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Abstract: Symptom occurrence at the first ingestion suggests that food allergy may result from
earlier sensitization via non-oral routes. We aimed to characterize the cellular populations re-
cruited at various mucosal and immune sites after experimental sensitization though different routes.
BALB/cJ mice were exposed to a major allergenic food (peanut) mixed with cholera toxin via the
intra-gastric (i.g.), respiratory, cutaneous, or intra-peritoneal (i.p.) route. We assessed sensitization
and elicitation of the allergic reaction and frequencies of T cells, innate lymphoid cells (ILC), and
inflammatory and dendritic cells (DC) in broncho-alveolar lavages (BAL), lungs, skin, intestine,
and various lymph nodes. All cellular data were analyzed through non-supervised and supervised
uni/multivariate analysis. All exposure routes, except cutaneous, induced sensitization, but intesti-
nal allergy was induced only in i.g.- and i.p.-exposed mice. Multivariate analysis of all cellular
constituents did not discriminate i.g. from control mice. Conversely, respiratory-sensitized mice
constituted a distinct cluster, characterized by high local inflammation and immune cells recruitment.
Those mice also evidenced changes in ILC frequencies at distant site (intestine). Despite absence of
sensitization, cutaneous-exposed mice evidenced comparable changes, albeit less intense. Our study
highlights that the initial route of sensitization to a food allergen influences the nature of the immune
responses at various mucosal sites. Interconnections of mucosal immune systems may participate in
the complexity of clinical manifestations as well as in the atopic march.

Keywords: food allergy; peanut; routes of exposure; BALB/c mice; cellular immune response

1. Introduction

Food allergy (FA) is an inappropriate immune reaction to food proteins that mainly
involves production of specific IgE (type E immunoglobulins) [1]. Production of IgE
corresponds to allergic sensitization [1] and the most likely sensitizing route to food
antigens is the gastrointestinal tract. After ingestion, food proteins are loaded by antigen-
presenting cells spread throughout the intestinal mucosa that migrate then to draining
lymph nodes to present the food antigens to naïve T cells. The “normal response” is
the induction of regulatory T cells and of immune tolerance. However, in genetically
predisposed (i.e., atopic) individuals, and due to specific (micro)environmental signals,
naïve CD4+ T lymphocytes can differentiate into Type 2 helper cells (Th2) that produce
cytokines such as IL-4/5/13 and that will in turn induce production of specific IgE by B
lymphocytes. These IgE circulate throughout the body and bind to mucosal mast cells [2].
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An allergic reaction can then occur upon further ingestion of the sensitizing food, through
activation of these sensitized mast cells.

However, other routes of sensitization to food allergens have been reported, which
could explain the occurrence of symptoms after the first known ingestion of the offending
food in some patients [3]. Studies in the past decade have brought to evidence that inflamed
skin such as that encountered in atopic dermatitis (AD) may be a prominent route for
sensitization to some foods. Indeed, food proteins present in the household environment,
such as peanut proteins, can penetrate through a damaged or inflamed skin barrier where
they are taken up by inflammatory Langerhans cells, leading to Th2 responses and IgE
production by B cells [4]. Sensitization may also occur through the airways, especially
during food processing (steam) [5]. Immune interconnections between different mucosal
sites may then explain that allergic symptoms occur at distant sites. These interconnections
may also participate to the “atopic march”, the progression of atopic disorders from AD in
infancy to food allergy, allergic rhinitis, and then asthma as children grow up [6–8]. Indeed,
children suffering from AD have an increased risk of suffering from other atopic diseases
and about 35% of them will develop an IgE-mediated food allergy later in life [7].

Another aspect to consider is that structural and functional differences have been
described between nasopharyngeal-, skin-, or gut-associated lymphoid tissues [9]. The
route of allergen sensitization may therefore influence the nature of the immune responses,
i.e., the pattern of produced antibodies and of activated T cells. However, it remains unclear
how entering through one route or another influences subsequent allergic reactions, locally
or at more distant mucosal sites. The complexity of the mechanisms that underlie allergic
inflammatory responses further limits our understanding of the adverse effects that occur
in individuals who suffer from allergies.

In a mouse model of experimental sensitization to peanut proteins using cholera toxin
as a Th2 adjuvant, we then aimed to further analyze the impact of the route of exposure
(gastrointestinal, respiratory, cutaneous, or intraperitoneal) on the cellular actors recruited
at various mucosal and immune sites and on food allergy elicitation.

