance was consistent across years when using
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Phenomobile-derived GFn, SD, and SS as inputs to the neural
network, with RMSE ≈ 0:87 and r2 ≈ 0:86 for 2016 and 2017
(Figure 9). However, high scores were slightly overestimated
for 2016 and underestimated for 2017. Further, low scores
were slightly overestimated for 2017.

Results were less consistent across years when using UAV-
derived GFn as input to the neural network (Figure 9): accu-
rate estimates were obtained for 2016 (RMSE = 1:09), while
poorer estimates were obtained for 2017 (RMSE = 1:38). High
scores tended to be underestimated for 2016, and low scores
were generally overestimated for 2017. Further inspection of
2016 results showed that scores were particularly underesti-
mated at the fourth date (Figure 2): a RMSE of 0.87 was
obtained when removing this date. For 2016 and 2017, esti-
mated scores showed some saturation for low scores, with a
minimum estimated score between two and three. The agree-
ment between estimated and visual scores increased with the
score value: for scores greater than seven, the estimation accu-
racy obtained with the UAV was similar to that obtained with
the Phenomobile (Figure 9).

3.4. Estimation of Genotype Sensitivity to CLS. Phenomobile-
and UAV-derived ADPC, that approximate genotype sensi-

tivity to CLS, generally agreed well with ADPC computed
from visual scores (Figure 10). Accurate estimates were
obtained for 2016, with slightly better results for the
Phenomobile (RMSE = 413, 2 = 0:86) as compared to the
UAV (RMSE = 521, 2 = 0:81). In 2017, the Phenomobile pro-
vided poorer but still reasonable performance (RMSE = 502,
r2 = 0:66). Conversely, ADPC derived from the UAV showed
poor agreement with ADPC derived from visual scores
(RMSE = 754, r2 = 0:30), with a general overestimation and
a saturation observed for low ADPC values. Biases were
visible on the four plots in Figure 10, generally due to an
overestimation of low ADPC values and an underestimation
of high ADPC values.

For 2017, ADPC derived from visual scoring and
Phenomobile measurements were reasonably consistent with
CLS sensitivity classes defined from previous independent
experiments (Figure 11): very resistant and resistant classes
obtained the lowest ADPC values, while sensitive and very
sensitive classes obtained the highest ADPC values. Further-
more, visual scoring made it possible to separate very sensi-
tive and sensitive classes reasonably well; however, it failed
to separate resistant and very resistant classes. On the other
hand, resistant and very resistant classes were well separated
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with Phenomobile data; however, the latter failed to separate
sensitive and very sensitive classes.

As for UAV measurements, the poor ADPC estimation
performance obtained for 2017 (Figure 10) led to poor dis-
crimination of the four classes (Figure 11). In particular,
resistant and sensitive classes were inaccurately identified
from the ADPC values.

3.5. Repeatability of Visual, Phenomobile, and UAV
Measurements. Among the three scoring methods, Pheno-
mobile RGB imagery provided the most repeatable score
and ADPC estimates when evaluated over the two replicates
“inoculation and no fungicide application” in 2016
(Figure 12): a strong linear correlation and low RMSE were
obtained between replicates, both for score estimates and
for corresponding ADPC. Visual scoring showed a slightly
lower agreement between replicates (Figure 12). The repeat-
ability of UAV-derived scores was similar to that observed
with Phenomobile and visual scores for score values greater
than five (Figure 12). Conversely, poor results were observed
for lower score values, resulting in lower r2 (0.84) and higher
RMSE (0.89). Consequently, good repeatability was obtained
for high ADPC values and low repeatability for low ADPC
values. Note that the fourth date (Figure 2) showed poor
repeatability as a consequence of the poor score estimates
already noticed (Figure 9): when removing this date, RMSE

decreased from 0.89 to 0.65 for scores and from 509 to 407
for ADPC.