2. Materials and Methods
2.1. Allergens

For sensitization, a peanut protein extract (PE) was prepared from roasted peanuts [10].
Peanuts were ground with an Ultra-Turrax® Tube Drive (T25 basic, IKA®, Werke, Staufen,
Germany) and proteins were then extracted in borate buffer (50 mM, pH 9.0, 18 h at 4 ◦C).
After centrifugation (1000× g for 15 min) and filtration of the supernatant, PE was obtained.
For the oral food challenge (OFC), a protein extract from raw peanut was obtained after
defatting of grounded peanuts using acetone and ether, and then a 24 h extraction in a
small volume of carbonate buffer (20 mM, pH 9.2).

PE and OFC solutions were characterized by assessment of total protein concentrations
(Pierce™ BCA protein assay kit, Thermo Scientific™, Waltham, MA, USA, following the
manufacturer’s instructions) and by electrophoresis to ensure the presence of the major
peanut allergens [10,11].

2.2. Mice

Three-week-old female BALB/cJ mice were purchased from CERJ (Centre d’Elevage
René Janvier, Le Genest-Saint-Isle, France), and were housed in filtered cages under normal
specific pathogen-free husbandry conditions, with autoclaved bedding and sterile water
for 10 days (acclimation). The mice received a diet deprived of peanuts. At the age of five
weeks, the mice were individually identified using Radio-frequency identification (RFID)
microchips (Biolog-animal) and randomly allocated to experimental groups. All animal
experiments were performed according to European Community rules of animal care, and
with specific ethical approval from French Minister (authorization number 21846).
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2.3. Sensitization

In all the groups, exposures were performed once a week for six weeks using PE
and 10 µg of cholera toxin (CT; Sigma, Saint-Louis, MO, USA) per administration as a
Th2 adjuvant [10,12].

The exposures were performed through either the intragastric (i.g.), intraperitoneal
(i.p.), cutaneous (cut.), or respiratory (resp.) route (n = 5–8 mice/route of exposure).
A group of eight control mice was kept naïve (ctl.) (Figure 1). For i.g., 5 mg of peanut
protein, in 200 µL of Phosphate-buffered saline (PBS) buffer, was administered using an
animal feeding needle (Popper & Sons, New Hyde park, NY, USA) adapted to the age
and weight of the animals [12]. Intraperitoneal exposure (i.p.) was performed by injecting
10 µg of PE in 200 µL of PBS buffer. For cut. exposure, mice were first anesthetized
with a mix of ketamine (100 mg/kg; Imalgène® 500, Merial, Lyon, France) and xylazine
(10 mg/kg; Rompun® 2%, Bayer Pharma, Puteaux, France) and kept on a heating mat.
Then 100 µg of PE diluted in 200 µL of Dimethyl sulfoxide (DMSO) was spread on all
sides of the ears. After 30–40 min, the skin was gently cleaned with water to avoid oral
contact through grooming. Respiratory exposure was performed by applying 50 µg of PE
in 180 µL of PBS, administered by successive deposit of small droplets on the nostril of
ketamine-/xylazine-anesthetized mice to avoid swallowing.
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Figure 1. Experimental schedule. Mice were exposed once a week for 6 weeks to a peanut protein
extract (PE) mixed with cholera toxin (CT) through intra-gastric (n = 8), intra-peritoneal (n = 8),
cutaneous (n = 7), or respiratory (n = 5) routes. An oral food challenge was performed on day 42 and
then fluids and organs/tissues were collected.

2.4. Oral Food Challenge (OFC)

One week after the sixth exposure, all the mice including the control group underwent
an i.g. challenge with 12 mg of PE to trigger a local (intestinal) allergic reaction.

2.5. Single Cell Preparations from Collected Organs

One hour after the OFC, mice were anesthetized and blood and broncho-alveolar
lavages (BAL) were collected [13]. Mice were then sacrificed and spleen, lungs, intes-
tine, mesenteric lymph nodes (MLN), mediastinal lymph nodes (MedLN), and ears were
collected from each mouse. Organs were immediately placed in RPMI (Sigma-Aldrich,
Saint-Louis, MO, USA) and kept on ice until preparation of cellular suspension as detailed
in the Supplementary Materials. All samples were treated individually.

2.6. mMCP1 Assay

The mouse mast cell protease-1 (mMCP1) concentration was determined in plasma
using a commercial kit (mMCP-1 Mouse ELISA Kit, Invitrogen®, Waltham, MA, USA),
according to the supplier’s recommendations. Each sample was assayed at two dilutions
(1/25 and 1/250). Optical density was measured using a spectrophotometer (Epoch®,
BioTek, Winooski, VT, USA, λ = 414 nm), and analyses were performed using Gen5 software
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(Gen5.1.09 Software, BioTek, Winooski, VT, USA, https://www.biotek.com/products/
software-robotics-software/gen5-microplate-reader-and-imager-software/, accessed on 6
June 2011) [14].

2.7. Measurement of PE-Specific IgE and IgG1 in Plasma

Specific IgE and IgG1 were determined as previously described [10,12,14,15] on PE-
coated plates. To avoid IgG interaction in IgE measurement, we also performed a “re-
verse” ELISA assay. Capture antibody (rat anti-mouse IgE, clone LOME-3-Biotech Bio-
Rad; 1.5 µg/mL) diluted in 50 mM phosphate buffer pH 7.4 was coated on microtiter
plates. After saturation and incubation of the samples, specific IgE were revealed using
acetylcholinesterase-labelled peanut proteins [16]. A standard curve was performed on
each plate using a pool of plasma from hyper-immunized mice, and concentrations are
provided as arbitrary units.

2.8. Local and Circulating Cytokine Analysis

Cytokine (IFNγ, IL-5, IL-6, IL-10, IL-13 and IL-17) concentrations were assayed in
BAL and plasma using xMAP® Luminex Technology’s kits and apparatus from Bio-Rad
(BioPlex™ Cytokine Assay, Bio-Rad; Hercules, CA, USA, Bioplex™200) and following the
manufacturer’s recommendations.

2.9. Cellular Population Analysis

Cell counts and viability were determined using a NovoCyte Flow Cytometer (ACEA
Biosciences, San Diego, CA, USA) and 7-aminoactinomycin D (7-AAD, Interchim, Montluçon,
France). Immunophenotyping of T cells (including homing receptors), dendritic cells
(DC), innate lymphoid cells (ILC), and inflammatory cells was performed using four
pre-optimized antibody panels presented in the Supplementary Materials (Table S1). Data
acquisition was performed on an Attune™ NxT Flow Cytometer (Thermo Scientific™,
Waltham, MA, USA) or on a NovoCyte Flow Cytometer, depending on the cell subtypes,
and analyses were performed using FlowJo® (Version 10, ACEA Biosciences, San Diego, CA,
USA). The gating strategies are illustrated in Figures S1–S4 in the Supplementary Materials.

The various analyses described above were carried out on all the samples at the same time.

2.10. Statistical Analysis

Food allergy induction was first confirmed by comparing concentrations of specific
IgE and IgG1, cytokines, and mMCP1 in plasma from exposed versus naïve mice (non-
parametric Kruskal–Wallis and Dunn’s post-test). Then, we aggregated all the data from the
cellular analysis to perform multivariate analysis. We first performed a descriptive analysis
(principal component analysis, PCA) of all data obtained from each individual. This offered
an overview of the variables and individuals, to identify potential outliers (none identified),
and to assess the variables that were the most explicative of the whole dataset. Individuals
with some missing data were not considered in PCA (three i.g., three i.p., and three ctl. mice).
Corresponding missing data resulted from the quantity of cells not always being sufficient
in some tissues to carry out relevant analysis in flow cytometry analysis. Non-supervised
clustering was also tested (agglomerative hierarchical clustering, AHC): AHC gathers the
closest individuals by considering all the variables. Homogeneity of the repartition of
the different individuals in the different clusters was tested to preliminarily identify if
some routes of exposure led to a clustering of corresponding individuals. Actually, if a
route of exposure did not influence the type of immune response induced, the individuals
would be shared equivalently within the different clusters. Then, we modelled the data
using supervised partial least square discriminant analysis (PLS-DA), with the exposure
route as the explanatory variable. If a model was constructed, it meant it is possible to
distinguish the individuals depending on the route of exposure based on the analyzed
variables. Discriminant variables (i.e., the ones on which the “route of exposure” effect

https://www.biotek.com/products/software-robotics-software/gen5-microplate-reader-and-imager-software/
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relied) were then identified with model-calculated “variable important in projection” (VIP)
value (VIP +/−SD > 1).