4. Discussion

4.1. SD and GFn Are the Best Proxies of CLS Scores. CLS
symptoms range from a few brown necrotic spots on some
leaves for low severity levels, to a partially or fully necrosed
canopy for high severity levels (Table 1). Accordingly, the
spot density SD is therefore the best variable to monitor
CLS development for scores less than or equal to five
(Figure 8). For such low scores, only a minority of
millimeter-scale CLS spots join (Table 1), which does not sig-
nificantly decrease the green fraction GF (Figure 8). In this
case, scores and GF can even increase simultaneously as
observed for 2017 (Figure 8). Indeed, CLS can infect the crop
at different growth stages, including medium development of
the canopy for which the increase in GF due to crop growth
can be stronger than the decrease in GF due to CLS-
induced necrosis. Using the proposed normalized variable
GFn instead of the original GF estimate makes it possible to
avoid the above confusion since GFn is set to one before
the maximum GF is attained. Another advantage of GFn is
that the normalization by the maximum GF limits the influ-
ence of possible difference in the canopy development as
observed between 2016 and 2017 (Figure 8).

For scores greater than five, individual CLS spots join on
most of the plants, leading to the necrosis of an increasing
number of leaves (Table 1). As a result, GFn, even when
derived from UAV centimeter-scale images, becomes the
best variable to study CLS development for such advanced
disease stages (Figure 8). On the other hand, the nonmono-
tonic relationship between SD and CLS score makes SD a
poor indicator of high scores (Figure 8). Such a behavior is
due to (1) the initial spot multiplication that increases SD
up to scores of around seven and (2) the coalescence of small
individual spots into larger necrosis areas that are no longer
identified as spots, which decreases SD for higher scores.

Competition between spot multiplication and spot coa-
lescence may also explain the different temporal courses of
the average spot size SS observed for 2016 and 2017
(Figure 7). Appearance of new small spots tends to decrease
SS, while merging of older spots into larger ones tends to
increase SS. The stronger increase in SS observed for the
uninoculated microplots in 2016 as compared to the inocu-
lated microplots in 2016 and 2017 may indicate that spot
coalescence prevails over spot multiplication when CLS is
not inoculated artificially. In this case, infection may occur
in a more localized way, with spots more spatially grouped
and thus more chance for them to coalesce. On the other
hand, artificially inoculated microplots may show a more
homogeneous spot distribution and, therefore, less chance
for the spots to coalesce. Anyway, SS does not show consis-
tent relationship with CLS scores over the two years
(Figure 8), indicating that this variable brings little informa-
tion as compared to SD and GFn.

4.2. Phenomobile RGB Imagery Provides More Accurate
Estimates of CLS Scores than UAV Multispectral Imagery.

Table 3: Estimation results obtained using every possible
combination of image-derived features (GF, GFn, SD, and SS for
Phenomobile; GF and GFn for UAV) as inputs to the neural
network. RMSE are estimated using twofold cross-validation (2016
for training and 2017 for validation, and reciprocally) and 20
replicates. For each vector, results are sorted from minimum
RMSE to maximum RMSE.

Vector
Variables extracted from images

RMSE
GF GFn SD SS

Phenomobile

— ✓ ✓ ✓ 0.91

— ✓ ✓ — 0.98

✓ ✓ ✓ ✓ 0.99

✓ ✓ ✓ — 1.05

— — ✓ ✓ 1.08

— — ✓ — 1.09

✓ — ✓ — 1.15

✓ — ✓ ✓ 1.18

— ✓ — — 1.19

✓ ✓ — — 1.33

— ✓ — ✓ 1.40

✓ ✓ — ✓ 1.43

✓ — — — 2.30

✓ — — ✓ 2.37

— — — ✓ 2.96

UAV

— ✓ — — 1.23

✓ ✓ — — 1.46

✓ — — — 2.35
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SD and GFn provide useful information to characterize CLS
throughout its development, SD being useful for low scores
and GFn for high scores. This explains why SD and GFn
appear in each of the best four sets of variables used as inputs
to the neural network to estimate CLS scores from Phenomo-
bile RGB imagery (Table 3). The optimal set of variables is
GFn, SD, and SS, which indicates that SS contains useful
although minor additional information (Table 3). The high
accuracy obtained for both years (RMSE ≈ 0:87, r2 ≈ 0:86)
demonstrates the relevance of these three variables and the
strong potential of Phenomobile to score CLS symptoms.
This is of critical importance as the early detection of disease
symptoms in the field is often considered as a major bottle-
neck for plant breeding and precision agriculture [45].

On the other hand, the poorer performance obtained
with UAV multispectral imagery is mainly due to the coarser
image spatial resolution that makes it impossible to exploit
SD and SS. Using GFn only, UAVmultispectral imagery can-
not accurately estimate scores lower than five (e.g., see the flat
bottoms of the scatter plots on the left-hand side of Figure 9)
since these scores correspond to GFn ≈ 1 (Figure 8). This
explains the poorer performance obtained for 2017 as com-
pared to 2016, since the 2017 dataset contains a large propor-

tion of low scores and only few scores higher than seven (see
Figure S3 in the supplementary data). Note that the
difference in the spectral configuration between the two
systems only plays a minor role on GF estimation
(RMSE = 0:05, see Section 2.5) and therefore on score
estimation (see the similar RMSE values obtained with
UAV- and Phenomobile-derived GF and/or GFn in Table 3).

Besides coarser spatial resolution, two secondary factors
worsen the across-year relationship between UAV-derived
GFn and visual scores and contribute to the decrease of the
score estimation accuracy for both years: (1) an inaccurate
radiometric calibration due to changing illumination condi-
tions during the flight, and (2) the difference in the spatial
resolution of the images used in 2016 and 2017. Inaccurate
radiometric calibration especially occurred at the fourth
UAV acquisition date in 2016 (Section 2.4.1) and caused
GF overestimation. Unfortunately, the nearest flights were
performed only two weeks after and before the fourth one
(Figure 1). Moreover, the fourth date corresponded to the
period when GF started decreasing due to CLS development
(Figure 7). Therefore, GF was overestimated for the three
dates of visual scoring around the fourth UAV acquisition
date (Figure 2). This severely worsened the relationship
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between GFn and visual scores due to the low sensitivity of
GFn to score variation for such intermediate scores
(Figure 8). The consistency of this relationship across years
was also affected by the difference in the spatial resolution
between 2016 (0.9 cm) and 2017 (2.3 cm). The finer spatial
resolution used in 2016 made GFn decrease for slightly lower
scores as compared to 2017, although this was not visible in
Figure 8(f) due to the compensation with the GF overestima-
tion caused by inaccurate radiometric calibration. While this
shows the interest of increasing the spatial resolution to
improve the sensitivity of UAV measurements to score vari-
ation, this also emphasizes the need for flying the UAV
always at the same altitude.

The score estimation errors presented in Figure 9 are
therefore affected by several factors related to the remote-
sensing measurement. However, estimation errors are also
affected by another nonnegligible factor related to the refer-
ence measurement: human errors in the visual scoring lead-
ing to a lack of consistency between dates. The lack of
consistency is particularly visible when observing the differ-
ent relationships obtained between GFn (derived from Phe-
nomobile or UAV) and visual scores for 2016 and 2017

(Figure 8): when the score increases, GF shows a stronger
decrease in 2016 than in 2017. This explains the apparent
overestimation and underestimation of high scores observed
in 2016 and 2017, respectively, with the Phenomobile. There
were also some errors in the visual scoring for low scores, as
demonstrated by a detailed inspection of 2017 Phenomobile
RGB images that were showing an overestimation of scores
of one and two (Figure 9). A few CLS spots were indeed vis-
ible in these images, which means that scores of two and
three would have been more appropriate for those microplots
(Table 1), as predicted by the neural network. Errors in the
visual scoring thus influence the results obtained with Pheno-
mobile and UAV, either in a favorable or in an unfavorable
way. This poses the question of using visual scoring for
phenotyping purposes as also discussed in Section 4.4.

4.3. Cultivar Sensitivity to CLS Can Be Estimated with Both
Vectors under Certain Conditions. Cultivar sensitivity to
plant disease is often represented with the ADPC synthetic
indicator [44, 46]. ADPC is classically given by the integral
of visual scores over time. However, such integral can also
be computed using scores estimated from Phenomobile or