Univariate analyses were performed in parallel. The non-parametric Kruskal–Wallis
test first identified immune constituents evidencing differences within experimental groups
(p < 0.05). Paired analysis using Dunn’s test was then performed to compare all groups to
the control group (* p < 0.05; ** p < 0.01; *** p < 0.001).

All analyses were performed using XLSTAT® software (version 2020.3, Addinsoft,
Paris, France) and a graph drawn with GraphPad Prism 9.0.0. Univariate plots are shown
as box-and-whisker plots (median, upper and lower quartile).

3. Results
3.1. Assessment of Food Allergy Induction

We first assessed the sensitization level induced in the different groups of mice, by com-
paring the concentrations of peanut-specific IgE and IgG1 antibodies and Th1/Th2/Th17
(i.e., IFNγ/IL-5/IL-17) and inflammatory/regulatory cytokines (i.e., IL-6/IL-10) in plasma.

Compared to the control mice, peanut-specific IgE antibodies were significantly in-
duced in mice exposed through the i.g., respiratory, or i.p. route, but not in mice exposed
through the cutaneous route (Figure 2A). Peanut-specific IgG1 antibodies were higher
in mice exposed through the i.p. or the respiratory route, compared to control mice
(Figure 2A). No increased concentrations of cytokines was evidenced in plasma from the
exposed groups compared to naïve mice (not shown).
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A significant intestinal allergic reaction was induced by the OFC in i.g.- and i.p.-sen-
sitized mice, as evidenced by significantly increased concentrations of mMCP1 in plasma 
from the corresponding mice (Figure 2B). Despite efficient sensitization, no elicitation of 
the allergic reaction was observed after the OFC in respiratory-exposed mice. 

Therefore, the sensitization route influenced the intensity of sensitization and, at 
equivalent level of sensitization, the susceptibility to develop a clinical allergic reaction 
after an intra-gastric challenge. Then, to go deeper in the characterization of the induced 

Figure 2. Assessment of food allergy induction after exposure through different routes: Peanut-
specific IgE (open bars) and IgG1 (gray bars) (A) and mMCP1 (B) concentrations in plasma collected
1 h after an oral food challenge from mice previously exposed through the intraperitoneal (i.p.),
intragastric (i.g.), respiratory (resp.), or cutaneous (cut.) routes, and in non-exposed mice (ctl.; control
mice). “A”: indicates a significant difference between indicated group and control group (p < 0.05
using non-parametric Kruskal–Wallis and Dunn’s post-test). Bold black dots represent outliers.

A significant intestinal allergic reaction was induced by the OFC in i.g.- and i.p.-sensitized
mice, as evidenced by significantly increased concentrations of mMCP1 in plasma from the
corresponding mice (Figure 2B). Despite efficient sensitization, no elicitation of the allergic
reaction was observed after the OFC in respiratory-exposed mice.

Therefore, the sensitization route influenced the intensity of sensitization and, at
equivalent level of sensitization, the susceptibility to develop a clinical allergic reaction
after an intra-gastric challenge. Then, to go deeper in the characterization of the induced
immune response and to identify its specificity depending on the sensitization route,
we performed multivariate analysis of the cellular immune components assessed in the
different tissues and lymph nodes collected from all these mice.
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3.2. Analysis of Immune Cellular Components in Tissues, Lymph Nodes, and BAL Fluids
3.2.1. Non-Supervised Analysis

DC, T cells (including their homing receptors), and ILC subtypes, as well as inflamma-
tory cells (i.e., neutrophils, eosinophils, and macrophages) were analyzed by flow cytometry
in the different organs and lymph nodes and in BAL collected at sacrifice from all mice.
In total, 93 immune cellular constituents were first analyzed through non-supervised
multivariate analyses, i.e., PCA and then AHC.

The first two dimensions of the PCA represented 41.84% of the total variance of the
dataset. The first dimension of the PCA (24.24% of total variance,) tended to separate i.p.-
and resp.-exposed mice from the other groups, and these last mice were clearly distin-
guished from the others with the first and second dimension (17.60% of the total dataset
variance) (Figure 3A). Many cellular data obtained in the lungs, such as CD8+, CD4+, and
ILC cells, were the most contributing variables of the first dimension (Figure S5). The vari-
ables that mainly contributed to the second dimension were CD4+ cells and inflammatory
cells in the lungs, ears, and BAL.
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of non-supervised PCA. (B) Graph of individuals after modelling of all the data using supervised
PLS-DA and route of exposure as the explicative variable.

In line with these observations, cut.-, i.p.-, and resp.-exposed mice were classified
in separate and well-defined clusters in non-supervised AHC clustering (not shown, chi-
square p value = 5.04 × 10−7).

3.2.2. Multivariate and Univariate Supervised Analysis
Data Modelling and Identification of Discriminant and Significant Variables

PLS-DA modelling with immune cellular data was then performed, with the expo-
sure route as the explanatory variable. A two-component model with low predictive
values (R2Xcum = 0.251, R2Ycum = 0.403) was obtained. Mice exposed through cutaneous,
respiratory, and i.p. routes were correctly classified. Conversely, i.g.-exposed mice and
control mice were misclassified, mostly within cut. or i.p. groups (Figure 3B). VIP values
obtained for all the cellular parameters are provided in Table S2. Cellular data obtained in
BAL (e.g., CD4+, CD8+, and inflammatory cells) and lungs (ILC and DC) were the more
discriminating constituents in the modelling (VIP +/− SD > 1).

As the high inflammatory profile in the respiratory tract of mice exposed through the
respiratory route may have masked some subtle changes in the other groups during our
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multivariate analysis, we performed the multivariate statistical analyses without the data
from the resp. group. However, results were comparable to those previously obtained
(R2Xcum = 0.219, R2Ycum = 0.517), i.e., mice exposed though the i.p. and cutaneous routes
were well separated whereas control and i.g.-exposed mice were overlapping.

In parallel, pairwise univariate analysis were performed to identify cell constituents
significantly different between groups, which were further tested using pairwise analysis
comparing each group to the ctl. group (naïve mice), with correction for multiple testing.

Univariate graphs of the most discriminant (high VIP) and significant (p-value < 0.05
between groups and ctl.) parameters are shown to visualize the differences. Corresponding
data are shown and discussed below. No difference was evidenced in the ear tissue and in
spleen, whatever the group (not shown).

Analysis in Intestinal Tissue and Associated Lymph Nodes

On the one hand, no significant difference was evidenced between exposed and control
mice for frequencies of DC subtypes or inflammatory cells in MLN, lamina propria (LP),
or within iEL (data not shown). A significant increased frequency of CCR2+ cells within
CD4+ and CD8+ cells was observed in the LP from i.p.-exposed mice compared to control
mice (Figure S6). The number of ILC in LP was also significantly increased in mice exposed
through the i.p. route (Figure 4A). This resulted in a significant increase of frequency of
both ILC2 and ILC3 (notably ILC3 CCR6+ NKp46−, Figure 4B) in the LP from mice exposed
through the i.p. route compared to control mice (Figure 4B), and was associated with a
decrease of ILC2 frequency within iEL (Figure S7). Few modifications were observed for
i.g.-exposed mice, except for an increased frequency of NK (NKp46+ NK1.1+) cells within
iEL (Figure S7).
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cells within ILC, empty bars), ILC3 (ST2−NK1.1− cells selected within ILC; dark gray bars), and
CCR6+NKp46− ILC3 (light gray bars) frequencies; and (C) NK cells (NK1.1+NKp46+ cells selected
within CD45+lin−, then CD4−CD127− cells). All frequencies are expressed using CD45+ cells as a
reference. “A” indicates a significant difference between indicated group and control mice (p < 0.05
using non-parametric Kruskal–Wallis and Dunn’ post-Test). The bold black dot represents an outlier.
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Modifications of the immune system in intestinal tissue were also noticed in the
resp. group, but the changes were not exactly the same as the ones observed in the
i.p. group—the CD4+ and CD8+ T populations were not altered, nor those of ILC2, whereas
ILC3 and NK cell frequencies were also increased in the LP from mice exposed through
the respiratory route compared to control mice (Figure 4B,C). Interestingly, ILC count and
frequencies of ILC3 and CCR6+ NKp46− cells were also increased in the LP (Figure 4A,B),
and frequency of NK cells was increased within iEL (Figure S7), in mice exposed through
the cutaneous route, despite the absence of IgE/IgG1 induction.