1 3 5
Score for replicate #1

Sc
or

e f
or

 re
pl

ic
at

e #
2

Sc
or

es
Visual Phenomobile UAV

7

9

7

5

3

1

A
D

PC
 fo

r r
ep

lic
at

e #
2

A
D

PC

5000

4000

3000

2000

1000

9 1 3 5
Score for replicate #1

7 9 1 3 5
Score for replicate #1

7 9

1000 2000 3000
ADPC for replicate #1 ADPC for replicate #1 ADPC for replicate #1

4000 5000 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000

r
2 = 0.92

RMSE = 0.58
r

2 = 0.97
RMSE = 0.51

r
2 = 0.84

RMSE = 0.89

r
2 = 0.60

RMSE = 340
r

2 = 0.69
RMSE = 293

r
2 = 0.09

RMSE = 509

1 3 5
Score for replicate #1

7 9 1 3 5
Score for replicate #1

7 9 1 3 5
Score for replicate #1

7 9

r
2 = 0.92

RMSE = 0.58
r

2 = 0.97
RMSE = 0.51

r
2 = 0.84

RMSE = 0.89

r
2 = 0.60

RMSE = 340
r

2 = 0.69
RMSE = 293

r
2 = 0.09

RMSE = 509

Figure 12: Relationships between the two score (row 1) or ADPC (row 2) values corresponding to the two replicates “inoculation and no
fungicide application” in 2016 (see estimates in Figures 9 and 10). Scores and ADPC are derived from visual (left), Phenomobile (middle),
and UAV (right) measurements. Absolute and relative RMSE and squared Pearson’s correlation coefficient are shown. The color indicates
the point density, ranging from blue for low density to yellow for high density.

14 Plant Phenomics



UAV images as done in this paper. The trends observed for
scores (Section 4.2) are therefore also found for the corre-
sponding ADPC. In particular, the overestimation of low
scores observed with the Phenomobile in 2017 is even more
visible on ADPC estimation (Figure 10) due to the high pro-
portion of visual scores lower than or equal to two (e.g., the
median visual score did not exceed two during the first half
of the campaign, see Figure 6). Still, the accurate score esti-
mates obtained with the Phenomobile result in accurate
ADPC estimates for both years (RMSE ≤19%).

Since estimated ADPC is the integral of estimated scores
over all the sampling dates, it smoothens out the uncer-
tainties associated with the individual score estimates. There-
fore, while the score estimation accuracy obtained with the
UAV may not be sufficient for breeders (e.g., RMSE = 25%
in 2016), the ADPC estimation accuracy may be acceptable
(e.g., RMSE = 16% in 2016). Besides limiting the detrimental
influence of external factors that may affect UAV measure-
ments (Section 4.2), performing these measurements suffi-
ciently late in the growing season appears as a simple yet
effective solution to improve ADPC estimation from UAV.
Indeed, the score estimation accuracy obtained with GFn
alone increases with the score value due to the increasing sen-
sitivity of GFn (Figures 8 and 9): for example, the RMSE per
score value averaged over 2016 and 2017 is lower than 0.79
for scores greater than or equal to eight, while it is higher
than 1.05 for scores lower than eight (data not shown). Com-
puting ADPC based on GFn-derived estimates of scores
lower than seven thus provides poor ADPC estimates
(Figure 10). This also explains the flat bottom of the scatter
plot obtained for UAV estimation in 2017 (Figure 10), which
corresponds to the 25% of the microplots whose score values
remained lower than five during the studied period
(Figure 6). On the other hand, considering scores higher than
seven improves ADPC estimation. Such results allow us to
define a specific requirement when assessing cultivar sensi-
tivity to CLS from UAV multispectral imagery in phenotyp-
ing experiments: UAV flights should be performed until all
the microplots reach a maximum score of nine, i.e., when
all the microplots are fully necrosed. The objective should
be to identify when each microplot reaches this maximum
score to get optimal UAV ADPC estimation performance.

While the poor ADPC estimation results obtained in
2017 with UAV prevented an accurate discrimination of
CLS sensitivity classes, the classification results obtained with
the Phenomobile were promising (Figure 11). Phenomobile
could better discriminate the very resistant and resistant clas-
ses than visual scoring, which tends to confirm that low
scores were not overestimated by Phenomobile but rather
underestimated by visual scoring, as suggested in Section
4.2. However, Phenomobile showed poorer discrimination
of sensitive and very sensitive classes than visual scoring.
This may have been due to the different relationships
between GFn and visual scores observed in 2016 and 2017
that caused an underestimation of high scores in 2017 (Sec-
tion 4.2). Anyway, it is worth mentioning that the classifica-
tion performance obtained with Phenomobile and UAV
measurement would have been probably improved with later
measurements.