Analysis in the Respiratory Tract (BAL and Lung Tissue) and Associated Lymph Nodes
(MedLN)

In the lung tissue, we observed an increased frequency of CD11b+CD103− DC subtype
and of pDC (SiglecH+) in mice exposed through the respiratory route, and to a lesser
extent in mice exposed through the cutaneous route (Figure 5A). Total ILC counts and ILC1
frequency in the lung tissue were significantly lower in i.p., i.g., and resp. groups than in
control mice (Figure 5B).
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Figure 5. Dendritic cells and ILC in lung tissue: (A) CD11b+CD103− DC subtypes (empty bars) and
pDC (gray bars) in the different groups of exposed mice. DC were defined as CD45+CMHII+CD11c+

cells and DC subtypes were defined based on CD11b and CD103 expression. pDC were defined as
SiglecH+ cells within CD11b−CD103− cells. (B) ILC counts (CD45+Lin−CD4−CD127+ cells, empty
bars) and ILC1 frequencies (ST2−NK1.1+ cells within ILC, gray bars) in the different group of mice.
All frequencies are expressed using CD45+ cells as a reference. “A” indicates a significant difference
with ctl. group (p < 0.05 using non-parametric Kruskal–Wallis and Dunn’s post-test). Bold black dots
represent outliers.

In the BAL, we observed a high increase of CD45+ cells frequency in mice exposed
through the respiratory route compared to control mice (Figure 6), which resulted from
an influx of various inflammatory cells, i.e., eosinophils, neutrophils, and macrophages
(Figure 6, not significant for eosinophils). This influx was accompanied by an influx of both
CD4+ and CD8+ T cells that showed significant increased expression of various homing
receptors such as CCR2, CCR4, CCR7, and CCR8 (Figure 7), and of activated T cells
(CD4+CD25+) (Figure 8). The local inflammation evidenced in mice exposed through the
respiratory route was associated with a significant increase of IL-17 concentration in BAL
(Figure 9), with no increase for other cytokines assayed (not shown).

On the other hand, a less intense, albeit significant, influx of CD4+ T cells expressing
CCR2, CCR4, CCR7, and CCR8 (Figure 7A,B) and of CD4+ CD25+ T cells (Figure 8) was also
observed in BAL from mice exposed through the cutaneous route compared to control mice.

No significant difference was evidenced between the groups and the control mice for
DC cell frequencies in MedLN (Figure S8).
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Figure 6. Inflammatory cells in BAL: Frequencies of CD45+ (empty bars), eosinophils (light gray bars),
neutrophils (dark gray bars), and macrophages (black bars) in BAL from different groups of exposed
mice. Inflammatory cells were defined within CD45+CD3− cells as neutrophils (Ly6C+Ly6G+),
eosinophils (SiglecF+CCR3+ within LyG6−), and macrophages (Ly6C−F4/80+ within LyG6−). All
frequencies are expressed using CD45+ cells as a reference. “A” indicates a significant difference
between indicated group and control group (p < 0.05 using non-parametric Kruskal–Wallis and
Dunn’s post-Test).
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Figure 7. T cell influx in BAL: (A) Frequencies of T lymphocytes CD4+ (CD8−, empty bars) and
CD8+ (CD4−, gray bars). Frequency of CCR2+ (empty bars), CCR4+ (light gray bars), CCR7+ (dark
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4. Discussion

Observation in humans has evidenced that sensitization to some food allergens may
occur via the skin or the respiratory mucosa [4,17], leading to symptoms after the first
ingestion of the offending food. This suggests inter-connection between the various mucosal
surfaces, which may also participate in the natural history of allergy such as the atopic
march. Various studies in animals also evidenced that the route of administration affects
the nature of the induced immune responses [18–20]. Food allergy can be induced through
various routes of sensitization in mouse models, but no comprehensive analysis has been
performed to deeply analyze the association between exposure routes and induced cellular
responses. Using mice and peanut as a model food allergen, we therefore aimed to analyze
the immune cellular components recruited at various sites following exposure through
different routes. We used the Th2 adjuvant cholera toxin for all exposure routes in order to
focus on exposure route independently of the adjuvant effect. Mice were exposed through
the i.g., respiratory, cutaneous, or i.p. route, and levels of sensitization and of elicitation of
the allergic reaction after a food challenge were first analyzed. In parallel, a comprehensive
immunophenotyping at different mucosal sites was performed and analyzed through
multivariate and univariate approaches.