4.4. Phenomobile and UAV Scorings Can Complement Visual
Scoring for Sugar Beet High-Throughput Phenotyping. The
three scoring methods used in this study (visual scoring, Phe-
nomobile RGB imagery, and UAV multispectral imagery)
present advantages and drawbacks that should be properly
understood before choosing a scoring method for sugar beet
high-throughput phenotyping (Table 4).

4.4.1. Accuracy. Our results suggest that Phenomobile RGB
imagery generally provides more accurate score and ADPC
estimates than visual scoring. Although based on a unique
scoring scale (Table 1), visual measurements remain subjec-
tive and prone to errors, as it may be difficult to accurately
characterize a gradient in GF for high scores or to detect a
few spots in a dense canopy for low scores, based on visual
assessment. Our results show that these errors limit the con-
sistency of the across-year relationships between remote-
sensing variables and visual scores, which then impacts the
performance of machine learning models. Note that this
problem would have been even more detrimental if visual
scoring had been achieved by different experts. UAV multi-
spectral imagery generally provides poorer score estimates
for low to intermediate score values due to its lower spatial
resolution. Still, it can provide accurate and consistent esti-
mates of high scores that are similar to those obtained with
Phenomobile, thus yielding reasonably accurate estimates of
ADPC if UAV measurements are performed until all the
microplots have reached a maximum score of nine. However,
great attention must be paid to the UAV data acquisition,
especially due to the passive nature of the imagery. In partic-
ular, images should always have the same spatial resolution
and flights should be performed under stable illumination
conditions as far as possible to ensure accurate radiometric
calibration. If the latter is not possible, computing data qual-
ity flags for every microplot and date (e.g., based on the
expected reflectance values of vegetation or soil) could allow
us to filter out inappropriate data before computing ADPC if
UAV measurements have been performed at a sufficiently
high frequency, e.g., on a weekly basis.

4.4.2. Specificity. An important weakness of UAV multispec-
tral imagery is its nonspecificity, since the observed varia-
tions in GF cannot only be due to CLS but also to weeds,
natural senescence, and other diseases such as Phoma betae,
etc. For that reason, human supervision may be necessary
to detect potential problems. Note, however, that this prob-
lem is limited in phenotyping experiments because weeds
are controlled and CLS is inoculated artificially at the optimal
date so CLS can spread before other diseases and natural
senescence. The use of SD and SS seemingly makes Pheno-
mobile RGB imagery more specific to CLS; yet, visual assess-
ment by an expert remains the reference method from this
point of view.

Representativeness of the measurements is also not an
issue for visual scoring, as the expert can visualize the whole
microplot before scoring. It is also not an issue for UAVmul-
tispectral imagery since only images that fully cover the
microplot are used. On the other hand, performing a proper
sampling of the microplot with the Phenomobile is trickier
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because not all the microplot is imaged. Therefore, a suffi-
ciently high number of images should be acquired to capture
any possible spatial heterogeneity.

4.4.3. Repeatability. When evaluated over the two replicates
in 2016, repeatability of Phenomobile measurements was
slightly better than repeatability of visual scoring, even if
the discrete nature of visual scores as opposed to the contin-
uous values derived from RGB imagery may explain part of
the difference (Figure 12). The greater uncertainty observed
for scores lower than five with UAV multispectral imagery
explains the poor repeatability observed for those scores.
Such scores are poorly sensitive to GFn variation, so their
estimation is particularly sensitive to external factors such
as inaccurate radiometric calibration in this case. This further
emphasizes the need for high scores when performing UAV
measurements, as the higher sensitivity of GFn will decrease
the influence of such external factors. When evaluated over
two years, repeatability of visual scoring is more questionable
than that of the other two methods, as discussed above based
on the different relationships between GFn and visual scores
observed in 2016 and 2017 (Figure 8). Accuracy and repeat-
ability of visual scoring may be particularly affected for very
large experiments such as the ones conducted in 2017
because of possible fatigue of the expert induced by the scor-
ing of hundreds or thousands of microplots in a row.