First, we evidenced that peanut sensitization is efficiently induced after exposure
through the i.p., i.g., or respiratory routes, as shown by high specific IgE and IgG1 antibody
concentrations in plasma. A significant allergic reaction occurred after an OFC in i.p. and
i.g. mice, but not in the resp. group despite the systemic sensitization. Conversely, no
sensitization nor allergic reaction was elicited in mice exposed through the cutaneous route.
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This was not in line with previous study [21]. Of note, here we did not alter the epithelium
to induce a skin inflammation such as by tape stripping [20]. Moreover, despite the absence
of sensitization in periphery, we evidenced that mice exposed through the cutaneous route
displayed an increase of some cell populations at distant sites, i.e., in the respiratory tract
(i.e., CD11b+CD103− DC in the lung and CD4+ in the BAL) and to a lesser extent in the
intestine (i.e., ILC in LP). These results thus suggest interconnections between the skin and
the intestinal mucosa, in line with previous studies in both mice and humans [19,20], but
also between skin and lungs.

Inversely, i.g.-exposed mice evidenced allergic sensitization and allergic reaction upon
food challenge, but few modifications were observed at any studied mucosal sites, even at
the sensitizing site where only NK cells within iEL were increased. This suggests not only
little mobility of cells from the gut-associated lymphoid tissue to other mucosa, but also
a limited local inflammatory/adaptive response except for IgE-sensitized mast cells (not
directly assessed in the present analysis albeit suggested through mMCP1 release upon
oral challenge). Conversely, mobility of Tregs induced by gavages in the intestine to the
lung has been evidenced [22].

On the contrary, in addition to a systemic sensitization, mice exposed through the
respiratory tract evidenced a high inflammatory profile at the sensitization site. This was
evidenced by significant influx of CD11b+CD103− DC and pDC SiglecH+ cells in the lungs,
and of inflammatory cells (e.g., neutrophils, eosinophils, and macrophages) and CD4+ and
CD8+ cells in the BAL. Quite surprisingly, these T cells expressed the homing receptors
CCR2, CCR4, CCR7, and CCR8, which promoted the migration of cells to different sites,
respectively, to the broncho-alveolar area, the skin, the secondary lymphatic nodes, and the
gut. Although we did not evidence such T cells in the LP, respiratory-exposed mice showed
increased ILC and NK cells in the intestine, thus suggesting a lung to intestine connection.

The local inflammation of mice exposed through the respiratory route was associated
with high concentrations of IL-17 in BAL, in line with recent studies evidencing that IL-17
play an important role on driving allergic inflammation [23,24] and can contribute to the
induction of Th2 cells and eosinophil accumulation, in addition to IgE production [24].
Surprisingly, no elicitation of the allergic reaction following an oral challenge was observed
in the respiratory-exposed mice. This absence of allergic reaction upon OFC may have
resulted from a low density of IgE-bearing mast cells in the intestine of respiratory-exposed
mice, which was not assessed in the present study, although we observed increased fre-
quency of innate lymphoid cells in the intestine and an efficient systemic sensitization. This
further underlines the importance of the local immune components present at the elicita-
tion site and may explain the disconnection of sensitization and elicitation of the allergic
reaction observed in some patients and in some animal models [25]. In our respiratory-
exposed mice, a respiratory challenge would probably have amplified the already existing
local inflammation.

5. Conclusions

In conclusion, our results evidenced a connection between the different mucosal
sites for various cellular components, independently of the systemic sensitization. These
connections depend on the initial route of exposure, and may involve different cellular
components, of both the immune and adaptive immune systems. Recruitment of these
cellular components may render mucosal sites distant from the sensitization site ready for
elicitation and inflammation after further encounters with the sensitizing food allergen.
It may also render those sites prone to sensitization to other allergens, thus participating
in the atopic march. Such model and associated integrative analyses may then help in
understanding the events and actors involved in allergic sensitization to food allergens
and in the atopic march [26–28]. Further studies with other food allergens are underway to
analyze if the observed responses are allergen-dependent.
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