4.4.4. Efficiency. UAV multispectral imagery appears much
more efficient than the other two methods, with about 2000
microplots sampled per hour when flying at 50m. At the
same time, only 300 microplots can be sampled with Pheno-
mobile RGB imagery, and 150 (for early CLS stages) to 220
(for late CLS stages) microplots can be sampled with visual
scoring. Such a gain turns out to be a critical advantage of
UAV multispectral imagery for large phenotyping experi-
ments. It should encourage the respect of the guidelines pro-
vided above for this kind of imagery and potentially motivate
the development of alternative methods to improve the
radiometric calibration of UAV data.

4.4.5. Affordability. In [25], the authors showed that, when
including every source of expense (sensor, vector, mainte-
nance, manpower, and training), the UAV system was
cheaper than the UGV one by a factor ranging from 1.7
and 3.5. This also turns out to be a critical advantage when
choosing one of the two approaches.

5. Conclusions and Perspectives

In this study, we assess the use of Phenomobile
submillimeter-scale RGB imagery acquired under active illu-
mination and UAV centimeter-scale multispectral imagery
acquired under passive illumination, for scoring CLS symp-
toms in sugar beet phenotyping experiments. These two scor-
ing methods are also compared with the reference visual
scoring method. Based on two years andmore than one thou-
sand cultivars, the results show that the submillimeter spatial
resolution of the RGB imagery and the active illumination
conditions provided by the flashes makes the Phenomobile
an extremely powerful tool to extract critical features such
as SD and GFn, both of which are accurate indicators of
low and high scores, respectively. Scores can thus be esti-
mated accurately over their whole range of variation, from
healthy green plants to fully necrosed canopies. This is a very
important result as the early detection of disease symptoms
in field conditions is often considered as a major challenge.
Cultivar sensitivity to CLS expressed with the ADPC variable
can then be retrieved accurately based on these score esti-
mates. In the case of UAV multispectral imagery, only GFn
is available due to the coarser spatial resolution so only high
scores can be estimated accurately. Still, UAV multispectral
imagery can be used to retrieve ADPC with a reasonable
accuracy, provided that (1) measurements are performed suf-
ficiently late in the growing season so that all the microplots
have reached the maximum score and (2) the detrimental
influence of external factors such as changing illumination
conditions leading to inaccurate radiometric calibration is
minimized. This would make it possible to take advantage
of the stronger efficiency and lower cost of UAV measure-
ments as compared to Phenomobile measurements, without
a significant loss in accuracy. The results also show that
image-based methods can outperform visual scoring on
some aspects, e.g., due to the subjective nature of visual scor-
ing whose effect may be increased when scoring very large
phenotyping experiments. This is especially true for very
low and very high scores as it may be difficult to see a few
brown spots in a dense canopy or to accurately assess a
change in GF visually.

Currently, human supervision however remains neces-
sary because of the diversity of biotic and abiotic stresses that
can affect sugar beet plants in a similar way. Accurate assess-
ment of cultivar sensitivity to CLS requires the CLS symp-
toms to be discriminated from those of other diseases such

Table 4: Comparison between the three scoring methods used in this study based on seven criteria.

Criterion Visual scoring Phenomobile RGB imagery UAV multispectral imagery

Accuracy (scores) +++ ++++ ++

Accuracy (ADPC) +++ ++++ +++

Specificity ++++ +++ +

Representativeness ++++ +++ ++++

Repeatability +++ ++++ +++

Efficiency + ++ ++++

Affordability ++++ + +++
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as Phoma betae for example. Therefore, Phenomobile or
UAV images and corresponding score estimates could be
checked visually after image processing to detect a potential
problem in the estimation, especially when using UAV-
derived scores that are less specific to CLS. This problem
could also be solved using more advanced algorithms based
on deep learning that would be able to discriminate symp-
toms [21, 47]. This would require a very large and diversified
database to obtain accurate and robust models, the diversity
including all the different stresses expected and a wide range
of cultivars and canopy structure. However, such database
was not available for this study. Finally, an interesting pros-
pect for the UAV would be to estimate GF with classical
RGB imagery instead of multispectral imagery. The finer spa-
tial resolution of RGB imagery could indeed lead to a better
sensitivity for low scores. The wider spectral bands may
slightly decrease the GF estimation accuracy, but this
decrease could be compensated for by using more advanced
classification algorithms, such as deep learning models or
SVMmodels based not only on RGB features but also on tex-
tural features for example.
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